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Abstract: Lithium metal batteries are one of the more promising replacements for lithium-ion batter-
ies owing to their ability to reach high energy densities. The main problem limiting their commercial
application is the formation of dendrites, which significantly reduces their durability and renders
the batteries unsafe. In the present work, we used a single-ion conducting gel polymer electrolyte
based on a poly(ethylene-ran-butylene)-block-polystyrene (SEBS) block copolymer, which was func-
tionalized with benzenesulfonylimide anions and plasticized by a mixture of ethylene carbonate
and dimethylacetamide (SSEBS-Ph-EC-DMA), with a solvent uptake of 160% (~12 solvent molecules
per one functional group of the membrane). The SSEBS-Ph-EC-DMA electrolyte exhibits an ionic
conductivity of 0.6 mSm·cm−1 at 25 ◦C and appears to be a cationic conductor (TLi+ = 0.72). SSEBS-
Ph-EC-DMA is electrochemically stable up to 4.1 V. Symmetrical Li|Li cells; further, with regard to
SSEBS-Ph-EC-DMA membrane electrolytes, it showed a good performance (~0.10 V at first cycles
and <0.23 V after 700 h of cycling at ±0.1 mA·cm−2 and ±0.05 mAh·cm−2). The LiFePO4|SSEBS-
Ph-EC-DMA|Li battery showed discharge capacity values of 100 mAh·g−1 and a 100% Coulomb
efficiency, at a cycling rate of 0.1C.

Keywords: polymer electrolyte; single-ion conductor; lithium metal battery; ionic conductivity; LFP;
lithium metal

1. Introduction

The switch to carbon-free energy and the desire to improve urban air quality is
significantly related to the development of scientific and technological progress in the
field of electrochemical energy storage [1,2]. The use of electric vehicles can significantly
reduce greenhouse gas emissions and air pollution when compared to internal combustion
engines, thus the increased use of them is becoming a key element of vehicle development
strategies. At the same time, energy companies are installing large power plants based on
renewable energy sources, such as wind, solar, and hydro power plants, etc. The demand
for lithium-ion batteries that are used as energy sources is, inevitably, growing. This is
because they are used in electric and hybrid vehicles, as well as in stationary energy storage
units at renewable energy power plants [3,4].

In order to satisfy higher energy requirements, batteries with a lithium metal anode are
a promising solution for the next generation of high energy density applications. Lithium
is considered the ideal anode for high energy batteries due to its high, theoretical specific
capacity (3860 mAh·g−1) and its low electrochemical potential (−3.04 V vs. standard
hydrogen electrode), which is higher than the current graphite (372 mAh·g−1) and silicon-
based (1956–3570 mAh·g−1) anodes for lithium-ion batteries [5–7]. The main problems
limiting the commercial application of such batteries is the uncontrollable growth of Li
dendrites during its deposition, the unstable electrode/electrolyte interface, and the low
Coulombic efficiency caused by inefficient solid electrolyte interphase (SEI) formation.
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There are several models that explain the mechanism of dendrite formation [5,8–10].
According to the space charge theory, proposed by Chazalviel, there is a concentration
gradient of cations in the electrolyte between the two electrodes when a direct current is
applied. Depletion of cations near the anode surface at a high current density disturb elec-
troneutrality at the electrode surface, which leads to the formation of local space charge and
the formation of branched dendrites [11]. A quantitative description of this model, which
showed a concentration gradient across the cell with a small gap between the electrodes,
was proposed by Brissot et al. [12]. According to the proposed models, increasing the time
at which dendrites grow is possible by increasing the initial concentration of cations in the
electrolyte through the use of highly concentrated electrolytes [13]. Moreover, this therefore
reduces local current density by using 3D current collectors or conducting structures—or in-
creasing the Li+ transference numbers in the electrolyte—by utilizing single-ion conducting
electrolytes, such as in, for example, cation-exchange membranes [14,15].

