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Abstract: In a laterally asymmetric intake pumping station, the flow direction in the forebay is not
consistent with flow in the intake channel. Thus, the adverse flow patterns, such as bias flow, large‑
scale vortex and asymmetric flow occur frequently in the forebay and sump. Based on the Reynolds‑
averaged Navier‑Stokes (RANS) equation and the RNG k‑ε turbulence model, a recent flow pattern
in a laterally asymmetric intake pumping station was numerically simulated and analyzed, and ef‑
fective vortex elimination measures were proposed. For the original scheme, seriously biased flow
combined with large‑scale vortices were observed in the forebay and several vortices occurred in the
sump. To suppress the clash inflow in the south and north intake channel, the “straight diversion
pier + curved wing wall” and “straight diversion pier + curved wing wall + V‑shaped diversion pier”
were installed separately. The” symmetrical川‑shaped diversion pier” and “symmetrical川‑shaped
diversion pier + circular column” was utilized to eliminate the bias flow and large‑scale vortices in
the forebay. Finally, the “three‑ sectional diversion pier”, “three‑ sectional diversion pier + triangle
column” and “three‑ sectional diversion pier + triangle column + straight back baffle” was applied to
decrease the vortex and asymmetric flow near the suction pipe of the sump. By attaching the rectifi‑
cation measure schemes in the intake channel and the forebay, the bias flow and large‑scale vortex
in the forebay were suppressed to varying degrees. The schemes significantly reduced the recircu‑
lation coefficient and greatly reduced the recirculation volume. By utilizing the vortex elimination
measures in the sump, the vortex and asymmetric flow basically disappeared, the velocity distribu‑
tion tended to become more uniform, and the flow rate distinction of each pump was smaller. The
outcome can be used to provide a reference and basis for the improvement of flow pattern in similar
laterally asymmetric intake pump stations.

Keywords: laterally asymmetric intake pumping station; vortex elimination; combined rectification;
symmetrical川‑shaped diversion pier; recirculation coefficient

1. Introduction
According to the consistency of the flow direction between the intake channel and the

forebay, the pumping stations are divided into front and lateral intake types. Due to the
adverse flow pattern in the lateral intake pump, as shown in Figure 1b, the front intake
type is privileged. However, recirculation may also appear in the front intake pumping
station if design parameters such as the diffusion angle, are not reasonable, as shown in
Figure 1a. The lateral intake forebay is also an absolutely essential option, owing to the
limitations of the engineering layout. However, the lateral intake brings the recirculation,
asymmetric flow and even vortices in the forebay due to the unsatisfactory inflow for the
pump suction. Focused on the adverse flow pattern in the lateral intake forebay and sump,
previous researchers have carried out a significant amount of research. Nasr, A. [1] com‑
pared and analyzed numerical simulations of the forebay in the lateral intake pumping
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station forebay with, and without, rectification measures by using computational fluid dy‑
namics (CFD) for multiple unit operations. Song, W. [2] used the method of numerical
simulation and model testing to study the “Y” type diversion pier and “T” type diversion
pier with the lateral intake pumping station as an example. Zhao, H. [3] used the mea‑
sure of combining a guide‑wall with a vertical column to improve the undesirable flow
pattern of the water intake structure. Zhang, C [4] and Zhou, J. [5] used orthogonal exper‑
iments and computational fluid dynamics methods to analyze the flow characteristics of
diversion piers with different combinations of parameters. Xi, W. [6] used an N‑S equa‑
tion and transport equation of turbulent dynamic power for the formation mechanism of
the asymmetric adherent vortex in the side pump sump. Yang, F. [7] analyzed the flow
field of a lateral intake pumping station and proposed a rectification scheme of a rectifier
sill and diversion wall with openings. Luo, C. [8,9] simulated a multi‑unit lateral inlet
pumping station using a CFD by modeling triangular columns and partition piers to op‑
timize the flow pattern. Choi, J. [10] used a combination of CFD and model experiments
to study the vortices in the sump of a pumping station and its vortex elimination mea‑
sures. Zhang, Y. [11], Zhou, J. [12] and Kadam, P. [13] used a combination of numerical
simulation methods and physical models to research the poor flow patterns in forebay of
the pumping station. Xia, C. [14] used square columns to conduct rectification research on
the forebay of the pumping station. Chen, L. [15] simulated the steady flows in a typical
rectangular sump based on the renormalization group analysis model and the SIMPLEC
algorithm. Constantinescu, G. [16] used the standard k–ε equation to numerically simu‑
late the vortex in forebay of a pumping station, and the simulated vortex structure in the
pool was consistent with the results obtained from the model test. Xu, C. [17] simulated
the flow patterns of the forebay based on FLUENT and proposed two types of rectification
measures of diversion piers and pressure plates to improve the flow patterns. Ying, J. [18]
proposed a combined rectification scheme with different spacing of columns and bottom
stills for the poor flow patterns in the forebay of a large pumping station. Wu, X. [19]
improved the flow patterns in the sump by adding flow rectification measures such as di‑
version piers and columns. Zi, D. [20] used numerical calculations and field experiments
to study the effectiveness of combined diversion piers in improving the flow patterns in
the intake structure of large pumping stations. Yu, Y. [21] conducted a numerical simula‑
tion and flow analysis on the inflow patterns of the diversion and intake pumping stations
with side‑inlets based on the realizable k‑ε turbulent model and SIMPLEC algorithm, and
found that the diversion grid had a significant effect on the regulation of the momentum
distribution at the diversion section of the pumping station.
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In summary, many previous studies on flow patterns in lateral intake pumping sta‑
tions have been carried out. However, research concerning pump stations with laterally
asymmetric inflow are rarely reported. Recently, CFD method has grown into a mature
technology, and is as important as experimental and the theoretical analyses. CFDhas been
used in the hydraulic machinery in pumping stations [22–27]. Therefore, this manuscript
adopted a CFD method to analyze the recent flow pattern in a pump station with later‑
ally asymmetric inflow and proposed the anti‑vortex measures and rectification measures
such as a V‑shaped diversion pier and川‑shaped diversion pier. Moreover, the recircula‑
tion coefficient proposed by Zi, D. [28] was conducted to quantitatively analyze the range
of large‑scale recirculation zone and vortices. The outflow discharge on the outlet of the
suction pipe was also discussed. The research not only weakened but solved the turbulent
flow in the forebay and the sump, and provides an important reference for the improve‑
ment of flow pattern of other similar pumping stations.

