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Abstract: The process of gear machining consumes a large amount of energy and causes serious
pollution to the environment. Developing a proper process route of gear machining is the key to
conserving energy and reducing emissions. Nowadays, the proper process route of gear machining
is based on experience and is difficult to keep up with the development of modern times. In this
article, a calculation model of low-carbon and low-energy consumption in gear machining processes
was established based on an analysis of the machining process. With processing parameters as
independent variables, the grey wolf algorithm was used to solve the problem. The effectiveness of
the method was proven by an example of the machining process of an automobile transmission shaft.

Keywords: gear processing; process route optimization; gray wolf algorithm; low energy consumption;
low carbon

1. Introduction

The manufacturing process consumes a lot of energy and produces a great deal of
pollution in the environment [1,2]. Environmental improvement is closely related to
industrial development, and it is also inseparable from the development of energy saving
and emission reduction technology and manufacturing technology innovation. Therefore,
energy efficiency in manufacturing, as a global concept, has attracted increasing attention
from academics, industry and government departments [3,4]. A process route is a means to
guide the manufacturing workshop to complete the production task in accordance with
the prescribed operation processes. The improvement of the product processing route
can effectively achieve energy saving and lower carbon emissions. In gear machining,
different process routes have a great impact on energy consumption, carbon emissions
and the processing costs of gear machining [5–7]. In actual production, it is necessary to
optimize the gear processing route with a reasonable optimization decision method.

In recent years, many scholars have studied process route decision making.. An et al.
put forward a process route optimization method based on intuitionistic fuzzy number
and CA-SPEA2. The method was verified by machining the transmission box [8]. Fan
et al. constructed a process route decision space based on process constraints and solved it
with the genetic algorithm [9]. Huang et al. proposed a process route generation method
with dynamic updating of tabu manufacturing features, and combined it with an ant
colony algorithm to optimize the problem of process route [10]. Cheng et al. proposed a
bacterium-foraging ant colony optimization (BFACO) algorithm for process route planning,
and compared it with the optimization results of other optimization algorithms. The
results showed that the BFACO algorithm had high computational efficiency [11]. Li
et al. introduced the concepts of feature element and processing element to process the
features of parts, established an efficient and low-carbon optimization model of processing
process route, and used the genetic algorithm to optimize the model. This method has
been verified through the machining of an electric frame [12]. Zhai et al. adopted the
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minimum number of changes in manufacturing resources as the objective function to
optimize the process route, and proposed a hybrid process route-sorting algorithm based
on the ACO and SA algorithms [13]. Tang et al. established a process route optimization
model with the objective of low energy consumption and high efficiency, and proposed
a SA-QPSO algorithm to optimize the model [14]. Xiao et al. used a process element to
express processing characteristics, and set up a low-energy consumption and low-cost
process route optimization model. A combined algorithm of APSO and NSGA-II was
proposed. The feasibility of this method was verified by comparing the process route
of an emulsion pump box before and after optimization [15]. Milica et al. proposed a
new algorithm combining PSO algorithm and chaos theory, and verified the flexibility
and superiority of the algorithm for process route optimization through experiments and
comparisons with other algorithms [16].

The above research on the process route decision optimization of mechanical manufac-
turing systems was mainly carried out by establishing the mapping between process route
and optimization objective, and using intelligent algorithms and processing experiments.

These studies were used to optimize the process route from different angles and with
different methods and then verify its efficiency and suitability. Gear machining is complex,
and the research surrounding gear process route is limited; few people consider gear
processing route optimization. Gear machining is a complicated process, the process route
has an important influence on gear production. However, gear process route optimization
is limited, and new optimization methods are emerging. In this paper, the process route
of gear machining was studied, aiming to improve the energy consumption and carbon
emissions of gear machining, and an optimization model of gear processing route based
on low-carbon and low-energy consumption was established. An improved grey wolf
algorithm was proposed to optimize the process route sequence, equipment allocation and
tool allocation. The method was verified by machining the second gear of the intermediate
shaft of automobile transmission.