In cation-exchange membranes, anions are covalently bound to the polymer matrix.
Such electrolytes possess only cationic conductivity and are characterized by transference
numbers close to unity. In order to maximize the mobility of cations, functional groups are
often localized on the side branches of the main polymer chain. Among recent works in the
field of development of single-ion conductors for application in batteries, cation-exchange
membranes containing the functional sulfonylimide groups R-SO2N−SO2-X tend to domi-
nate. This is because their bulk conjugated structure can effectively delocalize the negative
charge [16–19]. Such a functional groups in the polymer matrix reduces the dissociation
energy with Li+ cations due to high charge delocalization and the facilitating of ionic
transport. The negative charge distribution in R-SO2N−SO2-X can be further improved
by introducing various electronegative groups such as −CF3, −Ph, or −PhCF3 [20–23].
Two methods for obtaining polymers containing a sulfonylimide group have been de-
scribed in the literature: polymerization of a previously functionalized monomer [21,23]
and the functionalization of the polymer matrix [18,24]. However, the first method is
quite complicated due to both the need for a functionalized monomer and the difficulty of
adjusting the polymerization conditions.

The solvation of such membranes via organic aprotic solvents provides high values
of ionic conductivity, which can reach values of up to 10−4–10−3 S·cm−1 at room tempera-
ture [20,25]. Organic carbonates used in lithium-ion batteries are most commonly chosen
for this purpose. Usually, polar aprotic solvents with a high dielectric constant (ethylene
or propylene carbonate, etc.) are also characterized by high viscosity and do not ensure
fast ion transport. Therefore, mixtures of solvents with a high dielectric constant and
low viscosity, such as dimethyl carbonate, diethyl carbonate, etc., are used as the diluent
component. However, membrane solvation with conventional organic carbonates often
does not ensure sufficient ionic conductivity [16]. There are several reports regarding the
use of N,N-dimethylacetamide (DMA) with a high dielectric permittivity (ε = 37.8) [26] as a
stabilizing additive [27,28], or as an individual solvent in lithium-ion batteries [26,29]. How-
ever, DMA is characterized by low chemical stability in contact with alkali metals [29,30];
further, the use of mixtures of DMA with ethylene carbonate increases electrolyte stability
by the forming of a protective film that prevents DMA from interacting with the metal [31].
Despite the evident promising performance of this research direction, there are few works
devoted to the successful application of ion-exchange membranes in batteries with a lithium
anode, which indicates the need to continue this research.

Thus, the aim of the present work was to study the properties of a gel-polymer elec-
trolyte based on a commercially available poly(ethylene-ran-butylene)-block-polystyrene
polymer, functionalized with a benzenesulfonylimide group in lithium form and solvated
by the mixture of ethylene carbonate and N,N-dimethylacetamide. The transference num-
bers, as well as the thermal and electrochemical stability of SSEBS-Ph-EC-DMA, were
characterized for the first time. Furthermore, the stable operation of Li|Li and LFP|Li cells
with SSEBS-Ph-EC-DMA electrolyte was shown.
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2. Materials and Methods

In this work we used triethylamine (≥99%, Merck, Darmstadt, Germany), benzene-
sulfonyl chloride (99%, Merck, Darmstadt, Germany), acetonitrile (HPLC-R, Biosolve,
Dieuze, France), aqueous ammonia (HP, Chimmed, Moscow, Russia), ethylene carbonate
(≥99%, Merck, Darmstadt, Germany), N,N-dimethylacetamide (99.8%, anhydrous, Merck,
Darmstadt, Germany), dichlorethane (HP, Chimmed, Moscow, Russia), polystyrene-block-
poly(ethylene-ran-buthulene)-block-polystyrene powder, SEBS (Mw~118 kDa contains
>0.03% antioxidant as inhibitor, Sigma-Aldrich Chemie GmbH, St. Louis, USA), cyclohex-
ane (HP, Chimmed, Moscow, Russia), chlorosulfonic acid (99%, Sigma-Aldrich Chemie
GmbH, Switzerland), methanol (HPLC, Lab-scan, Lodz, Poland), porous polypropylene
film, and LiClO4 (anhydrous, Merck, Darmstadt, Germany).