2. Numerical Simulation
2.1. Computational Domains

The computational domain of a pump stationwith laterally asymmetric inflowwas es‑
tablished by commercial interactive CAD/CAM software‑Unigraphics NX 12.0, developed
by Siemens A&D Groups (Berlin & Munich, German) [29]. The subdomains are the north
intake channel (in green color), the south intake channel (in dark orange color), forebay
(in purple color), sump (in gray color), and suction pipes (in gray color), as shown in Fig‑
ure 2. The length of the south water channel is 16 D in the north‑south direction and 6 D
in the east‑west direction. The length of the north water channel is the same as the south
water channel in the north‑south direction, but 4 D in the east‑west direction. The length
of the forebay is 23.25 D in the north‑south direction and 18.25 D in the east‑west direction.
The length and width of the sump is 9.8 D and 3.4 D. Sudden starting of the pump will
result into rapid water level drop in front of the pump bell mouth. If the water level is
too shallow, the probability of surface vortex in the sump increases exponentially. Avoid‑
ing such conditions should be considered in which the reasonable design of the sump is a
vital method. To avoid the surface vortex and other kinds of vortices, the Mandatory Na‑
tional Standard for pumping station design [30] is formulated for the designer of pumping
stations in China. In the standard, the floor clearance and submergence depth of the bell
mouth in the sump are advised as (0.6–0.8) D and (1.0–1.25) D. The submergence depth of
the bell mouth was chosen as 0.8 D under the water surface. The distance from the back
wall to the bell mouth was 1.5 D. Other parameter dimensions of the sump in this project
were in accord with the standard, in which D is the diameter of the bell mouth inlet of the
suction pipes.
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2.2. Governing Equations
The laws ofmass conservation, momentum conservation and energy conservation are

the basic principles which the flow should follow. Considering no heat exchange in the en‑
ergy conversion process of the forebay and the sump in the pumping station, the governing
equations adopted in this study are the continuity equation andmomentum equation. Due
to the incompressible fluid, the continuity equation can be described as below:

∂ui
∂xj

= 0 (1)

The momentum equation is also called the N‑S equation, it can be presented as:

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂ρ

∂xi
+

∂τ

∂xj
+ ρgi + Fi (2)

where ui is the three‑dimensional velocity component of the fluid, xi is the three‑dimensional
coordinate component, ρ is the pressure, τ is the stress tensor, ρgi is the gravity term, and
Fi is the external source term. The stress tensor is as:

τ =

[
µij

(
∂ui
∂xj

+
∂uj
∂xi

)]
− 2

3
µ

∂ui
∂xi

(3)

where µij is the dynamic viscosity and δij is the Kronecker delta (when i = j, δij = 1; when
i ̸= j, δij = 0).

2.3. Boundary Condition
The inlet of the intake channel was set as mass flow, which is the entrance of the

computational domain, in which the discharge of the north and south intake channel is
3600 kg/s and 1770 kg/s. The exit of the suction pipe set as the static pressure is the outlet
of the computational domain, and the reference pressure is 1 atm. The steady solutions
are obtained by utilizing the finite volume method and mainly discussed in this research.
The water surface is symmetry. The other surfaces, which are treated with scalable wall
function, are no slip walls. Due to the subdomains contained in the computational domain,
the interfaces between the intake channel and the forebay, the forebay and the sump, the
sump and the suction pipe were set as the static interfaces. Reynolds number is a dimen‑
sionless number that can distinguish laminar flow from turbulent flow. In this simulation,
the Reynolds number is much larger than 2300, thus the flow is fully developed turbu‑
lence. The turbulent model selection is greatly important. The RNG k‑ε turbulence model
uses the statistical technique of the renormalization group to correct the turbulent viscosity.
This correction takes into account the swirling effect in the flow, which can better deal with
the problem of large curvature flow. Therefore, considering the recirculation and vortex in
the forebay and sump of the pumping station, the RNG k‑ε turbulence model was utilized
in this simulation and the convergence accuracy is 10−4. The SIMPLE algorithm and the
second‑order upwind scheme were used to simulate the flow pattern in the pump station.