2. Optimization Model of Gear Processing Route Based on Low-Carbon and
Low-Energy-Consumption

Studies have shown that in discrete processing industries (turning, milling, etc.), 99%
of the impact machine tools have on the environment is caused by power consumption,
and machine tool energy consumption is one of the important indicators for evaluating ma-
chine tool environmental performance [17,18]. Therefore, reducing the processing energy
consumption is one of the most important means to achieve low-carbon manufacturing. At
the same time, with the development of green and low-carbon manufacturing, determining
how to optimize the process route based on carbon emission and energy consumption is
the focus of the research. Traditional gear machining only considers the function realiza-
tion and machining quality, which is not suitable for the current green and low-carbon
manufacturing. Therefore, a gear machining process route optimization model based on
energy conservation and low-carbon is proposed [19–21]. In the process of dry cutting gear
processing, a lot of carbon emissions will be produced in the processes of inputting and
outputting various materials, energy conversion and consumption, waste discharge and
treatment, etc.

2.1. Energy Consumption Optimization Model of Gear Processing Route

The production process of gear uses various machine tools, accompanied by the
use of energy (electric energy, natural gas, etc.), cutting fluid, fixture and other materials
under the assistance of refining, casting, rolling, cutting, i.e., the final formation of gear
products. Depending on the energy used in the whole process, it can be divided into direct
and indirect methods. The influencing factors of energy consumption in gear machining
process are shown in Figure 1.
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2.1.1. Direct Energy Consumption

The electrical energy consumed during machine tool processing is called direct energy
consumption, which determines the size, shape and accuracy of the workpiece. In addition,
machine tool lighting, transportation products, etc., can also be classified as direct energy
consumption. The direct energy consumption is expressed as

ED,i = EB + EI + EC (1)

where ED,i is the electric energy used by the I-step machine tool (kWh), EB is the basic
energy consumption (kWh) of machine tool when clamping workpiece, EI is the energy
consumed to keep the spindle running while adjusting the tool for machine tool (kWh), EC
is energy consumption generated by cutting tool workpiece (kWh).

EC = V ∗ δ ∗ tc (2)

V is the volume of material removed by cutting (mm3), δ is specific energy consump-
tion (w·s/mm3), and tc is working time of process.

Energy consumption for lighting and transportation is

EA = PL ∗ tL +
n

∑
m=1

PT ∗ tT (3)

EA is lighting and transport energy consumption, PL, PT are lighting and transport
power, respectively, (kWh/s), tL is average lighting time of the workpiece (s), and tT is sum
of average transit time and cutting time.

2.1.2. Indirect Energy Consumption

The indirect energy consumption in the production process of workpiece mainly
comes from the consumption of auxiliary materials, such as cutting fluid, fixture, tool, etc.
This type of energy consumption mainly comes from databases and literature, and can
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also be converted into electrical energy consumption by the intrinsic energy value of the
workpiece, expressed as

EM,i =
k

∑
j=1

mj ∗ Ebmj ∗ 1/β (4)

EM,i is the work step i indirect energy consumption (kWh); ma is the consumption of
material j in this working step; Ebmj is the intrinsic energy consumption of the j-th material
(J/kg); the intrinsic energy consumption of a material refers to the total energy consumed
to produce a certain material; β is the work-electric energy conversion coefficient, and its
value is 3,600,000 [22].

A part process route consists of i steps, the average energy consumption of a workpiece
is

E =
l

∑
i=1

ED,i +
l

∑
i=1

EM,i (5)

2.2. Carbon Emission Optimization Model Based on Gear Processing Route
2.2.1. Material, Energy Consumption and Waste in Gear Processing

The gear blank will produce a lot of carbon emissions and consume a lot of energy in
the process of processing. A carbon emission boundary is an effective means to calculate
carbon emissions. The process of transferring gear blank to machine tool and finishing
gear product is set as carbon emission boundary. The whole boundary contains carbon
emissions from three aspects, namely material, energy and waste. The materials consumed
in gear processing are mainly gear raw materials and various auxiliary materials, and
the energy consumed is electricity, oil, natural gas, etc. [23,24]. A variety of materials i
(i = 1, 2 . . . , I) and energy k (k = 1, 2 . . . , K) enter the workshop in turn according to the
process route, carry out the gear machining process, and the finished gear products are
obtained through machining. Each workshop shall discharge waste l (l = 1, 2 . . . , L). The
influencing factors of carbon emission during gear machining are shown in Figure 2.