2.1. Membranes Production

The membranes were obtained according to a procedure previously described in the
work [16]. For this purpose, the SEBS polymer was firstly dissolved in cyclohexane at
+50 ◦C in order to obtain an 18 wt.% solution. The prepared solution was then placed on a
Teflon wafer and maintained at room temperature for 30 min. The solution was coated on
the Teflon substrate via a doctor blade technique. The resulting film was dried at 70 ◦C for
1 h in order to remove the cyclohexane. As a result, a film of SEBS polymer with a thickness
of ~50 µm was obtained.

In order to obtain the membrane, the SEBS film was first sulfonated in a 3 vol.%
chlorosulfonic acid solution in dichloroethane dried over 3Å molecular sieves. Sulfonation
time was 30 min. The resulting film contained polystyrene that was functionalized with
R-SO2Cl and R-SO3H groups (Figure 1). In order to obtain the cation-exchange membrane
with benzenesulfonylimide groups (SSEBS-Ph), the R-SO2Cl groups were firstly converted
to sulfonamide R-SO2NH2 (SSEBS-NH2) via a treatment with an aqueous ammonia cooled
to +4 ◦C for 2 h. The resulting SSEBS-NH2 films were washed several times with deionized
water and converted to H+ form by soaking in 0.1M hydrochloric acid solution. Then, the
membranes were washed with deionized water till they reached a neutral pH and were
then dried at +50 ◦C within a vacuum for 2 h.
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Figure 1. Scheme for obtaining the SSEBS-Ph membrane.

In order to synthesize membranes with benzenesulfonylimide functional groups via
the Hinsberg reaction, the SSEBS-NH2 membranes were placed in a solution containing
triethylamine and benzenesulfonyl chloride in anhydrous acetonitrile. The concentrations
of benzenesulfonyl chloride and triethylamine were 1.5M and 0.5M, respectively. The
reaction was performed at room temperature without air contact. After 3 h the membranes
were washed several times with acetonitrile, then with water, and then placed in 0.1M
solutions of LiOH or HCl in order to be converted into Li+ or H+ form, respectively, for
3 h with a threefold replacement of the solution. The obtained membranes were dried at
+50 ◦C within a vacuum for 2 h.
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2.2. Gel-polymer Electrolyte

In order to obtain the plasticized polymer electrolytes, the obtained dry SSEBS-Ph
membranes in Li+ form were placed in a dry argon-filled glove box and soaked in a solution
containing ethylene carbonate and N,N-dimethylacetamide (EC-DMA, V:V = 1:1). The
membranes were soaked in this solvent over activated molecular sieves (3Å) for one day.
The polymer electrolyte work was performed in an argon-filled glove box with O2 and
H2O content that were both less than 5 ppm.

2.3. Membrane’s Characterization

The ion-exchange capacity (mmol·g−1) of the obtained SSEBS-NH2 and SSEBS-Ph
membranes were measured via acid-base titration. For this purpose, dry membranes in H+

form were soaked in 0.5M NaCl for one day under constant stirring. Then, the solution was
titrated by ~0.01M NaOH. The exact concentration of sodium hydroxide was determined
by titrating 1 mL of a 0.1M HCl solution, which was prepared by diluting the standard titer.
The equivalence point was determined by the color change in the universal indicator. IEC
values were calculated by Equation (1):

IEC =
CNaOH·VNaOH

mdry·Vsolution
·10−3 (1)

where CNaOH and VNaOH is the concentration and volume of sodium hydroxide taken
for titration, expressed in mol·L−1 and L, respectively; further, mdry is the mass of dry
membrane (g) and Vsolution is the volume of solution above the membrane (L).