2.4. Mesh Preparation and Independence Analysis
For the discretization of the computational domain, the quality and quantity of the

mesh is critical. Therefore, a reasonable mesh generation strategy is very important for
numerical simulations. Commonly, there are two types of mesh: structured and unstruc‑
tured. Considering that the geometric characteristics and complexity of each subdomain
were inconsistent, different mesh generation strategies were applied. The south intake
channel, the north intake channel, the forebay and the sump adopted structured meshes.
However, the suction pipes were considered as unstructured meshes because of their com‑
plex geometric profile. The mesh generation of each subdomain is listed in Figure 3. In
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Figure 3e,f, the mesh around the diversion piers is encrypted, and the size of the mesh core
is 0.1 m. In Figure 3f, the size of the densified grids closed to the triangle column is 0.08 m.
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In general, more meshes are pursued to satisfy the accuracy requirements of calcu‑
lation results. Nevertheless, the inappropriate mesh quantity also wastes computational
resource and operation effectiveness. Thus, the determination of themesh quantity should
take into account both the stability of the calculation results and the minimization of the
computational resources. Seven kinds of mesh quantities were generated: 0.48 million,
0.8 million, 1.02 million, 1.2 million, 1.86 million, 2.16 million, 2.86 million. The hydraulic
loss hwas selected to analyze the grid sensitivity [31]. It can be presented as:

h =
Pin − Pout

ρg
(4)

where Pin and Pout is the total pressure on the inlet and the outlet of the pump station, Pa;
ρ is water density, 1 × 103 kg/m3; g is gravitational acceleration, 9.8 m/s2.

Figure 4 shows the trend of hydraulic loss for each scheme. The hydraulic loss de‑
creases with the increasing mesh quantity. When the quantity was less than 1.2 million,
the decreasing magnitude of the hydraulic loss was very obvious. With the further in‑
crease of meshes, the hydraulic loss difference of each scheme did not exceed 2%, which
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indicates that themesh quantity can satisfy the computational accuracy. Comprehensively
considered, 1.2 million meshes was adopted to finish the following calculation.
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3. Analysis Sections and Parameters
3.1. Analysis Sections

To obtain and analyze the internal flow characteristics in the forebay and the sump,
five sections are sliced. As shown in Figure 5, the horizontal sections are sliced as section
1, section 2 and section 3 respectively, which are used to analyze the flow patterns near the
bottom, the middle and the surface. Moreover, the vertical sections L1 and L2 are sliced
and marked as sections 4 and 5, observing the flow patterns at the inlet of the sump and
before the suction pipe. The heights of sections 1–3 are 0.2 D, 1.5 D and 2.5 D above the
bottom. The location of sections 4 and 5 are 0 D and 8 D away from the inlet of the sump.
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Figure 5. Analysis sections.

3.2. Analysis Parameters
The flow characteristics contain the velocity uniform feature and the vortex distribu‑

tion performance. The axial velocity uniformity and axial velocity weighted average angle
were utilized to quantitatively analyze the velocity uniform feature of the vertical sections
4 and 5 in the sump. Then the recirculation coefficient was proposed to quantitatively eval‑
uate the vortex dimension in the forebay. More than that, theQCriterionwas also adopted
to observe the vortex in the forebay.
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(a) Axial velocity uniformity and axial velocity weighted average angle [32].

The axial velocity uniformity Vau reflects the uniformity of the axial velocity distribu‑
tion on the overflowing section. When the axial velocity is more even, its value is closer to
1. Furthermore, the axial velocity weighted average angle θa is the angle between the flow
direction and the overflowing section. When it flows more smoothly, its value is closer
to 90◦.

Vau =

1 −

√
∑n

i=1(vai/va − 1)2

n

× 100% (5)

θa =
∑n

i=1

[(
90◦ − arctan vti

vai

)
vai

]
∑n

i=1 vai
(6)

where va is the average axial velocity in m/s; n is the mesh node number; vai is the axial
velocity of each mesh node in m/s; vti is the transversal velocity of each mesh node in m/s.

As shown in Figure 6, vxi and vzi is the velocity of eachmesh node in X and Z direction.
The transversal velocity vti is the square root of the square sum of vxi and vzi. vi is the
velocity of each mesh node.
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(b) Recirculation coefficient

In order to study the influence of the vortex on the flow pattern in the forebay, the
recirculation coefficient Ch is proposed, which characterizes the range of the recirculation
zone and vortex. The recirculation coefficient Ch is the product of the recirculation volume
ratio and the recirculation velocity ratio. The recirculation volume ratio equals to the value
of recirculation volume divided by the volume. The recirculation velocity ratio equals to
the value of average recirculation velocity divided by the average mainstream velocity.
The equation of the recirculation coefficient Ch can be conducted as:

