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Abstract: A hierarchical structure based on a Deep LSTM Supervised Autoencoder Neural Network
(Deep LSTM-SAE NN) is presented for the detection and classification of faults in industrial plants.
The proposed methodology has the ability to classify incipient faults that are difficult to detect
and diagnose with traditional and many recent methods. Faults are grouped into different subsets
according to the degree of difficulty to classify them accurately in the proposed hierarchical structure.
External pseudo-random binary signals (PRBS) are injected in the system to enhance the identification
of incipient faults. The approach is illustrated on the benchmark process (Tennessee Eastman Process)
in order to compare across different methodologies. The efficacy of the proposed method is shown
by a comprehensive comparison between many recent and traditional fault detection and diagnosis
methods in the literature for Tennessee Eastman Process. The proposed work results in significant
improvements in the classification of faults over both multivariate linear model-based strategies and
non-hierarchical nonlinear model-based strategies.

Keywords: fault detection and diagnosis; statistical process monitoring (SPC); classification; autoencoders;
deep learning; Tennessee Eastman Process; LSTM; incipient faults

1. Introduction

The faults in a chemical plant often propagate along the process, significantly im-
pacting the profit of chemical plants. Hence, it is imperative to detect them soon upon
their occurrence. The operation of industrial plants employs sensors and control loops to
mitigate the economic losses resulting from these faults. However, in the presence of pro-
cess faults and manipulated variable constraints, these control schemes are not sufficiently
resilient to avoid abnormal operation [1,2]. Thus, process faults must be diagnosed and
addressed by implementing a suitable corrective measure.

A typical process monitoring system consists of two parts: fault detection and diag-
nosis methodology. The objective of a fault detection system is to make a binary decision
whether the current state of the process is in a normal or faulty operation region. Once
an abnormal operation is detected, the fault diagnosis system is used to infer the type of
fault or identify the root cause of the process fault. In the current study, we perform both
detection and classification with a single algorithm by considering the normal operation
condition as an additional fault class to be identified in the classification step.

Process monitoring schemes rely on estimated process models using historical data
to infer faults. Based on the type of model, the methodologies are divided into two main
approaches: mechanistic model-based (e.g., using first principles models) and data-driven
model-based approaches [1]. Data-driven models for FDD, such as the one used in the
current study, are based on a comparison between different sensor measurements under
normal operation versus faulty operation [3–8]. Within the class of data-driven approaches,
several reported algorithms are based on multivariate statistical methods such as Principal
Component Analysis (PCA) [9–12] or its dynamic version such as Dynamic Principal
Component Analysis (DPCA) [1,10,13–15]. These methods assume process behavior is
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linear. However, most chemical processes are inherently non-linear in nature. Thus, non-
linear modeling techniques such as Deep Neural Networks (DNNs) are employed in the
current work. In the last decade, a new generation of Deep Neural Networks (DNNs)
algorithms has emerged that capitalizes both the significant increase in computational
power and novel algorithmic developments that facilitate the training and calibration of
these networks. The use of these algorithms for fault detection in the process industry has
recently received increased attention. However, despite the improvements in detection
accuracy obtained with these techniques, some faults are still difficult to detect and diagnose
(incipient faults). The current study focuses on the detection and diagnosis of such difficult
to detect faults while maintaining good detection accuracy for the other faults. The difficult
to observe/detect faults will be referred to as incipient faults.

Lack of observability often arises due to the low signal to noise ratio in the mea-
surements used for fault detection and diagnosis (FDD) and feedback control [16,17].
Specifically, the controller forces the controlled variables to remain close to their set-points
at all times. Furthermore, with the addition of noise, the effects of faults are masked.
In addition, the lack of distinguishability between different process faults is related to
the fact that various process faults have a similar effect on the dynamic responses of the
measured variables.

FDD algorithms that rely on data collected from the process operation are referred to as
passive, while active FDD approaches have also been proposed to improve detection [18].
Active FDD involves injecting persistently exciting input signals into the system and
using the resulting input–output data for incipient fault detection and diagnosis [19–21].
The disadvantage of active FDD is that it introduces an external disturbance to the process
which may temporarily impact the operation, and thus, its use should be limited. To the
knowledge of the authors, the combination of active and passive FDD approaches into one
algorithm for detecting a mix of non-incipient and incipient faults have not been studied.

Following the above, the focus of the current work is on developing deep learning
techniques for the detection of faults with an emphasis on the detection of incipient faults.
However, faults and their effects on process variables are strongly coupled with each other.
Thus, improving the detection of incipient faults should be achieved without degrading the
detection of the regular faults. Toward this goal, a novel hierarchical classification strategy
based on DNN models is proposed that involves identifying separate models for different
subsets of faults with different degrees of difficulty to detect. A combination of both passive
and active FDD approaches is used. The DNN models used for the passive FDD component
are of Recursive Neural Network (RNN) type to exploit the dynamic information in the
data. It is also demonstrated that the detection accuracy of most faults can be enhanced
by increasing the time horizon of the LSTM-based model. While the passive approach is
used in the higher level of the hierarchy, the active approach involving the injection of
external signals is only used in the last level of the hierarchy for detecting incipient faults
that cannot be diagnosed otherwise. It is shown that the passive FDD approach is effective
for identifying most faults, but the active approach is required for detecting incipient faults.