The IR spectra of the dry samples of SSEBS-NH2, SSEBS-Ph, and solvated electrolyte
SSEBS-Ph-EC-DMA were obtained using a Thermo Nicolet iS5 IR spectrometer (Thermo
Fisher Scientific, USA) with a Specac Quest attachment in the attenuated total reflection
(ATR) mode with a diamond crystal in the frequency range 500–4000 cm−1.

The composition of the SSEBS-Ph membrane in H+ form, as well as the SSEBS-NH2 were
calculated via elemental CHNS analysis using a EuroVector EA3000 (EuroVector, Pavia, Italy).

The degree of solvation of the membranes by the EC-DMA mixture was determined
as the ratio of the number of solvent molecules to the number of all functional groups of
the membranes, as based on the IEC and mass increase after soaking it in the solvent. This
was achieved by assuming that the composition of the immersed solvents did not differ
from the initial one.

The X-ray diffraction (XRD) analysis was carried out with the use of a Rigaku D/MAX
2200 diffractometer (CuKα, Rigaku, Tokyo, Japan).

Furthermore, the differential scanning calorimetry of the solvated membrane was
performed on a NETZSCH STA 449F1 (NETZSCH, Selb, Germany) within aluminum
crucibles under a helium atmosphere with a flow rate of 20 mL·min−1 in the temperature
range −100–+130 ◦C with a heating rate at 10 ◦C min−1.

2.4. Electrochemical Characterization

The ionic conductivity of the polymer electrolytes in Li+ form, plasticized by EC-
DMA, was studied by impedance spectroscopy in the temperature range of −20... +50 ◦C
within an argon atmosphere. A Binder MKF115 climate chamber was used to set the
necessary temperature. The temperature dependence of the ionic conductivity of the
studied samples followed the Arrhenius equation and was linear in the logσ–1000/T
coordinates. The measurements were performed using an Elins Z-1500J AC bridge (Elins,
Chernogolovka, Russia), in the frequency range of 2 MHz–10 Hz on symmetrical CR2032
coin-type cells Al|SSEBS-Ph-EC-DMA|Al [32]. The resistivity was determined from the
cutoff on the active resistivity axis in a Nyquist plot in the high temperature region, or by
the extrapolation of the half-circle on the active resistivity axis using the ZView 4 software.
The activation energy of ionic conductivity was calculated using the Arrhenius equation
from the slope of the linear section in the coordinates logσ–1000/T.
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The Li+ transference number was evaluated by the Bruce–Vincent method [33] in a sym-
metrical Li|SSEBS-Ph-EC-DMA|Li coin-type cell using Elins P-20X8 (Elins, Chernogolovka
Russia). The cell was polarized by a direct current (4V = 0.01 V). The current value be-
fore direct current polarization (I0) was also measured. The current value in the steady
state (Iss) was obtained by extrapolation to infinite time and the experimentally recorded
chronoamperometry curve. The interfacial resistance was measured before (R0) and after
(Rf) polarization via the impedance in the frequency range of 500 kHz to 10 mHz. TLi+ was
calculated using the following Equation (2):

TLi+ =
ISS(∆V− I0R0)

I0(∆V− ISSRf)
(2)

The electrochemical stability window (vs. Li/Li+) of the obtained polymer electrolytes
based on SSEPS-Ph-Li+, was determined via linear voltammetry using an Elins P-20X8
multi-channel potentiostat-galvanostat (Elins, Russia). The membrane sample was placed
between the stainless-steel electrode (SS, as the working electrode) and the lithium electrode
(as the counter electrode and reference electrode). It was then assembled in a CR2032 coin-
type cell. The potential scans were performed in the range of 0 to 5.5 V (vs. Li/Li+) at a
sweep rate of 1.0 mV·s−1. Cyclic voltammetry was performed in the potential range of
2.5–4.1 V in SS|Li cells at a sweep rate of 1.0 mV·s−1 for 50 cycles.