Ch =
Q1

Q2

∣∣∣∑n
i=1 vi
n

∣∣∣
∑m

j=1 vj
m

(7)

where Q1 is the recirculation volume of each mesh element in the forebay and sump in
m3; Q2 is the volume of the forebay and sump in m3; vi is the velocity of each mesh ele‑
ment of the recirculation zone in m/s; vj is the mainstream velocity of each mesh element

of the recirculation zone in m/s. Q1/Q2 is the recirculation volume ratio.
∣∣∣∑n

i=1 vi
n

∣∣∣/∑m
j=1 vj
m
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is the recirculation velocity ratio. The value range of the recirculation coefficient is 0–1.
For the ideal flow condition, there is no recirculation zone in the forebay and sump, and
the value is 0. The flow pattern tends to more uniform as the decreasing recirculation co‑
efficient. Therefore, the recirculation coefficient can capture the vortex and recirculation
feature correctly.

(c) Q Criterion

TheQ Criterion is based on the characteristic equation of the velocity gradient tensor.
Hunt, J. [33] proposed to identify the regionwhere the secondmatrix invariantQ is greater
than zero as a vortex. The Q Criterion is:

Q =
1
2

(
∥A∥2

F − ∥S∥2
F

)
(8)

where S is the symmetric part of the velocity gradient tensor, and A is the antisymmet‑
ric part, respectively corresponding to the deformation and rotation in the flow pattern.
Thus, the Q Criterion represents the physical significance of the vorticity over that of the
deformation that dominates the rotating part of the flow pattern.

4. Anti‑Vortex and Rectification Schemes
Combined anti‑vortex schemes in the forebay listed in Table 1 were proposed to im‑

prove the flow pattern and weaken the large‑scale recirculation zone in the forebay. For
the “straight diversion pier + curved wing wall” scheme, it is marked as scheme 1, straight
diversion piers of 5 D and 7 D length were installed in the south and north intake channels,
respectively, the straight wing wall before the sumpwas replaced with a curved wing wall
with a radius of 1.5 D. For the “straight diversion pier + curved wing wall + V‑shaped di‑
version pier” scheme marked as scheme 2, the V‑shaped diversion pier of 2 D length and
0.2 D width was put forward on the inlet of the forebay. The angle of the V‑shaped diver‑
sion piers was 60◦ to avoid the clash inflow. For the “symmetrical 川‑shaped diversion
pier” schememarked as scheme 3, the symmetrical川‑shaped diversion pier was set in the
forebay for a smoother flow and to guide the flow into the sump. For the “symmetrical
川‑shaped diversion pier + circular column” scheme marked as scheme 4, two groups of
circular columns were set near the symmetrical 川‑shaped diversion pier and before the
inlet of the sump to eliminate the vortex and improve the axial velocity uniformity. In
Table 1, new additional anti‑vortex measures for each scheme are distinguished with an
orange color.

To solve the vortices in the sump and asymmetrical inflow before the suction pipes,
some combined rectification schemes of “three‑ sectional diversion pier”, “three‑ sectional
diversion pier + triangle column” and “three‑ sectional diversion pier + triangle column
+ straight baffle plate” were proposed to be installed in the sump, as shown in Table 2.
For the “three‑sectional diversion pier”, it is marked as scheme 52, straight three‑sectional
diversion piers with a height of 4 D were installed in sump 1#–3# and “J”‑shaped three‑
sectional diversion pier in sump 4 was installed in sump 4#. The distance between each
diversion pier was 0.2 D. For the “three‑ sectional diversion pier + triangle column” scheme
marked as scheme 6 in Table 2, two groups of triangle columns with a length of 0.2 D were
arranged in sump 4#. For the same group of triangle column, the distance between the
neighbouring triangle columnwas 0.25 D.However, the distance between different groups
of triangle columns was 1.5 D. For the “three‑ sectional diversion pier + triangle column +
straight back baffle” scheme marked as scheme 7 in Table 2, the straight back baffle was
applied at the backwall of the sump to eliminate the tiny vortex and the asymmetrical back
flow. Its length, width and height were 1.5 D, 0.4 D and 2.8 D, respectively. In Table 2, the
rectification measures for each scheme are distinguished with a red color.
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Table 1. Anti‑vortex measures in the forebay.
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Table 2. Rectification measures in the sump.
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5. Result Analysis
5.1. Anti‑Vortex Effect in the Forebay
5.1.1. Flow Pattern Improvement