Processes 2022, 10, 2585 4 of 17 
 

 

2.1.2. Indirect Energy Consumption 

The indirect energy consumption in the production process of workpiece mainly 

comes from the consumption of auxiliary materials, such as cutting fluid, fixture, tool, etc. 

This type of energy consumption mainly comes from databases and literature, and can 

also be converted into electrical energy consumption by the intrinsic energy value of the 

workpiece, expressed as 

𝐸𝑀,𝑖 =∑𝑚𝑗 ∗ 𝐸𝑏𝑚𝑗
∗ 1 𝛽⁄

𝑘

𝑗=1

 (4) 

𝐸𝑀,𝑖is the work step i indirect energy consumption (kWh); 𝑚𝑎 is the consumption 

of material j in this working step; 𝐸𝑏𝑚𝑗
 is the intrinsic energy consumption of the j-th 

material (J/kg); the intrinsic energy consumption of a material refers to the total energy 

consumed to produce a certain material; 𝛽 is the work-electric energy conversion coeffi-

cient, and its value is 3,600,000 [22]. 

A part process route consists of i steps, the average energy consumption of a work-

piece is 

E =∑𝐸𝐷,𝑖

𝑙

𝑖=1

+∑𝐸𝑀,𝑖

𝑙

𝑖=1

 (5) 

2.2. Carbon Emission Optimization Model Based on Gear Processing Route 

2.2.1. Material, Energy Consumption and Waste in Gear Processing 

The gear blank will produce a lot of carbon emissions and consume a lot of energy in 

the process of processing. A carbon emission boundary is an effective means to calculate 

carbon emissions. The process of transferring gear blank to machine tool and finishing 

gear product is set as carbon emission boundary. The whole boundary contains carbon 

emissions from three aspects, namely material, energy and waste. The materials con-

sumed in gear processing are mainly gear raw materials and various auxiliary materials, 

and the energy consumed is electricity, oil, natural gas, etc. [23,24]. A variety of materials 

i (i = 1, 2..., I) and energy k (k =1, 2... ., K) enter the workshop in turn according to the 

process route, carry out the gear machining process, and the finished gear products are 

obtained through machining. Each workshop shall discharge waste l (l = 1, 2... L). The 

influencing factors of carbon emission during gear machining are shown in Figure 2. 

Carbon emission

Material carbon 
emission

Energy carbon 
emission

Waste disposal 
carbon emission

Indirect 
carbon 
emission

Direct carbon 
emission

Energy 
production

 Fossil energy 
consumption

Gear blank

waste gas

waste water

scrap

 

Figure 2. Influencing factors of carbon emission during gear processing.

S(i, m), E(k, m) and W(l, m) represent workshop m (m = 1, 2 . . . , M) materials, energy
consumption and waste generated, respectively. The total carbon emission of materials,
energy and waste within time T can be expressed as:

MT =
M

∑
m=1

I

∑
i=1

S(i, m) (6)
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ET =
M

∑
m=1

K

∑
k=1

E(k, m) (7)

WT =
M

∑
m=1

L

∑
l=1

W(l, m) (8)

These three types of carbon emissions can be quantified

Cem = CM + CE + CW (9)

Cem is the total carbon emission, CM CE and CW are the carbon emissions generated
by materials, energy and waste, respectively. It can be calculated using the carbon emission
factor method. SE is carbon emission factor (SE = eC/tE, where eC, tE are carbon emissions
and standard coal volume, respectively).