In order to assess the stability of the obtained polymer electrolytes against lithium metal,
we performed galvanostatic cycling at a current density of ±0.1 mA·cm−2 in the symmet-
rical Li|Li coin-type CR2032 cell on a multi-channel potentiostat-galvanostat Elins P-20X8
(Elins, Russia). The time per cycle was 1 h (cut-off capacity was±0.05 mAh·cm−2). Before the
experiments, the lithium disks were preliminarily cleaned of lithium oxide and carbonate.

In order to evaluate the possibility of using the investigated polymer electrolytes in
real lithium metal batteries, we checked coin-type cells with a lithium metal anode and a
composite of a LiFePO4@C (LFP) cathode, which was obtained by the sol-gel method, as
well as through sucrose as a carbon coating source according to the procedure described
in [34]. In order to prepare the positive electrode, an LFP composite containing 5 wt%
carbon was mixed with carbon black and a 5 wt% PVDF solution (MM = 1100 kDa) in N-
methyl-2-pyrrolidone (LFP: carbon black: binder ratio was 10:1:1). The resulting electrode
paste was coated on 9 µm aluminum foil via a doctor-blade technique; in addition, the
coating thickness of the wet cathode paste was 250 µm. The resulting cathode foil sheets
were pre-dried at 100 ◦C for 1 h, then further kept at 120 ◦C within a vacuum for 24 h.
Round electrodes with a diameter of 16 mm (2 cm2 area) were cut from the cathode foil.
The electrochemical characterization of LFP|Li batteries was performed in coin-type cells
CR2032. A cathodic disc, membrane sample, lithium metal (16 mm diameter), stainless-
steel gasket, and wave spring were placed into a CR2032 battery shell, in sequence. The
coin battery was sealed under 50 kg·cm−2. Electrochemical tests were performed in the
galvanostatic mode at 0.1C (17 mA·g−1), 0.2C (34 mA·g−1), 0.5C (85 mA·g−1), and 1C
(170 mA·g−1) in the potential range of 2.5–4.1 V using an Elins P-20X8 multi-channel
potentiostat-galvanostat (Elins, Russia). The required current was calculated based on the
mass of active cathode material for each electrochemical cell.

Coulombic efficiency (CE, %) was calculated according to Equation (3):

CE =
Qd
Qc
× 100% (3)

where Qd and Qc are the charge and discharge capacity, respectively.
For the purposes of comparison, we also examined LFP|Li cells with the liquid

electrolyte 1M LiClO4 in an ethylene carbonate—dimethyl carbonate mixture.



Processes 2022, 10, 2509 6 of 13

3. Results and Discussions

The sulfonation reaction of polystyrene with chlorosulfonic acid results in two main
products: derivatives containing the sulfonic groups R-SO3

− and the chlorosulfonyl group
R-SO2Cl. In order to obtain a precursor for the Hinsberg reaction (SSEBS-NH2), the
SEBS film after sulfonation—which contained R-SO2Cl and residual R-SO3H groups—
was rapidly transferred into an aqueous ammonia solution that was cooled down to +4 ◦C.
In addition to the fact that such a film may initially contain a small number of sulfonic
groups—during the amination in the aqueous ammonia solution—some of the R-SO2Cl
fragments may also interact with water. As a result of these processes, according to the
acid-base titration, the SSEBS-NH2 membrane contains 0.6 mmol·g−1 R-SO3H groups, and
the total IEC of the SSEBS-Ph membrane was 1.49 mmol·g−1.

The formation of R-SO2NH2 and benzenesulfonamide groups by the Hinzberg reaction
(Figure 1) was confirmed by elemental CHNS analysis. The found molar ratio n(S)/n(N)
2.88 was close to the calculated data using titrimetric quantities of residual R-SO3

- groups
and R-SO2NH2 groups after the amination reaction (2.67).