Figure 7 is the surface (Section 3) streamline and axial velocity contour chart of each
scheme. The red arrows mean the flow direction. In Figure 7a, the flow pattern of the orig‑
inal scheme in the forebay and sump is extremely disorganized. Two recirculation zones
are located in the north and south intake channels recorded as NRZ and SRZ. Moreover,
the SRZ is much larger than NRZ due to the discharge of north intake channel, which is
double that of the south intake channel. The formation of NRZ and SRZ contributes to the
clash flow caused by the huge discharge difference. Another large‑scale recirculation zone
nearly covering the entire forebay is recorded as FRZ. Moreover, the offset flow (OF) oc‑
curs in all sumps, and the circumfluence flow (CF) exists in the sump 3# and 4#. The vortex
is observed in the sump 4#, recorded as SV. In Figure 7b, the flow pattern in the forebay is
slightly improved. The NRZ disappears and is absorbed to breed a new FRZ. The SRZ is
pushed away from the sump. The dimension of circulation zones obviously reduces. The
range of CF tends to be lower but some SVs are born in sump 3# and 4#. In Figure 7c, the
distribution of the recirculation zones differs significantly. The SRZ eliminates due to the
V‑shaped diversion pier, but a FRZ is refreshed in the eastern forebay away from the sump.
The former FRZ is forced tomove towards to be away from the sump and then is broken up
into two, and the NRZ reforms. The mainstream is split to two sub‑streams. The western
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sub‑stream of north intake channel is guided in sump 3#–4# and the western sub‑stream of
south intake channel is guided in sump 1#. The eastern sub‑stream of north intake channel
flows in sump 1#–2#. Yet, the eastern sub‑stream of south intake channel visits the forebay
and finally circles into sump 1#. The vortices behind the V‑shaped diversion pier installed
in the forebay are born, which are recorded as FVs. By the way, the CFs and SVs still ex‑
ists. In Figure 7d, The FRZ is well split with dimension reduction when the symmetrical
川‑shaped diversion pier is adopted. However, some tiny vortices or recirculation zones
are distributed instead in the forebay. The SRZ and NRZ are surveyed. The OFs in sump
1#–2# eliminate. The OFs and CFs in the other sumps are improved, especially in sump
3#. The range of SV in sump 3# decreases obviously. In Figure 7e, the circular column
is helpful to suppress the tiny vortex and recirculation zone in the forebay, making the
stream in the forebay smoothly. The FRZ, NRZ and SRZ are locked in the labyrinthine
created by the combined anti‑vortex measures, benefiting the flow pattern in the forebay
and sump. In sump 1#–3#, no CF, SV and OF is observed. In sump 4#, the CF and SV
still exist. Nevertheless, the asymmetrical inflow of the suction pipe should be noted for
every scheme.

Figure 8 is the middle (Section 2) streamline and axial velocity contour chart of each
scheme. Overall, the flow pattern in the middle is similar with the surface. In Figure 8a,
the FRZ, SRZ and some small vortices are observed in the forebay. The range of the FRZ
extends to the location of the NRZ on the surface. The OFs also happen in all sumps. The
CVs and vortices are seen in sump 3# and 4#. The size of the vortices is more obvious than
it on the surface. The stream from the south intake channel is mainly flows into sump 1#,
and the stream in the other sumps is originated from the north intake channel whosemain‑
stream is badly squeezed. In Figure 8b, the range of the FRZ decreases, but the number of
the FRZ increases. The SRZ is forced to the direction away from the sump and its dimen‑
sion expands. The stream from the south intake channel flows into sump 1# and 2#. On
the opposite, the stream from the north intake channel flows into sump 2#–4#. The inflow
squeeze state is improved. The OFs, SVs and CFs of each sump are weakened. In Figure 8c,
the flow patterns in the forebay such as the SRZ, FRZs and FVs are similar to those on the
surface. But the streamline in the sump tends to deteriorate more than that on the surface.
In Figure 8d, the SRZ and NRZ are forced to the forebay. The FRZ is improved and its
dimension decreases. The smoothness in the sump 1# and 2# is ameliorated. However, the
flow pattern in the sump 3# and 4# is basically the same as Scheme 2. In Figure 8e, there
are still recirculation zones in the forebay, but their dimension decreases. The flow pattern
in the sump is similar with Scheme 3. The inflow in sump 1#–3# is smooth. For all sumps,
the stream near the suction pipe is unsatisfactory, especially the asymmetrical flow and
SVs. Therefore, the installation of rectification measures in the sump is essential.

Figure 9 is the bottom (Section 1) streamline and axial velocity contour chart of each
scheme. In Figure 9a, the flowpattern at the bottom is similarwith Sections 2 and 3. Among
the three horizontal sections, the inflow of the north intake channel is mostly squeezed.
In other words, the range of recirculation zone is largest. There are three vortex cores
in the forebay. Due to the influence of clash flow, large scale recirculation zone (SRZ) is
more likely to be generated near the inlet with small discharge. Another recirculation zone
(FRZ) is located in the forebay. The flow pattern in the sump for each horizontal section is
similar, but the strength of the SV is maximum. In Figure 9b, the squeezed inflow is well
improved. The range of recirculation zone decreases. However, the OFs, CFs and SVs in
the sump are not significantly improved. In Figure 9c, the flow pattern at the bottom is
also similar to Sections 2 and 3. The improvement of the flow pattern in the forebay is not
obvious. Moreover, theOFs, CFs and SVs in the sump are growing, and are not suppressed.
In Figure 9d, the range of FRZ diminishes, yet the range of SRZ and NRZ expands. The
OFs, CFs and SVs in the sump are still unsatisfactory. In Figure 9e, large‑scale recirculation
zones basically disappear. Nevertheless, the SVs are widespread in all sumps.
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5.1.2. Vortex Distribution
Figure 10 is the vortex distribution contour in the forebay by utilizingQCriterion. For

