
Citation: Cao, T.; Gong, H.; Han, B.

Observer-Based Predefined-Time

Attitude Control for Spacecraft

Subject to Loss of Actuator

Effectiveness. Processes 2022, 10, 2294.

https://doi.org/10.3390/pr10112294

Academic Editor: Weihai Zhang

Received: 9 October 2022

Accepted: 1 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Observer-Based Predefined-Time Attitude Control for
Spacecraft Subject to Loss of Actuator Effectiveness
Teng Cao , Huajun Gong * and Bing Han

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
* Correspondence: ghj301@nuaa.edu.cn

Abstract: The predefined-time tracking problem of spacecraft attitude systems with loss of actuator
effectiveness and lumped disturbance including the external disturbance and system uncertainty is
studied. In order to obtain the estimation of the actuator efficiency factor more quickly and accurately,
a robust learning observer is designed. Based on the fault reconstruction information of the learning
observer and the predefined-time stability lemma, a predefined-time tracking fault-tolerant control
scheme is proposed for the faulty spacecraft attitude system. The stability of the learning observer
and the whole control system is verified by the Lyapunov stability theory. Finally, the effectiveness
and advantages of the proposed scheme are illustrated by simulation results including comparisons
with existing works.
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1. Introduction

The attitude control system is an important part of spacecraft control system. It affects
the flight performance and attitude tracking property, and plays a crucial role in the safe
flight mission of spacecraft [1]. In recent years, many scholars have deeply studied the
design of controllers in the case of spacecraft external disturbances, system modeling
uncertainties, and actuator faults [2].

The control methods of spacecraft mainly include adaptive control [3], sliding mode
control [4], neural network control [5], model predictive control [6], fuzzy logic control [7]
and dynamic inversion control [8], and so on. Sliding mode control is widely used in
the field of aircraft control because of its strong robustness to external disturbances and
uncertainties of the system. It should be pointed out that most of the current advanced
controller designs can prove that the control system is asymptotically stable, that is, the
derivative of Lyapunov function V̇(x) ≤ 0, which theoretically indicates that the system
can be stable in an infinite time. In the field of aircraft control, due to the requirements
of spacecraft tasks, the system needs to respond quickly; as such, some scholars have
proposed the finite time control method. Reference [9] designed a finite time tracking
controller based on fast terminal sliding mode control technology and neural network
for a spacecraft attitude control system with sensor failure and actuator saturation. In
the stability proof of reference [9], the Lyapunov function satisfies V̇ ≤ −λVα(x), where

0 < α < 1, the system will be stable within a finite time Tr, i.e., Tr ≤ V1−α(x0)
λ(1−α)

, x0 is the initial
value of the system state variable. For the rendezvous task of thrust vector spacecraft, a
constrained optimal orbit finite time attitude controller design scheme is proposed in [10]. In
reference [11], a finite time disturbance observer is designed for spacecraft attitude control
system with actuator faults and mismatched disturbances, and the estimation is applied to
the design scheme of a finite time sliding mode fault-tolerant controller. References [10,11]
proved that the objective of stability is that the derivative of Lyapunov function satisfies
V̇(x) ≤ −ρ1V(x) − ρ2Vρ(x), where ρ1 > 0, ρ2 > 0, 0 < ρ < 1, and it can prove that

the state of the system converges in a finite time Tf , and Tf ≤ T0 +
1

ρ1(1−ρ)
ρ1V1−ρ(x(t0))+ρ2

ρ2
.
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It can be seen from [9–11] that the proof of finite time convergence of the system is related
to the initial value of the system. When the initial value of the system changes or uncertain,
it is difficult to calculate the convergence time of the system, which limits the application of
finite time control.

In order to solve the problem that the finite time stability is related to the initial
value, a fixed time controller with globally fixed convergence time of the system has
been proposed. Reference [12] designed a fixed time attitude controller using fixed time
theory and improved inversion control strategy. A fixed time attitude tracking control
scheme for rigid spacecraft is proposed in [13] based on the idea of adding an integrator
and inversion control technology. The proof objective of [12,13] is to make Lyapunov
function satisfy V̇(x(t)) ≤ k1Vρ1(x(t)) − k2Vρ2(x(t)), where 0 < k1, k2, ρ1 < 1, ρ2 > 1.
If the above inequality is satisfied, it can be shown that the system is stable in a fixed
time T, and the expression of T is T ≤ 1