Figure 2 shows the IR spectra of the SSEBS-NH2 polymer and the SSEBS-Ph membrane
in Li+ form. In regard to the SSEBS-NH2 polymer, characteristic vibrations ν(N-H) in the re-
gion of 3500–3200 cm−1 are observed, as well as ν(N-S) and νas(SO2) for ArSO2NH2, which
was characterized by non-intensive peaks at 907 and 1320 cm−1, respectively [35]. When
the SSEBS-NH2 membrane is transferred to benzenesulfonylimide groups, the vibrations of
νas(SO2) and ν(N-S) shift to the lower frequencies (Figure 2(2)). There are non-intensive
broad peaks with a maximum at 3450 cm−1, as well as peaks at 1650 cm−1 (Figure 2)
corresponding to the stretching ν(O-H) and bending δ(H-O-H) vibrations, respectively.
This indicates the presence of moisture in the membrane. Further, this is explained by the
fast moisture absorption by the membrane that is from the atmosphere. However, it is also
known that cation-exchange membranes are able to keep a few water molecules, even after
being heated at high temperatures [36]. When the membrane is immersed in solvents, it is
absorbed by the membrane. In this case, characteristic peaks of these solvents are observed
in the IR spectra. For example, one can observe vibrations ν(C=O) in the frequency range
1770−1790 cm−1 corresponding to EC or DMA at 1630 cm−1 (Figure 2(3)).
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The solvated SSEBS-Ph membranes were ~160% swollen films with a thickness of
~95 µm and a solvation degree of ~12 solvent molecules per functional group of the
membrane. According to X-ray diffraction analysis, SSEBS-Ph and SSEBS-Ph-EC-DMA are
X-ray amorphous.

The temperature dependence of the ionic conductivity of SSEBS-Ph electrolytes that
are solvated by EC-DMA follows the Arrhenius equation and straightens in logσ–1000/T
coordinates (Figure 3). The typical impedance hodographs at low and high temperatures
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are shown in Figure 4. At room temperature, ionic conductivity is 0.6 mSm·cm−1, which
exceeds values that are characteristic for the majority of polymer electrolytes and meets
requirements for electrolytes in lithium metal batteries [25]. In regard to the temperature
dependence of ionic conductivity, there is a kink at 10 ◦C, which corresponds to the phase
transition of the electrolyte (Tmelting). It should be noted that with increasing temperatures
the impedance spectra also changes (Figure 4). The presence of the phase transition is also
confirmed by DSC data (Figure 3b). The DSC curve of the solvated membrane exhibits
two endothermic peaks beginning at −58 ◦C and +8 ◦C (Figure 3b), which most likely
corresponds to the melting of the DMA and EC-DMA solvent mixtures in the membrane
pores, respectively. According to the curve of mass loss in the studied temperature range,
there is no change in mass (up to 130 ◦C), which is associated with the high boiling
points of EC and DMA. It can be concluded that the obtained electrolyte achieves high
conductivity values at temperatures above 10 ◦C and can be successfully operated at
elevated temperatures.
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The absence of a sharp change in conductivity in the region of temperatures corre-
sponding to endothermic effects is due to the fact that parts of the solvent localized at
the pore walls do not freeze at these temperatures. This is because they participate in
the solvation of lithium ions, which are located mainly within the thin Debye layer at
the negatively charged pore walls [37]. Therefore, at these temperatures only the mixture
of organic solvents localized in the center of the pore freezes in the membrane, which is
achieved practically without Li+ ions. It is worth noting that increasing the temperature
leads to a decrease in activation energy from 124 ± 4 to 13.1 ± 0.3 kJ·mol−1. This is due to a
simultaneous increase in the mobility of lithium ions and the gradual unfreezing of organic
solvents in the pores of the membrane, as well as the appearance of new mobile current
carriers. In the region of high temperatures, the entire solvent is in the liquid state and
only the mobility of carriers will grow. At the same time, the last part of the solvent, which
practically does not contain lithium ions, is simultaneously thawed in the kink region,
which corresponds to the second endothermic peak on the DSC curve.