the original scheme, vortices frequently occur, spreading over nearly 40% of the forebay.
As shown in Figure 10b–e, the vortex is eliminated in the intake channel by the straight di‑
version pier and curved wing wall for scheme 1. The vortex at the entrance of the forebay
is significantly reduced, resulting in the initial improvement of the flow pattern. However,
there are still large vortices and backflow at the wing wall and the center of the forebay.
For scheme 2, V‑shaped diversion piers at the inlet of the forebay is arranged to guide
the stream and improve the flow pattern. The vortex near the wing wall is solved. Mean‑
while, a new vortex occurs behind the V‑shaped diversion pier. More than this, two large
scale recirculation zones are observed in the forebay. For scheme 3, the flow pattern is
further smoothed with the symmetrical川‑shaped diversion pier. The large‑scale recircu‑
lation zone is eliminated and replaced by some tiny vortices. For scheme 4, the circular
columns are utilized to remove the vortices in the forebay. The dimension of the vortices
decreases rapidly.
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The recirculation coefficients of each scheme are calculated using Equation (7), which
are listed in Table 3. It can be seen that the recirculation coefficient of the original scheme
is 0.347, and the recirculation coefficients of each scheme are 0.233, 0.206, 0.202 and 0.193
respectively, meaning the recirculation zone and vortex are well treated. For scheme 4, the
range of recirculation zone and vortex is reduced by 44.4%.

Table 3. Recirculation coefficient of each scheme.

Original
Scheme Scheme 1 Scheme 2 Scheme 3 Scheme 4

Recirculation
volume ratio 0.396 0.261 0.352 0.263 0.263

Recirculation
velocity ratio 0.875 0.893 0.583 0.766 0.735

Recirculation
coefficient 0.347 0.233 0.206 0.202 0.193

5.1.3. Hydraulic Loss Performance
The hydraulic loss performance is highly important for the pump station operation.

Hence, hydraulic losses data of different schemes are calculated by Equation (4) and drawn
in Figure 11.
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For original scheme, the hydraulic loss is 0.363 m. The installation of anti‑vortex mea‑
sures in the forebay and sump results in the increase of hydraulic performance. Among the
anti‑vortex schemes, the hydraulic loss of scheme 2 is maximum, and its value is 0.401 m,
increases by 10.46%. The hydraulic loss of scheme 7 is minimum, and its value is 0.366 m,
which is almost equal to the original scheme. Usually, large‑scale recirculation and vortices
consume vast energy. Therefore, the hydraulic loss of original scheme mainly contributes
to the adverse flow pattern. Although the attachment of each anti‑vortexmeasure is benefi‑
cial for the flowpattern and suppress the vortices, the local hydraulic loss increases sharply.
Hence, the hydraulic loss of the anti‑vortex measure scheme is due to the recirculation and
vortices, but mainly depends on the local hydraulic loss.
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5.2. Rectification Efficiency in Sump
5.2.1. Axial Velocity Uniformity

To gain the vertical axial velocity distribution on the inlet of the sump andnear the bell
mouth, the axial velocities on the characteristic lines of the Sections 4 and 5 are extracted,
and the characteristic lines are marked as line 1–6, shown in Figure 12.
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Figure 12. Diagram of characteristic lines on the inlet of the sump and near the bell mouth.

Figures 13–16 are the axial velocity chart on the inlet of the sump. In which, “#” is the
number symbol of the unit. In Figure 13, a huge axial velocity difference in sump 1# from
the bottom to the surface is captured for the original scheme. When the height is 0.6 m,
the axial velocity is obviously smaller than the other heights. For rectification schemes,
such situation is well improved. In Figures 14 and 15, the axial velocity distribution of
original scheme on the inlet of sump2# and 3# differs toomuch. The axial velocity increases
from the bottom to the surface. By applying the rectification measures, the axial velocity
decreases and becomes more uniform. As shown in Figure 16, the axial velocity is uneven.
After arranging the rectification measures, the improvement is not obvious.

Processes 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
 

Figure 12. Diagram of characteristic lines on the inlet of the sump and near the bell mouth. 

Figures 13–16 are the axial velocity chart on the inlet of the sump. In which, “#” is the 
number symbol of the unit. In Figure 13, a huge axial velocity difference in sump 1# from 
the bottom to the surface is captured for the original scheme. When the height is 0.6 m, 
the axial velocity is obviously smaller than the other heights. For rectification schemes, 
such situation is well improved. In Figures 14 and 15, the axial velocity distribution of 
original scheme on the inlet of sump 2# and 3# differs too much. The axial velocity in-
creases from the bottom to the surface. By applying the rectification measures, the axial 
velocity decreases and becomes more uniform. As shown in Figure 16, the axial velocity 
is uneven. After arranging the rectification measures, the improvement is not obvious. 

  
(a) Original scheme (b) Scheme 5 

  
(c) Scheme 6 (d) Scheme 7 

Figure 13. Diagram of axial velocity on the inlet of the sump 1#. 

  
(a) Original scheme (b) Scheme 5 

Figure 13. Diagram of axial velocity on the inlet of the sump 1#.