All studies in this work are conducted with a standard set of simulated data from the
Tennessee Eastman Process (TEP) for a fair comparison with several algorithms reported for
this system [22–26,26]. Since its introduction, the TEP has served as a benchmark problem
for testing control and fault detection algorithms, and it is thus ideal for comparing existing
approaches to our proposed algorithm. It should be emphasized that due to the difficulty
in detecting a set of incipient faults for TEP (faults 3, 9 and 15), many studies on FDD
for this system were carried out by ignoring these faults altogether [23,24]. For those
studies of FDD for the TEP process that consider all the faults together, the regular faults
were detected with an acceptable level of success, but the detection of incipient faults was
very inaccurate [27]. In this work, we address the gap related to the miss-classification of
incipient faults by proposing a novel hierarchical structure that combines a deep learning
approach with an active FDD approach. Furthermore, it was also demonstrated that just the
hierarchical structure along with deep NNs are not enough for classifying incipient faults
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through an ablation study. Thus, an active FDD (introduction of excitation signal) approach
in combination with a hierarchical deep NN structure are both required for efficient fault
diagnosis. Additional reported methods applied to TEP are further reviewed and discussed
in Results and Discussions section (Sections 4 and 5). The comparison of our approach to
several reported methods shows that our approach provides comparable or superior FDD
accuracy for regular faults but clear superiority for incipient faults.

The main contributions of the current study are:

1. A novel hierarchical structure was developed combining passive FDD with active
FDD to enhance the detection and classification accuracy for incipient faults.

2. Design of PRBS signal for improving the observability of the incipient faults.
3. The LSTM model was optimized with respect to data horizon for better classification

of faults.
4. A comprehensive comparison of the proposed method to several other methods was

carried out to demonstrate the efficacy of the proposed method for both regular and
incipient faults.

The paper is organized as follows. Fundamentals used in the work are presented in
Section 2. Explanation on the hierarchical structure of the proposed methodology is presented in
Section 3. The results are presented in Section 4. Discussions and comparisons with previously
reported approaches are presented in Section 5 followed by conclusions in Section 6.

2. Preliminaries
2.1. Recurrent Neural Networks (RNNs)

The current study uses a Recurrent Neural Network (RNN) type model that was
originally developed for handling dynamic data by using time sequences of data x i

t ,
t = 1, 2, . . . , T ∈ Rdh×dx as inputs to the network [28]. Parameters associated with RNN
are shared along a time horizon to capture temporal correlations in data. This enhances
the generalization capability of the model to time sequences that were not used for model
calibration. A well-known challenge for training RNNs is the vanishing gradient or explod-
ing gradient problem arising from the use of gradient descent algorithms in combination
with sigmoid activation functions [29]. To deal with this problem, the best practice is to use
gated-type unit structures within RNN models such as Long-Short Term Memory units
(LSTM) [30] and Gated Recurrent Units (GRU) [31]. LSTM is reviewed in the following
sub-section since they serve as the basis for the models used in the current study for FDD.

2.2. Long Short-Term Memory (LSTM) Units

The LSTM unit is composed of three gated units and a memory cell [30]. Figure 1
shows a single LSTM unit that includes four major gates: the forget gate (ft), the input gate
(it), the output gate (ot) and the update gate (gt). The key component of the LSTM unit is
the memory cell (ct ∈ Rdh×1) that is responsible for storing critical long-term dependencies
learned over time. The input gate (it) is responsible for evaluating which part, if any, of the
past historical data should be kept. Thus, the function of the input gate is to allow the
network to keep only relevant information from the previous time steps and discard the
rest for a sample i.

Subsequently, the information that is worth recording is determined by the memory cell
(ct). The process of identifying information and storing in the memory cell consists of two
parts: new information that is recorded and information that is discarded. The information
that should be discarded from previous cell state ci

t−1 is determined by the forget gate (ft),
which is responsible for forgetting previously stored cell state values that have lost their
relevance. Then, new relevant information is added, and existing cell-state values are updated
by first selecting which values to update using the input gate i i

t , and the output from the input
gate is then multiplied by the new information generated by the update gate g i

t . Ultimately,
the output ht is computed at every time step from the information contained in the memory
cell and it is further gated by an output gate according to its importance or relevance. The
mathematical equations describing these gating operations are as follows:
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where œ() and tanh() are the element-wise sigmoid and hyperbolic tangent functions,
respectively.
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h i
t = o i

t � tanh(c i
t ) (3)

where R = [R f Ri Rg Ro]T ∈ R4dh×dh are known as recurrent weights, W = [W f Wi Wg Wo]T ∈
R4dh×dx are all the input weights, b = [b f bi bg bo]T ∈ Rdh×1 are the bias parameters.
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Figure 1. Schematic of a LSTM memory cell

where œ() and tanh() are the element-wise sigmoid and hyperbolic tangent functions
respectively.
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In this work, we use LSTM units instead of dense layers for both the encoder and
decoder as shown in Figure 3. The goal is to reconstruct and classify input sequences at time
t simultaneously. The encoder transforms the input time sequences using the Equations
1, 2 and 3 to learn important features and encode these features z ∈ Rdh×1. The decoder
function reconstruct the input using the extracted feature vectors. The operation performed

Figure 1. Schematic of an LSTM memory cell.

2.3. Deep LSTM Supervised Autoencoder Neural Network (DLSTM-SAE NN)

The training of a Deep Supervised Autoencoder Neural Network (DSAE-NN) model,
as schematically shown in Figure 2, is based on the minimization of a weighted sum of the
reconstruction loss function and the supervised classification loss corresponding to the first
and second terms in Equation (4), respectively. Addition of the unsupervised loss function
i.e., reconstruction loss function, improves the generalization of supervised autoencoder
model [32]. Furthermore, it serves as the regularization term which constraints the problem
in terms of latent variables, thus reducing over-fitting. Meanwhile, the minimization of
the classification loss function, i.e., multi-class cross-entropy loss function, ensures the non-
linear latent variables extracted are the predictors of the output label. The mean squared
error function is used as a reconstruction loss and softmax cross-entropy is used as the
classification loss. The overall goal is to learn a function that predicts the class labels in
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one-hot encoded form yi ∈ Rm from inputs xi ∈ Rdx×1.