The Li+ transference number (TLi+) was evaluated via the Bruce–Vincent method.
Figure 5 represents the chronoamperometry curve at a potential of 0.01 V and impedance
spectra of the Li|SSEBS-Ph-EC-DMA|Li, both before and after polarization. According
to the polarization curve the initial and final current were 31.7 and 29.6 µA, respectively.
The interface resistances, determined from the spectra, were 277 and 283 Ohm, before and
after polarization. Additionally, the calculated value of TLi+ was found to be 0.72 for the
SSEBS-Ph-EC-DMA. This indicates that the SSEBS-Ph-EC-DMA membrane is much more
selective for cation transport when compared to the liquid electrolyte (<0.5) [38]. This
is due to the fact that Li+ are carried through the membrane, while negatively charged
sulfonylimide functional groups are fixed on the polymer. The value of TLi+ obtained for the
SSEBS-Ph-EC-DMA is comparable with the values for the polymer single-ion conductors
that are described in the literature [20,39]. At the same time, it should be mentioned that
the TLi+ for the obtained polymer membrane is less than one, which can be explained by
the partial mobility of the polymer side chains containing functional groups.
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According to linear sweep voltammetry (Figure 6a), there are no anodic peaks for
the electrolyte. A sharp increase in the current density corresponding to the electrolyte
reduction is detected at only above 4.1 V vs. Li/Li+. According to cyclic voltammetry in
the potential range of 2.5−4.1 V (when corresponding to the operating range of batteries
with a LFP cathode), when there is an increasing cycle number then there follows a gradual
decrease in the current in regard to the high-potential region (Figure 6b), which indicates
an increase in the stability of the electrolyte during cycling.
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Figure 6. (a) Linear voltammetry of SS|Li cells with SSEBS-Ph-EC-DMA-based electrolytes in the
potential range 0–5.5 V and (b) cyclic voltammetry in the potential range 2.5−4.1 V for 50 cycles.

According to the data of the galvanostatic cycling of a symmetrical Li|Li cell, at a
current density of 0.1 mA·cm−2 with a cut-off capacity of 0.05 mAh·cm−2, the electrolyte is
stable during >700 h with an increase in overpotential from ±100 mV to ±230 mV after
the first 100 cycles (Figure 7a). The values of overpotential are slightly higher than that,
as reported for the single-ion conducting gel-polymer electrolyte with the comparable
ionic conductivity [40,41], which may be due to the difference in polymer matrices and
functional groups. Alternatively, it could be due to the difference in the mixture of solvents
that plasticize the membrane. Having said that, it is worth noting the voltage profiles. In
classical dual-ion conductors the concentration polarization is observed due to the parallel
anion transport, which appears in the curves with an arc-like form (Figure 7b). The absence
of polarization curves indicates the absence of the polarization effect for membrane-based
electrolytes (Figure 7c) [42,43]. In addition, similar curve patterns have been reported in
the works when examining single-ion conducting electrolytes [44,45].
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Figure 7. (a) Galvanostatic cycling curves of a symmetrical Li|Li cell with SSEBS-Ph-EC-DMA-based
electrolytes at 0.1 mA·cm−2 with a cut-off capacity of 0.05 mAh·cm−2. Schematic illustration of the
behavior of (b) dual- and (c) single-ion conductors.

In order to evaluate the electrochemical characteristics of a lithium battery with a
SSEBS-Ph-based electrolyte solvated by EC-DMA, LFP|Li cells were tested at different
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charge–discharge rates (Figure 8a). The charge–discharge curves of the LFP|Li cells show
typical LiFePO4 plateaus corresponding to the Fe2+↔Fe3+ transition. At the same time, the
difference between the average potentials of charge and discharge plateaus for the cell with the
membrane electrolyte, as well as with the liquid electrolyte are, at the same charge/discharge
rates, comparable (Table 1). This indicates that the membrane electrolyte does not contribute
significantly to the battery resistance and that this parameter is determined by ohmic losses
during the lithium transfer through the carbon coating, as well as through the charged (or
discharged) layer of cathode material formed on the sample surface [46].
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Table 1. Differences between charge and discharge potentials of LFP|Li batteries with SEBS-Ph-EC-
DMA and liquid electrolytes at different C-rates.