Processes 2022, 10, 2398 18 of 24

Processes 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
 

Figure 12. Diagram of characteristic lines on the inlet of the sump and near the bell mouth. 

Figures 13–16 are the axial velocity chart on the inlet of the sump. In which, “#” is the 
number symbol of the unit. In Figure 13, a huge axial velocity difference in sump 1# from 
the bottom to the surface is captured for the original scheme. When the height is 0.6 m, 
the axial velocity is obviously smaller than the other heights. For rectification schemes, 
such situation is well improved. In Figures 14 and 15, the axial velocity distribution of 
original scheme on the inlet of sump 2# and 3# differs too much. The axial velocity in-
creases from the bottom to the surface. By applying the rectification measures, the axial 
velocity decreases and becomes more uniform. As shown in Figure 16, the axial velocity 
is uneven. After arranging the rectification measures, the improvement is not obvious. 

  
(a) Original scheme (b) Scheme 5 

  
(c) Scheme 6 (d) Scheme 7 

Figure 13. Diagram of axial velocity on the inlet of the sump 1#. 

  
(a) Original scheme (b) Scheme 5 

Processes 2022, 10, x FOR PEER REVIEW 17 of 23 
 

 

  
(c) Scheme 6 (d) Scheme 7 

Figure 14. Diagram of axial velocity on the inlet of the sump 2#. 

  
(a) Original scheme (b) Scheme 5 

 
(c) Scheme 6 (d) Scheme 7 

Figure 15. Diagram of axial velocity on the inlet of the sump 3#. 

  
(a) Original scheme (b) Scheme 5 

  
(c) Scheme 6 (d) Scheme 7 

Figure 16. Diagram of axial velocity on the inlet of the sump 4#. 

Figures 17–20 are the axial velocity chart before the bell mouth in the sump. In Figure 
17a, the axial velocity decreases at a depth of 0.6 m, which is similar to the inlet of the 
sump. In Figure 17b,c, it is obvious that the axial velocity of each layer at the bell mouth 
is close to each other without obvious fluctuations by rectification. In Figures 18 and 19, 

Figure 14. Diagram of axial velocity on the inlet of the sump 2#.

Processes 2022, 10, x FOR PEER REVIEW 17 of 23 
 

 

  
(c) Scheme 6 (d) Scheme 7 

Figure 14. Diagram of axial velocity on the inlet of the sump 2#. 

  
(a) Original scheme (b) Scheme 5 

 
(c) Scheme 6 (d) Scheme 7 

Figure 15. Diagram of axial velocity on the inlet of the sump 3#. 

  
(a) Original scheme (b) Scheme 5 

  
(c) Scheme 6 (d) Scheme 7 

Figure 16. Diagram of axial velocity on the inlet of the sump 4#. 

Figures 17–20 are the axial velocity chart before the bell mouth in the sump. In Figure 
17a, the axial velocity decreases at a depth of 0.6 m, which is similar to the inlet of the 
sump. In Figure 17b,c, it is obvious that the axial velocity of each layer at the bell mouth 
is close to each other without obvious fluctuations by rectification. In Figures 18 and 19, 

Figure 15. Diagram of axial velocity on the inlet of the sump 3#.

Figures 17–20 are the axial velocity chart before the bell mouth in the sump. In
Figure 17a, the axial velocity decreases at a depth of 0.6m,which is similar to the inlet of the
sump. In Figure 17b,c, it is obvious that the axial velocity of each layer at the bell mouth is
close to each other without obvious fluctuations by rectification. In Figures 18 and 19, the
axial velocity starts to decrease at a depth of 1.5 m for each rectification scheme. The ax‑
ial velocity has been significantly improved and the flow pattern has been optimized with
the measures of three‑sectional diversion pier, triangle column and straight back baffle, as
shown in Figure 20.
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Table 4 shows the axial velocity uniformity and axial velocity weighted average angle
of Section 5 in the sump for each scheme. As shown in the table, the axial velocity unifor‑
mity of the original scheme is poor. Themaximumvalue is 56.94% and theminimumvalue
is just 37.9%. Compared with the original scheme, axial velocity uniformity of Section 5
for schemes 5–7 in the four sumps are significantly improved, with an average increase
of 34.9%. For scheme 6, the axial velocity uniformity in sump 1#–3# is excellent, and the
smoothness of the flow in sump 4# does not change significantly. For scheme 7, the axial
velocity uniformity of sump 1#–3# is slightly improved, and the axial velocity uniformity
of sump 4# is slightly decreased. Moreover, the axial velocity weighted average angle of
the original scheme is still relatively small. The maximum value is 61.17◦, the minimum
value is 33.49◦. The axial velocity weighted average angle of schemes 5–7 in sump 1#–3#
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is larger than 80◦. The axial velocity weighted average angle of schemes 5–7 in sump 4# is
more than 60◦, which is almost two times than the original scheme.
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Table 5 is the axial velocity uniformity and axial velocity weighted average angle of
Section 4 in the sump for each scheme. There is a large difference in the axial velocity
uniformity of each sump for the original scheme. The maximum value is 76.51% and the
minimum value is 16.74%. Compared with the original scheme, the axial velocity unifor‑
mity and smoothness in the sump 2#–4# of scheme 5 enlarges, increasing significantly by
36.5% on average. For schemes 6 and 7, the axial velocity uniformity of sump 1#–3# in‑
creases lightly. Nevertheless, the axial velocity uniformity of sump 4# further increases
by 11.43% and 4.92%. The axial velocity weighted average angle of the original scheme is
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79.85◦ at the maximum and 59.9◦ at the minimum. For the rectification schemes, the axial
velocity weighted average angle is improved at more than 84◦. Finally, scheme 7 is the
advised scheme.
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Table 4. Axial velocity uniformity and axial velocity weighted average angle of Section 5 for
each scheme.