2.2.2. Calculate Material Carbon Emissions

Material indirect carbon emission C(i,m)
M is generated by using material i in workshop

m, which can be expressed as

C(i,m)
M =

N

∑
c=1

S(i, m)Ji
cSEc (10)

Ji
c is the energy c amount required to produce one unit of material i (converted into

standard coal amount), and SEc is the energy c carbon emission factor.
The total indirect carbon emission generated by material i is

Ci
M =

M

∑
m=1

C(i,m)
M =

M

∑
m=1

N

∑
c=1

S(i, m)Ji
cSEc (11)

The total indirect carbon emission of materials in gear processing is

CM =
M

∑
m=1

I

∑
i=1

C(i,m)
M =

M

∑
m=1

I

∑
i=1

N

∑
c=1

S(i, m)Ji
cSEk (12)

2.2.3. Energy Carbon Emission Calculation

Energy consumption produces two kinds of carbon emissions, including indirect
carbon emissions from preparation energy CIE, and direct carbon emissions from machine
tool processing energy CDE, so CE = CIE + CDE.

(1) Indirect carbon emissions

Indirect carbon emissions C(k,m)
IE are generated by workshop m using energy k, which

can be expressed as

C(k,m)
IE =

N

∑
n=1

E(k, m)Jk
nSEn (13)

Jk
n is the energy n amount required for preparation per unit of energy k (converted into

standard coal amount), and SEn is the energy n carbon emission factor.
The total indirect carbon emissions by using energy k is

Ck
IE =

M

∑
m=1

C(k,m)
IE =

M

∑
m=1

N

∑
n=1

E(k, m)Jk
nSEn (14)

The total indirect carbon emissions by energy consumption in gear processing is

CIE =
M

∑
m=1

K

∑
k=1

C(k,m)
IE =

M

∑
m=1

K

∑
k=1

N

∑
n=1

E(k, m)Jk
nSEn (15)
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(2) Direct carbon emissions

Direct carbon emission C(k,m)
DE is generated by workshop m using energy k, which can

be expressed as
C(k,m)

DE = E(k, m)PkSEk (16)

Pk, SEk are the conversion coal coefficient and energy k carbon emission factor respec-
tively

The total direct carbon emission by using energy k is

Ck
DE =

M

∑
m=1

C(k,m)
DE =

M

∑
m=1

E(k, m)PkSEk (17)

The total direct carbon emissions by using energy in gear processing can be expressed
as

CDE =
M

∑
m=1

K

∑
k=1

N

∑
n=1

E(k, m)Jk
nSEk (18)

2.2.4. Waste Disposal Carbon Emission

Gear processing will produce some waste, such as waste gas, waste water and so on,
which requires the consumption of energy to deal with the waste. The carbon emissions
from waste i discharged by workshop m is

C(l,m)
W =

N

∑
q=1

W(l, m)Jl
qSEq (19)

where Jl
q is the energy q amount required for unit waste i treatment (converted into standard

coal amount), and SEq is the carbon emission factor of energy q.
The total carbon emission generated by disposing waste l is

Cl
W =

M

∑
m=1

C(l,m)
W =

M

∑
m=1

N

∑
q=1

W(l, m)Jl
qSEq (20)

The total carbon emissions from gear processing waste can be expressed as

CW =
M

∑
m=1

L

∑
l=1

C(l,m)
W =

M

∑
m=1

L

∑
l=1

N

∑
q=1

W(l, m)Jl
qSEq (21)

3. Optimization Model Solution Based on Hybrid Multi-Objective Gray Wolf Optimizer

A Grey Wolf algorithm (GWO) is a population intelligent optimization algorithm
based on the study of grey wolf predation habits. Wolves have different social hierarchies,
with low hierarchies subordinate to high hierarchies, so as to realize the whole process of
finding, tracking, surrounding and even capturing prey [25–27]. Therefore, researchers
proposed an optimization mechanism based on the predation process. Compared with
other swarm intelligence algorithms, such as PSO and MODA, GWO has better global
search capability. In this paper, a new update operator is designed, the cross and mutation
operation is added, which can realize the optimization of energy consumption and carbon
emission [28–30].