Echarge − Edischarge, V

0.1C 0.2C 0.5C 1C

SSEBS-Ph-EC-DMA 0.13 0.21 0.44 0.81

Liquid electrolyte 0.13 0.20 0.43 0.80

The initial discharge capacity of the LFP|SSEBS-Ph-EC-DMA|Li cell was 100 mAh·g−1

at 0.1C, which is ~28% lower than the capacity of the cell with standard liquid electrolytes
based on 1M LiClO4 in an EC-DMC mixture (Figure 9). This can be explained by insufficient
contact between the electrolyte film and the LFP cathode, which has low ionic conductivity.
For example, in the case of the quasi-solid electrolyte, which is based on poly(vinylidene
fluoride-co-hexafluoropropylene) with the conductivity value of 0.4 mS·cm−1, the authors
observed higher capacity values for the LFP|electrolyte|Li cell (143 mAh·g−1) [47]. This is
most likely associated with better electrode–electrolyte contact, which is realized due to the
presence of LiTFSI, ethylene carbonate, and dimethyl carbonate mixture in the electrolyte,
which impregnates the cathode material layer. In our case, lithium cations are produced by
the functional groups of the membrane. We assume that the use of a lithium-conducting
binder will make it possible to ensure a more complete extraction of lithium cations from a
layer of cathode material and will endeavor, in future studies, to solve this problem. As the
cycling rate increases, the SSEBS-Ph-EC-DMA electrolyte cell discharge capacity drops to
91, 74, and 50 mAh·g−1 for the C-rates of 0.2C, 0.5C, and 1C, respectively. The rates of cell
capacity drop with the membrane and liquid electrolytes are almost the same, e.g., when
the charge/discharge rate is increased 10-fold (to 1C), the cell capacity decreases by ~50%.
However, when returned to a rate of 0.1C, the capacity was restored and even increased



Processes 2022, 10, 2509 11 of 13

slightly with an increasing number of cycles (Figure 9a). It is known that at high rates
the charge–discharge processes are regulated by diffusion of ions through the electrolyte
and the electrode/electrolyte interface [48], as well as when the film forms on the surface
of the cathode material. The recovery of the initial cell capacity indicated that there was
no degradation of the cell materials when the cycling rate was increased; in addition, the
capacity drop at higher rates was due to kinetic limitations. It is also worth noting that
the Coulomb efficiency of the cell with a membrane was ~100% for all C-rates, compared
to the 95.4% for the cell with the liquid electrolyte. This indicates the high stability of the
obtained membrane-based electrolyte.
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4. Conclusions

Gel-polymer electrolytes for lithium metal batteries based on block co-polymer
poly(ethylene-ran-butylene)-block-polystyrene, which contained benzenesulfonylimide
groups and were solvated by a mixture of ethylene carbonate—dimethylacetamide were
obtained (solvent uptake was ~12 solvent molecules per one functional group of the
membrane). The SSEBS-Ph-EC-DMA electrolyte exhibited an ionic conductivity of 0.6
mSm·cm−1 at room temperature and had a lithium-ion transference number of 0.72. SSEBS-
Ph-EC-DMA is characterized by a wide electrochemical stability window up to 4.1 V.
Symmetric Li|Li cells with a membrane electrolyte that showed overpotential equal to
~0.10 V at the first cycles and <0.23 V after 700 h at ±0.1 mA·cm−2. LFP|Li batteries with a
membrane electrolyte showed discharge capacity values of 100, 91, 74, and 50 mAh·g−1 at
0.1C, 0.2C, 0.5C, and 1C, respectively (Coulomb efficiency was ~100%).
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