For training DSAE-NN, the following loss function is minimized:

lDSAE =
λ1

N
||xs − x̂s||22 +

1
N

N

∑
s=1

m

∑
c=1
−ys,clog(ps,c) (4)

In this work, we use LSTM units instead of dense layers for both the encoder and
decoder, as shown in Figure 3. The goal is to reconstruct and classify input sequences at time
t simultaneously. The encoder transforms the input time sequences using Equations (1)–(3)
to learn important features and encode these features z ∈ Rdh×1. The decoder function
reconstructs the input using the extracted feature vectors. The operation performed by
the encoder for a single LSTM layer between the input variables to the latent variables
zi

t ∈ Rdh×1 can be mathematically described as follows:

zi
t = ζe(xi

t) (5)

The latent variables zi
t are used both to predict the class labels and to reconstruct back

the inputs x as follows:

x̂i
t = ζd(zi

t) (6)

ŷi
t = fc(Wczi

t + bc) (7)

where ζe and ζd is the LSTM encoder and decoder function, respectively. fc is a non-linear
activation function (softmax layer) for the output layer. Wc ∈ Rm×dz and bc ∈ Rm are the
output weight matrix and bias vector, respectively.

ps,c =
e(ŷs,c)

∑m
c=1 e(ŷs,c)

(8)

where λ1 is the weight multiplying the reconstruction loss Lr in the cost to be minimized, m
is the number of classes, ys,c is a binary indicator (0 or 1) equal to 1 if the class label c is the
correct one for observation s and 0 otherwise, ˆys,c is the non-normalized log probabilities
and ps,c is the predicted probability for a sample s of class c. Moreover, to avoid over-
fitting, a regularization term is added to the objective function in Equation (4). Accordingly,
the objective function for Deep LSTM SAE NNs used for FDD is as follows:

min
W

lDLSTM−SAE = min
1
N

[
λ1||xs − x̂s||22 + λ2

N

∑
s=1

m

∑
c=1
−ys,clog(ps,c) + λ3 ∑

L
∑
k

∑
j

W[L]
kj

2
]

(9)

where W[L]
kj represents the weight matrices for each layer L in the network and the weights

on the individual objective functions λ1, λ2, λ3 are chosen using validation data.
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Figure 2. Schematic of a single layer Supervised Autoencoder Neural Network (SAE-NN).

Figure 3. Schematic of a Deep LSTM Supervised Autoencoder Neural Network (DLSTM-SAE NN).

2.4. Model Structure and Specifications

The Deep LSTM-SAE model used in the current study was developed with training
and testing data sets generated from the Tennessee Eastman Process (TEP: schematic shown
in Figure 4) simulation. The data are extracted from simulations of the system conducted at
either the normal state or when each of the 20 different faults is occurring in the process. It
is assumed that at each sampling interval, 52 different variables (refer Table 1) are measured
and organized into a vector. Each such vector of measurements is acquired every 3 min. It
should be noticed that during testing of the methods proposed in this study, the normal
state is considered as a different separate class, and hence, a total of 21 different classes
(refer Table 2, i.e., 20 faulty plus one normal operations, are considered for classification.
The standard dataset can be downloaded from http://depts.washington.edu/control/
LARRY/TE/download.html (accessed on 9 April 2022). The simulator is ran for 72 h
(training: 24 h; testing: 48 h) for each fault, generating 1440 samples for each fault class
and normal class. The data are then divided between calibration and validation data sets
where the first 480 samples are used as training data and the rest are used for testing for
each class. This results in a total of 10,080 training samples and 19,200 testing samples.
A small fraction of training dataset is used as validation dataset for selecting the optimal
hyper-parameters. It is important to note that the number of training, validation and testing
samples vary depending on the time horizon used in the DLSTM-SAE model. The results
reported in the following section are based on the classification accuracy of the test dataset,
i.e., on data that were not used for model calibration. The experiments in this paper have
been implemented on an Intel Core i7-7700HQ PC (2.80 GHz, 16 GB RAM) and NVIDIA

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html
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GeForce GTX 1060 (6 GB) 64 Bit Windows 10 operating system in Python ® environment.
The models are developed using Keras [33] (an open deep learning library) on TensorFlow
platform [34]. All hyper-parameters such as the number of LSTM encoder layers, LSTM
units in each layer, weights and learning rate are optimized using Keras tuner.

Table 1. Measured and manipulated variables (from Downs and Vogel, 1993).