3.1. Description of Grey Wolf Algorithm

The grey wolf hierarchy has a strict system of management, similar to the form of a
pyramid. In the social hierarchy of the grey wolf, the pack is divided into three tiers, α at
the top, β at the second, γ, at the third, and the rest δ at the bottom. During the hunt, the
first three layers of wolves lead the pack, and the wolves δ obey the three of them, which
leads to efficient hunting. The wolves first search for prey in this way, and surround it from
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all sides. As the encircling circle gradually shrinks, the wolf α leads the wolfs β and γ to
attack the prey first, and the wolves δ guard around to catch the escaped prey [31,32]. This
hunting mode can attack the prey in multiple directions, and finally capture the prey.

To form a circle, use the following formula to calculate the number of wolves between
individual and prey

D =
∣∣C·Xp(t)− Xw(t)

∣∣ (22)

Xw(t + 1) = Xp(t)− A (23)

Xp(t), Xw(t) are the location coordinates of the prey and the gray wolf, respectively,
and t is iteration times. A and C are the convergence and oscillation factors, respectively.

A = 2a·r2 − a (24)

C = 2·r1 (25)

r1 and r2 are two random vectors, with a value range of [0, 1]; a decreases from 2 to 0
as the number of iterations increases.

The best three wolves in each iteration are left as (α, β, γ) to guide the position update
of other wolves. The formula for location update is as follows

Dα = |C1·Xα(t)− Xw(t)| (26)

Dβ =
∣∣C2·Xβ(t)− Xw(t)

∣∣ (27)

Dγ = |C3·Xγ(t)− Xw(t)| (28)

X1 = Xα − A1·Dα (29)

X2 = Xβ − A2·Dβ (30)

X3 = Xγ − A3·Dγ (31)

Xp(t + 1) = (X1 + X2 + X3)/3 (32)

Prey search in GWO is divided into two aspects: prey location determination and gray
wolf location update. First, the population is initialized to randomly generate the grey wolf
population, and then excellent individuals (α, β, γ) are selected to guide the wolves. The
value range of A is [−a, a], and the value is randomly taken within this interval, because
the value of a gradually decreases with the increase of iteration, A is ordered from large to
small. When the value of A > |1|, the gray wolf encirclement of large wolves search range
is larger, so the algorithm has better global searching ability; when the value of A < |1|,
the gray wolf encirclement of smaller wolves to attack and capture prey, iterative output at
the end of the optimal solution [33,34].

3.2. Algorithm Flow

The grey wolf algorithm process is shown in Figure 3.

3.3. Encoding and Decoding

Equipment selection, tool selection and process sequence have a great impact on
process route optimization, and a reasonable coding mode should be selected in the algo-
rithm, as shown in Figure 4. Each individual contains three substrings, namely processes,
equipment and tools. The three substrings are the same length as the workpiece processing
process. The sequential substring is used to represent the machining operation sequence of
the workpiece. The sequential substring is kept in a continuous way, and the machining
sequence of the workpiece is taken as the constraint. The equipment is numbered in se-
quence, and the corresponding equipment number is assigned to each process. The j-th
aspect on the substring corresponds to the equipment number of the completed process j.
Tools and equipment are coded in the same way [35].
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3.4. Fitness Function

Each solution represents a wolf, with the first initialization to obtain a random initial
set of solutions. The fitness function of each solution was calculated to establish the rank
of wolves. Wolves with higher fitness were retained as guides to lead wolves with lower
fitness to hunt. There are two objective functions in this paper: f 1 (energy consumption),
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and f 2 (carbon emissions). The value of each objective function is calculated, respectively,
and then the weight method is used to combine them into a function. The fitness function
is,

min f itnessi = min(ω1
f1i − f1min

f1max − f1min
+ ω2

f2i − f2min
f2max − f2min

) (33)

f1 = min(
l

∑
i=1

ED,i + EA +
l

∑
i=1

EM,i) (34)

f2 = min(CM + CE + CW) (35)

f1i, f2i represent the values of the ith wolf, f1max and f1min are, respectively, the energy
consumption extremums when the energy consumption is independently optimized, f2max
and f2min are, respectively, the carbon emission extremums when carbon emissions are
individually optimized, ω1, ω2 are, respectively, the weight of energy consumption and
carbon emissions, and satisfy ω1+ω2 = 1. The values of ω1, ω2 can be evaluated by fuzzy
evaluation method, analytic hierarchy process and other methods.