Scheme
1# 2# 3# 4#

Vau/% θa/( ◦) Vau/% θa/( ◦) Vau/% θa/( ◦) Vau/% θa/( ◦)

Original scheme 37.89 61.17 56.94 42.34 47.05 36.90 48.29 33.49
Scheme 6 81.61 86.51 84.31 83.60 81.87 80.67 81.88 60.66
Scheme 7 81.61 86.51 84.33 83.61 81.86 80.75 81.98 60.88
Scheme 8 81.64 86.48 84.31 83.61 81.95 80.93 81.68 61.15

Table 5. Axial velocity uniformity and axial velocity weighted average angle of Section 4 for each
scheme.

Scheme
1# 2# 3# 4#

Vau/% θa/( ◦) Vau/% θa/( ◦) Vau/% θa/( ◦) Vau/% θa/( ◦)

Original scheme 76.51 59.90 40.83 74.20 42.12 73.89 16.74 79.85
Scheme 5 80.12 84.93 79.56 84.41 75.33 85.06 54.44 84.26
Scheme 6 80.32 85.01 79.62 84.58 75.72 85.56 65.87 84.72
Scheme 7 80.38 85.01 79.73 84.71 75.75 85.56 70.79 84.82

5.2.2. Outflow Discharge Balance
Figure 21 shows the outflow discharge of each suction pipe for each scheme. For

original scheme, the outflow discharge of each suction pipe differs too much. Discharge
D‑value between the outlet of the suction pipe 1# and 4# is almost 70 kg·s−1. When the rec‑
tificationmeasures are installed, the difference in the outlet of the suction pipe is narrowed,
the outflow discharge becomes more balanced, especially for scheme 8. The standard de‑
viation and variance were used to assess the degree of dispersion of a data set. The smaller
the value is, the closer to the average is. In this manuscript, this can reflect on the stability
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of the outflow discharge to a certain extent. For the original scheme, the standard devia‑
tion and variance are 751.06 and 27.41. For scheme 5, the standard deviation and variance
are 100.39 and 10.02. For scheme 6, the standard deviation and variance are 189.08 and
13.75. For scheme 7, the standard deviation and variance are 3.32 and 1.82. As a result, it
is further verified that the flow is basically stable by the combined rectification measures
of “three‑sectional diversion pier + column + straight back baffle” in sumps.
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6. Conclusions
To solve the turbulent flow in a pump station with laterally asymmetric inflow, a re‑

cent flow pattern was numerically simulated and analyzed, and then the effective vortex
elimination measures such as the “straight diversion pier + curved wing wall”, “straight
diversion pier + curved wing wall + V‑shaped diversion pier”, “ symmetrical川‑shaped di‑
version pier”, “ symmetrical川‑shaped diversion pier + circular column” “three‑ sectional
diversion pier”, “three‑ sectional diversion pier + triangle column” and “three‑sectional
diversion pier + triangle column + straight back baffle” were proposed. The following con‑
clusions can be drawn:

(1) For the original scheme, the flow pattern in the forebay was extremely irregular.
A large‑scale recirculation zone was observed, covering about 40% region of the forebay.
The existing recirculation zone pushed and squeezed themainstream in the intake channel.
Flow separation and obvious vortices were observed;

(2) For each anti‑vortex measures of each scheme in the forebay, the flow pattern was
improved. Among the four schemes, the combined anti‑vortexmeasures of “straight diver‑
sion pier + curved wing wall + V‑shaped diversion pier + symmetrical川‑shaped diversion
pier + circular column” effectively improved the flow pattern in the forebay. The clash in‑
flow in the south and north intake channel was suppressed by applying the “straight diver‑
sion pier + curved wing wall + V‑shaped diversion pier”. The “symmetrical川‑shaped di‑
version pier” and “symmetrical川‑shaped diversion pier + circular column”were adopted
to weaken the bias flow and large‑scale recirculation zone in the forebay. The volume of
the recirculation and the vortices were reduced by 44%;

(3) All the rectification schemes can constrict the vortices and asymmetric flow near
the suction pipe in the sump. However, the combined rectification measures of “three‑
sectional diversion pier + triangle column + straight back baffle” are the most effective.
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Axial velocity uniformity and axial velocity weighted average angle greatly increased, es‑
pecially on the section before the bell mouth of the suction pipe, with values enhanced by
an average of 32.61% and 13.07◦, respectively.
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