Variable Name Variable Number Units Variable Name Variable Number Units

A feed (stream 1) XMEAS (1) kscmh Reactor cooling water outlet temperature XMEAS (21) ◦ C
D feed (stream 2) XMEAS (2) kg h−1 Separator cooling water outlet temperature XMEAS (22) ◦C
E feed (stream 3) XMEAS (3) kg h−1 Feed %A XMEAS (23) mol%
A and C feed (stream 4) XMEAS (4) kscmh Feed %B XMEAS (24) mol%
Recycle flow (stream 8) XMEAS (5) kscmh Feed %C XMEAS (25) mol%
Reactor feed rate (stream 6) XMEAS (6) kscmh Feed %D XMEAS (26) mol%
Reactor pressure XMEAS (7) kPa guage Feed %E XMEAS (27) mol%
Reactor level XMEAS (8) % Feed %F XMEAS (28) mol%
Reactor temperature XMEAS (9) ◦C Purge %A XMEAS (29) mol%
Purge rate (stream 9) XMEAS (10) kscmh Purge %B XMEAS (30) mol%
Product separator temperature XMEAS (11) ◦C Purge %C XMEAS (31) mol%
Product separator level XMEAS (12) % Purge %D XMEAS (32) mol%
Product separator pressure XMEAS (13) kPa guage Purge %E XMEAS (33) mol%
Product separator underflow (stream 10) XMEAS (14) m3 h−1 Purge %F XMEAS (34) mol%
Stripper level XMEAS (15) % Purge %G XMEAS(35) mol%
Stripper pressure XMEAS (16) kPa guage Purge %H XMEAS (36) mol%
Stripper underflow (stream 11) XMEAS (17) m3 h−1 Product %D XMEAS (37) mol%
Stripper temperature XMEAS (18) ◦C Product %E XMEAS (38) mol%
Stripper steam flow XMEAS (19) kg h−1 Product %F XMEAS (39) mol%
Compressor Work XMEAS (20) kW Product %G XMEAS (40) mol%
D feed flow XMV (1) kg h−1 Product %H XMEAS (41) mol%
E feed flow XMV (2) kg h−1 A feed flow XMV (3) kscmh
A + C feed flow XMV (4) kscmh Compressor recycle valve XMV (5) %
Purge valve XMV (6) % Separator pot liquid flow XMV (7) m3h−1

Stripper liquid product flow XMV (8) m3h−1 Stripper steam valve XMV (9) %
Reactor cooling water flow XMV (10) m3h−1 Condenser cooling water flow XMV (11) m3h−1

Table 2. Process faults for classification in the TE process.

Fault Description Type

IDV(1) A/C feed ratio, B composition constant (stream 4) step
IDV(2) B composition, A/C ratio constant (stream 4) step
IDV(3) D Feed temperature step
IDV(4) Reactor cooling water inlet temperature step
IDV(5) Condenser cooling water inlet temperature (stream 2) step
IDV(6) A feed loss (stream 1) step
IDV(7) C header pressure loss reduced availability (stream 4) step
IDV(8) A, B, C feed composition (stream 4) random variation
IDV(9) D feed temperature random variation
IDV(10) C feed temperature (stream 4) random variation
IDV(11) Reactor cooling water inlet temperature random variation
IDV(12) Condenser cooling water inlet temperature random variation
IDV(13) Reaction kinetics slow drift
IDV(14) Reactor cooling water valve sticking
IDV(15) Condenser cooling water valve stiction
IDV(16) Deviations of heat transfer within stripper random variation
IDV(17) Deviations of heat transfer within reactor random variation
IDV(18) Deviations of heat transfer within condenser random variation
IDV(19) Recycle valve of compressor, underflow stripper and steam valve stripper stiction
IDV(20) unknown random variation
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Figure 4. Schematic of Tennessee Eastman Process.

3. Hierarchical Structure

The key goal of the work is to improve the detection and diagnosis of incipient faults
but without sacrificing the detection accuracy for the regular (non-incipient) faults. Thus,
we need to increase the sensitivity of the non-linear FDD algorithm with respect to the
incipient faults but without losing sensitivity with respect to the non-incipient faults.
The sensitivity of non-linear models such as deep neural networks is highly dependent
on the variability of the data used for calibration. Accordingly, a key data pre-processing
step toward model calibration involves data standardization, i.e., mean centering and
normalization. It is hypothesized that by building separate models for different groups of
faults, it is possible to increase the sensitivity of different models and distinguishability
between faults because of the different re-normalization conducted within each group.

Following the above, a hierarchical structure is proposed as shown in Figure 5. This
structure includes the following sequential steps for training of the model with a training
data set:

1. The training data are mean centered and normalized.
2. The faults are classified into two groups: group 1—easily distinguishable faults and

group 2—difficult to distinguish faults, which include the incipient faults along with
normal operation data class.

3. A Deep LSTM-SAE model denoted as M1 is designed for identifying the faults of group
1 or identifying all faults in group 2 as a single fault.

4. The data for group 2 identified in the previous step are mean centered and re-normalized.
5. A neural network model is designed specifically for group 2 denoted as M2.
6. For faults that are not accurately identified by M2, a PRBS is designed and injected

into locations in the system that are informative about these faults.

Based on the trained hierarchical structure, online detection and diagnosis for any
new sample proceeds as follows:

1. The data corresponding to the sample is mean centered and normalized as in step 1 of
the training procedure.

2. The sample is classified as either in group 1 of easy to observe faults or group 2 of
difficult to identify faults.

3. If sample is in group 1, it is classified accordingly by model M1. If it is in group 2, it is
re-normalized according to the re-normalization in step 4 of the training procedure.
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4. If the sample is within group 2, it is identified by model M2 in step 5 of the train-
ing procedure.

5. If the sample is not identified accurately by the model for group 2, PRBS signals are
injected as specified in step 6 of the training procedure, and the corresponding faults
are diagnosed from the resulting data.

Figure 5. Hierarchical structure used for fault detection and diagnosis.

It should be noticed that in this algorithm, the normal operation is treated as an
additional fault class denoted as Class 1. The incipient faults are characterized by responses
that are very similar to the normal state (TEP: faults 3, 9 and 15). It should also be noted
that the incipient faults are grouped along with the normal state as per step 1 of the training
procedure; it may also result in miss-classification as other faults. Hence, the overall
classification accuracy for the incipient faults must be assessed after the execution of the
entire hierarchical procedure.

For model M1, the normalized data are fed to a first-level model where the softmax
layer of LSTM-SAE NN uses 18 units instead of the 21 units (incipient faults and normal
state grouped as one) as used in the non-hierarchical type model. The structure of model
M2 is similar to model M1, but the difference is that the softmax layer involves only 4 units
each for one of the incipient faults (3, 9, 15) and for the normal state (fault 0). The PRBS is
injected only when the incipient fault cannot be properly identified with either models M1
or M2. Additional details about the PRBS signal design are given in the following section.