3.5. Constraints

Parameter selection of gear cutting process should follow the following constraints

(1) Machine tool speed constraints

The spindle speed has an important effect on the quality of the workpiece. The spindle
speed should be within the allowable range of the machine tool

nmin ≤ n ≤ nmax (36)

where nmin and nmax represent the machine tool limit speed, respectively.

(2) Feed limit constraint

The feed rate has an important effect on the machining accuracy.

fmin ≤ f ≤ fmax (37)

where fmin and fmax are respectively the limit feed amount of machine tool.

(3) Cutting force constraint

Cutting force has an important effect on machining accuracy and tool wear. The total
cutting force Fi includes three parts, main cutting force Fc, backside force Ff and feed force
Fp. Fi cannot exceed the maximum cutting force Fkmax .

Fi =
√

F2
ci
+ F2

fi
+ F2

pi
≤ Fkmax (38)

Fc = CFc axFc
p f yFc vnFc

c kFc

Ff = CFf a
xFf
p f

yFf v
nFf
c kFf

Fp = CFp a
xFp
p f yFp v

nFp
c kFp

(39)

in turning, for example, CFc ,xFc ,yFc ,nFc ,kFc are the main cutting force correlation coefficient
CFf ,xFf ,yFf ,nFf ,kFf are the feed force correlation coefficient, CFp , xFp ,yFp ,nFp ,kFp are the
backward force correlation coefficient, these coefficients are determined by material, tool
and other processing conditions. The feeding force must meet the following conditions

Ff = CFf a
xFf
p f

yFf v
nFf
c kFf ≤ Ffmax (40)

(4) Machine tool power constraint

The machine power should be within certain conditions.
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Fcvc

τ
≤ Pmax (41)

Pmax is the maximum machine power, Fc, vc, τ are cutting force, cutting speed and
machine tool power coefficient, respectively.

(5) Roughness constraint

Surface quality Ra is an important evaluation index of parts, the surface roughness of
parts should be less than the maximum allowed surface roughness Ramax .

Ra =
0.0312 f 2

r
≤ Ramax (42)

r is the radius of the tool tip.

3.6. Population Classification and Location Update

GWO leads the pack to search with three optimal solutions α, β, γ. α, β, γ are producing
randomly as the population non-dominated series is 1; as the non-dominated grade is 2, α
is produced from grade 1, β, γ are obtained from grade 2. As the non-dominant grade is 3
or more, α, β, γ are produced from the above three grades, respectively [36,37].

This paper improves the operator update of the algorithm based on the transformation
law to solve the process route optimization problem, and selects one of them as the child
according to a certain probability.

X(π)t+1
i =


shi f t

(
X(π)t

i , C·
(
X(π)t

α − X(π)t
i
))

i f 0 ≤ rand ≤ 1
3

shi f t
(

X(π)t
i , C·

(
X(π)t

β − X(π)t
i

))
i f 1

3 ≤ rand ≤ 2
3

shi f t
(

X(π)t
i , C·

(
X(π)t

γ − X(π)t
i

))
i f 2

3 ≤ rand ≤ 1

(43)

where the shift function helps the wolves to update their position. X(π)t
i is the individual

wolf pack. shift
(
→
x ,
→
d
)

means individual wolves can move from side to side.
→
d represents

the distance the element has traveled. rand randomly generated in [0, 1] in [0, 1], and C = 1.