Design: Pseudo-Random Binary Signal (PRBS)

Although the hierarchical structure proposed in the previous section enhances the
diagnosibility of few faults, the detection of incipient faults is still challenging due to the
lack of excitation to detect these faults in the presence of noise. This problem is particularly
acute in the TEP since the dataset contains variables that are used in closed-loop control,
thus exhibiting a small variation with respect to their set-point values, making it difficult
to estimate the occurrence of faults from such variables. To increase the diagnosibility of
incipient faults, the use of active fault detection, as reviewed in the Introduction, is proposed
for the TEP process. The lack of diagnosibility/distinguishability of the incipient faults
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can be viewed as a problem of inaccurate identification of a model relating variability in
measured values to faults. To improve the identification accuracy, it is required to use inputs
that sufficiently excite the system dynamics in the presence of noise [35], which will result
in larger changes in the measured quantities and larger sensitivity to fault changes. Thus, it
is required to introduce additional excitation to the one available in regular operation of the
system. Accordingly, external forcing signals are injected at particular points of the control
loops, e.g., an excitation signal to the set-points of the loops that involve variables related
to the difficult to detect faults. The addition of such excitation signals in combination
with a separate deep neural network model (second level) in the hierarchical structure
described in the previous section is investigated in the current study for detecting and
diagnosing incipient faults that cannot be accurately identified with the regular operating
data collected from the process.

To avoid a large negative impact of the external signals on the profitability of the plant,
the input signals should meet certain constraints as follows:

1. Reduce input move sizes (to reduce wear and tear on actuators).
2. Reduce input and output amplitudes, power, or variance.
3. Short experimental time to prevent losses

In a practical implementation, the added excitation signal should result in variations
in the measured quantities that will be large in magnitude relative to the noise. Toward
this goal, it is necessary to include information of frequencies lower than the crossover
frequency of the closed loop transfer function [36]. PRBS signals are used as excitation
signals in this study, since they have a finite length that can be synthesized repeatedly with
simple generators while presenting favorable spectra. The spectrum at low frequencies
are flat and constant, while at high frequencies, the spectra drop off. Thus, the PRBS can
be designed to have a specific bandwidth, which can be utilized for exciting the processes
within the required range of frequencies [37]. The analytical expression for the power
spectrum of a PRBS is given by:

s(ω) =
A2(R + 1)tcl

R

[
sin ωtcl/2

ωtcl

]2

(10)

where ω is the frequency, tcl is the clock period (minimum time between a change in
levels) which is a multiple of the sampling time (Ts) and A is the amplitude of the signal.
The sequence repeats itself after T = R× tcl units of time, where R = 2n− 1 and n is the
number of shift registers used to generate the sequence. Thus, for designing the PRBS
signal, it is necessary to estimate the amplitude and the frequency range.

2π

T
≤ ω ≤ 2.8

tcl
(11)

Rivera and Gaikwad (1995) [36] Lee and Rivera, 2005 [38] and Garcia-Gabin and
Lundh [37] provided practical guidelines for estimating the range of frequency needed for
process closed-loop identification using time-domain information. The primary frequency
band of interest for excitation is determined by the dominant time constants of the system.

ωlow =
1

S f tol (12)

where tol = 4τol + tol
d

ωhigh =
4S f

tcl (13)

ωhigh ≤ ωN (14)
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where S f is a safety factor used to augment the bandwidth of the excitation signal, tol is
the open loop settling time and tcl is the settling time of the closed loop process without
considering the time delays. tol

d is the time delay of the open loop process. In addition,
the upper value of the frequency must be lower than the Nyquist frequency ωN to avoid
aliasing. Although the magnitude of the signal has not been optimized in the current work,
it could be further optimized by taking a profit function of the plant into consideration for
minimal losses and using the validation data used for the FDD model.

4. Results

In this section, the industrial benchmark TEP is used to validate and demonstrate
the effectiveness of the proposed method. Three tables are presented in this section to
summarize the results. The tables show comparisons based on a standard set of simulated
data from the TEP between our proposed algorithm with several algorithms reported in
the literature. First, fault detection rates for all non-incipient faults are shown in Table 3
for different linear multivariate methods and DL-based methodologies. Secondly, Table 4
shows comparisons with those results that consider incipient fault detection for TEP along
with non-incipient faults, i.e., all faults.

Table 3. Comparison of Fault Detection Rate with different methods with non-incipient faults only.

Fault PCA
(15 comp.)

DPCA
(22 comp.)

ICA
(9 comp.)

DL
(2017)

DL
(2017)

DL
(2018)

DL
(2018)