3.7. Genetic Operations

When genetic information is inherited, there are usually two kinds of operation:
crossover and mutation. Different substrings can have different genetic manipulations.
In this paper, two points are selected to cross the equipment and tool substring [38,39],
as shown in Figure 5. Duplication and omission can be avoided by using an improved
two-point crossover method based on priority order. Two points are randomly selected
in the substring as the intersection points. In parent P1, the genes before point 1 and after
point 2 are retained to the same position as offspring O1. The existing genes in O1 were
removed from the parent P2, and the remaining genes were copied to the remaining site
of O1 in the order of P2. The offspring O2 performed the same operation. The mutation
operation is shown in Figure 6, which randomly selects a process to replace a certain site
that can be replaced while ensuring the process constraints [40–42].
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4. Method
4.1. Instance Parameters

There are 2 CNC lathes (M1, M2) involving turning processing in the example work-
shop. The processing material is the second gear of the intermediate shaft of the automobile
transmission, the drawing of gear to be machined is shown in Figure 7, gear parameters
are in Table 1.
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Table 1. Gear parameters.

Material Outer Diameter/mm Tooth
Thickness/mm Modulus/mm Number of Teeth Weight/kg

20CrMnTiH 97.25 15 1.75 46 0.665

The machine parameters are shown in Table 2.

Table 2. Machine parameters.

Type Serial Number n (r/min) f (mm/r) τ Fmax (N) Pmax (kW)

lathe
M1 100–1400 0.1–0.25 0.85 1700 8.0
M2 120–1600 0.1–0.35 0.8 1700 10

Tool: the tool material K1 is high-speed steel, the tool main deflection angle is 45◦,
hook angle is 20◦, tool edge inclination is 5◦, and corner radius rθ = 0.8 mm. The tool
material K2 is cemented carbide. The main deflection angle of the tool is 45◦, hook angle is
20◦, tool edge inclination is 5◦, and corner radius rθ = 0.8 mm.

The cutting force coefficients are in Table 3.

Table 3. Cutting force coefficient.

Main Cutting Force Coefficient Feed Force Coefficient Backward Force Coefficient

CFc xFc yFc
nFc kFc CFf xFf yFf

nFf kFf CFp xFp yFp
nFp kFp

M1 1750 0.9 0.75 0 1 580 1.1 0.65 0 1 1100 0.9 0.65 0 1
M2 2855 1 0.75 −0.1 1 2920 1 0.5 −0.35 1 1930 0.9 0.6 −0.35 1

The gear processing carbon emission factors are shown in Tables 4–7.

Table 4. Material preparation process carbon emission factor.

Carbon Emission Category Material i Consumption Production Process Consumes
Energy c Energy c Carbon Emission Factor SEc

Material preparation process carbon emissions CM Steel Raw coal 2.653

Table 5. Indirect carbon emission factors in energy preparation process.

Carbon Emission Category The nth Energy Type Consumed by
Energy k

Production Process Consumes
Energy

Energy n Carbon Emission Factor
SEn

Indirect carbon emissions in
the energy production process CIE

Electricity
Raw coal 2.565

Crude 2.221
Natural gas 1.642

Coal
Crude 2.221

Natural gas 1.642
Electricity 8.220

Natural gas
Raw coal 2.565

Crude 2.221
Natural gas 1.642

Fuel/Circulating oil/Lubricant
Raw coal 2.565

Crude 2.221
Natural gas 1.642

4.2. Grey Wolf Algorithm Settings

All programs are written by Matlab R2019b and run on a Windows 10 host configured
with 16.0G RAM, AMD Ryzen 3700X 3.6Ghz, and a 64-bit operating system. Grey wolf
algorithm parameters are: the total population is 100, the iteration times is 500, the crossover
rate is 0.8, and the mutation rate is 0.1, the number of leading wolves is 3, the coefficient of
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affecting the search times of the neighborhood is 2, the coefficient of choosing the global
search operator is 0.5.

Table 6. Direct carbon emission factor from fossil energy.

Carbon Emission Category Consumption Type of Material k Energy Carbon Emission Factor
SEk

Processing direct carbon emissions
CDE

Coal 0.6764
Natural gas 0.4593

Fuel/Circulating oil/Lubricant 0.6878

Table 7. Waste disposal carbon emission factor.