DL
(2019) Proposed DL

T2 SPE T2 I2 AO SAE-NN DSN GAN OCSVM CNN Deep LSTM-SAE

1 99.2% 99.8% 99% 100% 100% 77.6% 90.8% 99.62% 99.5% 91.39% 100%
2 98% 98.6% 98% 98% 98% 85% 89.6% 98.5% 98.5% 87.96% 100%
4 4.4% 96.2% 26% 61% 84% 56.6% 47.6% 56.25% 50.37% 99.73% 100%
5 22.5% 25.4% 36% 100% 100% 76% 31.6% 32.37% 30.5% 90.35% 100%
6 98.9% 100% 100% 100% 100% 82.8% 91.6% 100% 100% 91.5% 100%
7 91.5% 100% 100% 99% 100% 80.6% 91% 99.99% 99.62% 91.55% 100%
8 96.6% 97.6% 98% 97% 97% 83% 90.2% 97.87% 97.37% 82.95% 100%
10 33.4% 34.1% 55% 78% 82% 75.3% 63.2% 50.87% 53.25% 70.05% 42.8%
11 20.6% 64.4% 48% 52% 70 75.9% 54.2% 58% 54.75% 60.16% 100%
12 97.1% 97.5% 99% 99% 100% 83.3% 87.8% 98.75% 98.63% 85.56% 100%
13 94% 95.5% 94% 94% 95% 83.3% 85.5% 95% 94.87% 46.92% 100%
14 84.2% 100% 100% 100% 100% 77.8% 89% 100% 100 % 88.88% 100%
16 16.6% 24.5% 49% 71% 78% 78.3% 74.8% 34.37% 36.37% 66.84% 100%
17 74.1% 89.2% 82% 89% 94% 78% 83.3% 91.12% 87.25% 77.11% 100%
18 88.7% 89.9% 90% 90% 90% 83.3% 82.4% 90.37% 90.12% 82.74% 100%
19 0.4% 12.7% 3% 69% 80% 67.7% 52.4% 11.8% 3.75% 70.87% 40.4%
20 29.9% 45% 53% 87% 91% 77.1% 44.1% 58.37% 52.75% 72.88% 100%

Average 61.77% 74.72% 72.35% 87.29% 91.70% 77.7% 76.84% 74.04% 62.78% 85.47% 93.13%

Table 4. Comparison of Fault Detection Rate with different methods (with all faults).

Fault DL
(2017)

DL
(2017)

DL
(2018)

DL
(2018)

DL
(2019)

DL
(2018)

DL
(2021) Proposed DL

SAE-NN DSN GAN OCSVM CNN Optimized LSTM LSTM (attention) Deep LSTM-SAE

1 77.6% 90.8% 99.62% 99.5% 91.39% 68% 100% 100%
2 85% 89.6% 98.5% 98.5% 87.96% 78% 89% 100%
3 79.4% 14.4% 10.375% 7.62% 50.59% 45% 94% 81.58%
4 56.6% 47.6% 56.25% 50.37% 99.73% 75% 99% 100%
5 76% 31.6% 32.37% 30.5% 90.35% 45% 94% 100%
6 82.8% 91.6% 100% 100% 91.5% 75% 100% 100%
7 80.6% 91% 99.99% 99.62% 91.55% 89% 100% 100%
8 83% 90.2% 97.87% 97.37% 82.95% 100% 99% 100%
9 50.6% 16.3% 8.625% 7.125% 49.53% 89% 81% 99.38%
10 75.3% 63.2% 50.87% 53.25% 70.05% 71% 99% 42.84%
11 75.9% 54.2% 58% 54.75% 60.16% 67% 88% 100%
12 83.3% 87.8% 98.75% 98.63% 85.56% 77% 99% 100%
13 83.3% 85.5% 95% 94.87% 46.92% 83% 89% 100%
14 77.8% 89% 100% 100 % 88.88% 56% 99% 100%
15 55.5% 26.7% 12.5% 14% 43.54% 89% 22% 100%
16 78.3% 74.8% 34.37% 36.37% 66.84% 99% 31% 100%
17 78% 83.3% 91.12% 87.25% 77.11% 0% 97% 100%
18 83.3% 82.4% 90.37% 90.12% 82.74% 89% 95% 100%
19 67.7% 52.4% 11.8% 3.75% 70.87% 20% 97% 40.4%
20 77.1% 44.1% 58.37% 52.75% 72.88% 88% 85% 100%

Average 75.355% 65.32% 64.51% 62.78% 79.84% 70.15% 87.85% 93.23%
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Finally, a systematic ablation study is conducted in Table 5 to demonstrate gradual
improvements following the proposed methodology. Thus, in this table, the different levels
of the proposed hierarchical algorithm are added one by one to observe their relative
contribution to the FDD accuracy. In-depth details about the comparisons and ablation
study are discussed in the next section.

Table 5. Ablation study for the proposed method.

Faults Non-Hierarchical
DL NN

Hierarchical DL
NN (No PRBS)

Hierarchical DL NN+
PRBS Addition

for Fault 15

Hierarchical + PRBS
Addition for Fault

15 and Fault 9

Fault 3 36% 42% 88.7% 81.5%
Fault 9 32% 18% 38.4% 99.3%
Fault 15 12% 30% 99.4% 100%

Normal Operation 18% 25% 100% 98.1%
Average of all
other Faults 85% 87% 93.1% 93.1%

Averaged Test
Accuracy 73.4% 75.90% 90.9% 93.4%

5. Discussions

We investigated the multi-class classification performance using a total of 20 fault
modes presented in Table 2 which involve all of the compositions, manipulated and
measurement variables in the TE process (Table 1). For an individual class IDV(i), the per-
formance was typically evaluated by a confusion matrix which consists of true positives
(TPi), false positives (FPi), true negatives (TNi) and false negatives (FNi). The notation used
in the confusion matrix (refer Table 6) is as follows:

Table 6. Confusion matrix for each fault (IDV(i)).

Counts of
Predicted Label i

Counts of Predicted
Label other than i

Counts of real label i TPi TNi
Counts of real label

other than i FPi FNi

Two main important metrics for quantifying the performance of the proposed process
monitoring methodology are as follows:

• Fault Detection Rate (FDR):

FDR =
number of fault data that have been detected as fault

total number of faulty samples

=
TPi

TPi + FPi
(15)

FDR represents the probability that the abnormal conditions are correctly detected,
which is an important criterion to compare between different methods in terms of
their detection efficiency. Evidently, a very high FDR is desirable.