Carbon Emission Category Waste l Discharge Type Energy Consumed Type in the
Waste Treatment Process

Energy Carbon Emission Factor
SEq

Waste treatment carbon emissions
CW

Waste water/waste oil Electricity 8.221
Scraps Electricity 8.221

4.3. Optimization Results and Analysis

In this paper, the energy consumption and carbon emission of gear machining process
are taken as the optimization objectives, and a concrete calculation model can be obtained
according to the proposed process route optimization model and the parameters in 4.1.
The grey wolf algorithm was used to solve the calculation model, and the selection of
equipment, tool and process sequencing and other process routes were taken as variables,
and they were reasonably coded in the program. Figure 8 shows the iterative convergence
curve of carbon emissions, and Figure 9 shows the energy consumption convergence
iteration. With the increase in the number of iterations, energy consumption and carbon
emissions gradually decrease and become stable.
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5. Discussion
5.1. Results Analysis

The comparison data between the results and the optimization results of low carbon
and low energy consumption alone are shown in Table 8.

Table 8. Optimization results.

Optimization Results Low Carbon Low Energy Low Carbon and Low Energy

Carbon emission/kg 2.612 2.813 2.975
Energy consumption/kW· h 10.064 9.689 9.989

The comparison results show that the carbon emission and energy consumption
are higher. As the process route is optimized with low energy consumption, there will
be higher carbon emissions. As the process route is optimized with low carbon, both
energy consumption and carbon emissions have been reduced to some extent, but there
are also obvious shortcomings. As the process route is optimized with two objectives
simultaneously, a process route for balancing carbon emission and energy consumption is
available.

5.2. Comparison with Previous Works

In the introduction, references [8–16] put forward many methods of process route
optimization, effectively achieving their objectives. They mainly established the relation-
ship between process parameters and the objective to be optimized, and used intelligent
algorithms to optimize the solutions. However, gear processing is complicated, and few
people study the gear process route. Different process routes have great influence on
machining results. The core of reference [17] is through the blank production and uses
the process parameters to design an energy-saving and low-carbon gear blank dimension
optimization method. The theme in this paper is to optimize the process route of gear which
is occur after blank choose, and make reasonable arrangements for the process route of
gear blank cutting equipment, tools and processes. In this paper, the carbon emissions and
energy consumption of gear machining were analyzed systematically, and the optimization
model of gear machining process route was established. An improved grey wolf algorithm
was proposed to optimize the gear process route for equipment selection, tool selection
and process sequencing. The algorithm improves the updating operator, and the solution
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accuracy is higher. A reasonable processing route can reduce carbon emissions and energy
consumption.

5.3. Research Significance and Future Steps

In this paper, a low carbon and low energy consumption optimization method of
gear process route was proposed, and verified by the machining process of automobile
transmission gear, which can help designers choose the best process route. This study is
helpful to improve the cognition level of energy consumption and carbon emission in gear
processing, which can enable enterprises to choose reasonable processing process routes,
help manufacturing industries to save energy and reduce emissions, and provide ideas
for the green development of the manufacturing industries. The tool wear and precision
state of machine tools are also factors that affect the energy efficiency of processing route.
Determining how to comprehensively consider the tool life and precision state of machine
tools will be the focus of the next research.

6. Conclusions

The energy saving and emission reduction in gear machining is a complicated problem,
which not only affects the production of enterprises, but also has important significance
for the green development of society. This paper made the following research on gear
processing:

1. The carbon emission and energy consumption of gear processing were systematically
analyzed, and the optimization model of gear processing route with the low-carbon
and low-energy-consumption was established.

2. An improved grey wolf algorithm was proposed to solve the multi-objective optimiza-
tion model, optimize the equipment selection, tool selection and process sequencing.

3. Taking the second gear of the intermediate shaft of an automobile transmission as
an example, the results of optimizing the process routes of energy consumption and
carbon emission with comprehensive consideration of these three objectives were
compared, and the validity of the method was proven.

The results show that this method can comprehensively consider the carbon emission
and energy consumption of gear processing, and provide the process route guidance for
enterprises to process gear, and make contributions to social energy saving and emission
reduction. The influencing factors of process route are very large; this paper only studies
energy consumption and carbon emissions. Tool wear and the state of machine tool
accuracy have a great influence on workpiece quality. The influence of tool wear and
machine tool accuracy on process route will be studied in the future.
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