• False Alarm Rate (FAR):

FAR =
number of normal data that have been detected as fault

total number of normal samples

=
FPi

TPi + TNi
(16)
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where the class corresponding to normal operation is considered as the positive class. FAR
represents the probability that the normal operation is wrongly identified as abnormal, and
thus, a very low FAR is desired and necessary.

The fault detection results obtained with the hierarchical LSTM SAE NN model are
compared with both linear multivariate statistical methods and deep learning methods
reported in previous studies. For a fair comparison between the methods, for studies where
only non-incipient faults were considered, the results were compared to fault detection
results obtained from the first level of the hierarchical structure model, whereas for studies
where all the faults were considered, the comparisons were made for results obtained
from the second level of the hierarchical structure model. The Fault Detection Rate (FDR)
for all the faults is compared for the proposed method, PCA [23], DPCA [23], ICA [24],
Convolutional NN (CNN) [25], Deep Stacked Network (DSN) [26], Stacked Autoencoder
(SAE) [26], Generative Adversarial Network (GAN) [22] and One-Class SVM (OCSVM) [22].
The Fault Detection Rates for all non-incipient faults and incipient faults are shown in
Tables 3 and 4, respectively, for different methodologies along with the results from the
proposed method. It can been seen from Table 3 that the proposed method outperformed
the linear multivariate methods and other DL-based methods for most fault modes. For ex-
ample, for PCA with 15 principal components, the average fault detection rates are 61.77%
and 74.72% using the T2 and Q statistic, respectively. Since the principal components
extracted using PCA capture static correlations between variables, DPCA is used to ac-
count for temporal correlations (both auto-correlations and cross-correlations) in the data.
The effect of increasing the number of time samples in the Tennessee Eastman simulation is
also investigated following the hypothesis that increasing the time horizon will enhance
classification accuracy. In the case of DPCA, the number of lags used in the observation
matrix is a key parameter. Since DPCA is only a data compression technique, it must
be combined with a classification model for the purpose of fault detection. Accordingly,
the output features from the DPCA model are fed into an SVM model that is used for final
classification. Different time horizons were tried for training the DPCA model. Based on
validation results, the best DPCA model was obtained with 22 lags. The average detection
rate obtained was 72.35%. The ICA [24]-based monitoring scheme performs better than
both PCA and DPCA-based methods with an averaged accuracy of approximately 90%. It
should be noted that all these methods (PCA, DPCA and ICA) perform poorly for detecting
incipient faults.

In addition to the comparison to linear methods, the proposed methodology was
also compared with different DNN architectures such as CNN [26], DSN [26], SAE-NN
(results reported in Chadha and Schwung, 2017 [26]), GAN [22], and OCSVM (results
reported in Spyridon and Boutalis, 2018 [22]) reported previously. It can be seen that
the proposed method also outperforms these DNN-based methodologies. The relative
advantage of our method versus these other DNN architectures (Table 4) is due to the
inclusion of the incipient faults within the normal class (hierarchical structure) and the
supervised autoencoder (SAE) DNN architecture. This reduces the confusion between the
normal samples with other non-incipient faults. However, the additional advantage of
the proposed method over the other DNN architectures is realized when the hierarchical
structure is used in combination with the PRBS signals as further discussed below. It should
be noted that all these comparisons were based on an identical data set. Similarly, the
fault detection rate for all faults is compared with different DL-based models in Table 4
including SAE-NN, DSN, GAN, OCSVM, CNN, Optimized LSTM [39] and LSTM along
with an attention mechanism [27]. It can be seen that the proposed methodology improves
the averaged test classification accuracy for all faults significantly.

Subsequently, the faults were diagnosed using the proposed hierarchical structure
where the first level model of the hierarchical structure classifies non-incipient faults
and the second level model classifies incipient faults. For the first level model, there are
7382 training samples and 17,442 testing samples in total with a time horizon of 150 time-
steps. The model consists of 182 encoder LSTM units, which is followed by 116 LSTM units
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for processing of the output of the encoding layer. Thereafter, the output of the second
LSTM layer is passed through a dense layer for classification. Hyper-parameters such as
number of layers, number of LSTM units in each layer, classification weights, learning rate,
time-horizon etc. are selected using validation data that are part of the training dataset.
The confusion matrix for level 1 model is presented in Figure 6. The hyper-parameter
search is implemented using a Keras-tuner. Firstly, a grid of hyper-parameters is defined,
for example the number of encoder layers = [1, 2, 3], number of LSTM units for each of
these layers ranging from 2 to 200 with an interval of 2 = [10:2:200], learning rate = [0.1, 0.2,
0.3, 0.01], value of weights in the objective function, etc. Keras-tuner trains the model using
different combinations of these hyper-parameters values, and the averaged validation
accuracy is evaluated at every epoch. The models are trained with a few epochs at the start,
and the selected models with high validation accuracy are chosen to be trained for more
epochs. A study was conducted to select the optimal time horizon for the LSTM-based
model. It can be seen from Figure 7 that the classification averages can be enhanced by
extending the length of the time horizon of past data fed to the LSTM-based model. A total
of 150 time steps were chosen as the optimal time-horizon.

Figure 6. Confusion matrix for the first level model of the hierarchical structure (i.e., classification of
non-incipient faults and considering incipient faults as a normal class).

The next important design parameter for the second level hierarchical model is the
location in the process at which the external excitation signal should be introduced to
maximize information about the occurring incipient fault. In this work, this choice is
based on the flow-sheet and by identifying which variables are mostly correlated to the
incipient faults under consideration. Specifically, the excitation signals were added to
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process set-points in control loops that are most correlated to the incipient faults. When
the selection of the variable to be excited by a PRBS is not obvious from the process flow-
sheet, a more systematic approach is to use sensitivity analysis, e.g., the sensitivity of
changes in the variable connected to the fault to all process variables. Since it may be
detrimental to perturb the set-point continuously by the PRBS signal, the latter can be
introduced intermittently into the process. In the current work, an excitation signal of
length 40 time-steps was intermittently introduced every 4 h into the process by assuming
that such an event will not impact significantly the profitability of the process (for test
data). Changes in the separator temperature set-point will force changes in the condenser
temperature. Since the fault to be identified is stiction in the valve that affects the condenser
temperature, the imposed PRBS in the separator set-point indirectly helps in identifying
fault 15. For fault 9, i.e., a random variation in D feed temperature (refer to Table 2), the
PRBS excitation (ω ∈ [ωcl , ωn] where ωcl = 0.0087 rad/s and ωn = 1.74 rad/s) signal is
introduced to the D feed ratio in order to create a suitable excitation. After developing this
PRBS signal, we added both signals to the process at different times during the simulation.
For fault 15, the PRBS signal is designed with a frequency range of ω ∈ [ωcl , ωn] where
ωcl = 0.005 rad/s and ωn = 1.74 rad/s.

A systematic ablation study is conducted in Table 5 in order to demonstrate the gradual
improvements in the results by showing fault detection rates of incipient faults, normal
operation and non-incipient faults for 4 cases: i—without the hierarchical structure with
one DL model, ii—with the hierarchical structure and iii—with the hierarchical structure
and with the addition of one PRBS signal related to fault 15 and iv—with the hierarchical
structure and with the addition of two PRBS signals related to fault 9 and fault 15. Other
than a slight decrease in the detection of the Normal operation with the hierarchical
structure and the addition of the two PRBS signals, the improvements in all other faults
and in the average test accuracy are evident.

For the second level model, there are 1796 training samples and 4196 testing samples
in total with a time horizon of 150 time-steps. The model consists of 284 encoder LSTM
units in the first hidden layer, and the second layer consists of 100 LSTM units, which is
followed by 278 LSTM units for processing of the output of the encoding layer. Thereafter,
the output of the third LSTM layer is passed through a dense layer for classification. Hyper-
parameters such as the number of layers, number of LSTM units in each layer, classification
weights, learning rate, time-horizon, weights in the loss function, etc. are selected using
the validation data which is part of the training dataset. The hyper-parameter search
is implemented again using the Keras-tuner. For the second level model, the samples
corresponding to fault 0 (normal) and incipient faults are considered. Figure 8 shows the
confusion matrix after introducing the PRBS signal that was designed for identifying fault
15 and Figure 9 shows the confusion matrix after introducing both PRBS signals that were
designed for identifying fault 15 and fault 9. The total FAR calculated using Equation (16)
was 2.41%.

The averaged fault classification rates for all non-incipient faults and for all faults
(including incipient faults) are shown in Figures 10 and 11, respectively. Figure 10 shows
a bar-chart comparison of the proposed method with several non-linear methods such
as sparse representation [40], SVM [41], hierarchical model based method [42], Random
Forest, and structural SVM. It can be seen that the hierarchical deep RNN-based method
outperforms other methods with a significant margin. It should be noted that the com-
parisons made in Figure 10 do not consider incipient faults. In Figure 11, the averaged
test accuracy of all faults (both incipient and non-incipient faults) are compared with
other DL-based methods [43]. It can be seen that the second level hierarchical model
combined with the introduction of the designed PRBS signals significantly improves the
classification of the incipient faults, and thus, the averaged test accuracy for fault diagnosis
increases significantly.
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Figure 7. Selection of optimal time horizon for Hierarchical LSTM-SAE Level 1 model.

Figure 8. Confusion matrix on test data for the second level model of the hierarchical structure: after
adding designed PRBS signal with respect to fault 15.

Figure 9. Confusion matrix on test data for the second level model of the hierarchical structure: after
adding designed PRBS signal with respect to fault 9 and fault 15.
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Figure 10. Comparison of averaged fault classification rates (non-incipient faults only).
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Figure 11. Comparison of averaged fault classification rates (all faults).

6. Conclusions

This work studied the application of a deep learning model within a hierarchical struc-
ture as a way to increase the detection and classification of faults in the Tennessee Eastman
Process (TEP). The TEP simulation contains 20 different faults that were used during this
study to make the classification problem. As previously reported by other researchers,
a subset of these faults—referred to in this study as incipient—is particularly difficult to di-
agnose due to low signal-to-noise ratio and similarities in the resulting dynamic responses
corresponding to different faults.

A comparison between deep learning techniques to a multivariate linear technique for
fault detection such as PCA, DPCA, ICA and other deep learning methods is also presented.
It is observed that a hierarchical LSTM-based model is superior to traditional linear and
other deep learning-based methods for fault classification due to their ability to capture non-
linear dynamic behavior. It was also shown that the classification averages can be enhanced
by extending the length of the time horizon of past data fed to the RNN-based model.
However, most of these improvements in classification occurred for the non-incipient faults.
Therefore, an active fault detection approach was pursued where a hierarchical model
structure combined with external PRBS signals was proposed that proved to be particularly
effective for classifying incipient faults. Future studies will address the trade-off between
the impact of the injected PRBS signals on quality and productivity versus the benefit from
the early detection of incipient faults.
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PCA Prinicipal Component Analysis
DPCA Dynamic Prinicipal Component Analysis
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NN Neural Network
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TEP Tennessee Eastman Process
LSTM Long Short-Term Memory
GRU Gated Recurrent Units
DLSTM-SAE NN Deep LSTM Supervised Autoencoder Neural Network
DSAE-NN Deep Supervised Autoencoder Neural Network
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