k1(1−ρ1)
+ 1

k2(ρ2−1) . It can be seen from the proof
process of fixed time stability that the fixed time value of system convergence is related
to the controller parameters of the system. In most cases, it is difficult to establish a direct
relationship between stable fixed time and control parameters. Once the fixed time value
of system stability is set, it is difficult to make the system stable through several parameter
adjustments. In order to solve the above problems, Sanchez Torres et al. proposed a
controller design scheme with a fixed time upper bound as an adjustable parameter, which
is named as a predefined-time stable system [14]. The convergence time of the predefined-
time stable system can be preset arbitrarily by designing the parameters of the controller,
which is independent of the initial value of the system. At present, the control theory
related to the predefined-time stability is mainly applied to fractional order systems [15],
robotic control systems [16], space robots [17], surface ships [18], hypersonic vehicle attitude
control systems [19], etc. To the best of our knowledge, the results about predefined-time
fault-tolerant control of spacecraft attitude control systems with external disturbances,
system uncertainties and actuator failures are limited, which remains challenging and
motivates us to do this study.

Learning observer is an advanced fault diagnosis mechanism, which can estimate
constant fault, time-varying fault, and periodic fault. Its basic principle is to use the fault
information at the previous time and the state output error information of the system
for iterative learning to obtain the estimated value of the fault information at the current
time [20]. For the distributed system, reference [21] reconstructs the fault value of the
system by using the fault information of the previous time and the residual information
of the previous time. This kind of observer can be called iterative learning observer.
References [22,23] use the fault information of the previous time and the estimated error
value of the current time state to reconstruct the fault of the system. This kind of observer
can be called recursive learning observer. At present, most learning observers are used to
estimate additive faults, and there are few research results on multiplicative faults (such as
actuator efficiency loss faults).

Based on the above analysis, this paper proposes a predefined-time control scheme
based on robust learning observer for a spacecraft attitude control system with external
disturbances, system uncertainty and actuator fault. Firstly, the mathematical model of
spacecraft attitude control system is given and a learning observer is designed to estimate
the efficiency loss fault of the actuator. By using the estimated value of the learning observer,
a fault-tolerant controller with predefined-time is designed. Lyapunov function is used to
prove that the attitude angle of the system can track the desired command signal within the
predefined time. Finally, the numerical simulation proves the effectiveness and feasibility
of the proposed control scheme. The contributions of this paper are summarized as follows:

• A robust learning observer is proposed to reconstruct efficiency loss faults. Compared
with the traditional iterative learning observer [20] and recursive learning observer [21,22],
the learning estimation law proposed in this paper is composed of the fault estimation
value and state estimation error of the previous time and the state estimation error of
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the current time, which can quickly and accurately reconstruct the effectiveness value of
the actuators.

• Using the reconstructed information of actuator efficiency factor, a fault-tolerant
attitude controller is designed based on the lemma of predefined-time stability and
sliding mode control theory, so that the attitude angle of the system can track the
desired command signal within predefined time.

• Compared with the finite-time and fixed-time attitude control systems, the conver-
gence time of the predefined-time stable system can be preset arbitrarily by tuning a
simple parameter, which is independent of the initial value of the system.

The paper is organized as follows. The spacecraft attitude model and control objective
is formulated in Section 2. The design of learning observer is proposed in Section 3 while
the predefined fault-tolerant controller is given in Section 4. The simulation results are
shown in Section 5. Conclusions are made in the last section.

2. The Model of Spacecraft and Problem Formulation

In this section, the spacecraft kinematics described using modified Rodrigues parame-
ters and dynamics of attitude loop can be described as{

σ̇ = G(σ)ω

(J + ∆J)ω̇ = −ω×(J + ∆J)ω + τ + de
(1)

where σ = [σ1, σ2, σ3]
T ∈ <3 denotes the spacecraft attitude angle vector, ω = [p, q, r]T ∈ <3

denotes the attitude rate vector and is measurable; J = diag{Jx, Jy, Jz} denotes the inertia
matrix, ∆J denotes the inertia uncertainty; τ = [τ1, τ2, τ3]

T denotes the control torque vector;
de denotes the external disturbance vector; G(σ) = 1

4 [(1− σTσ)I3 + 2σ× + 2σσT], and σ×

and ω× denote cross product matrices which defined as follows

σ× =

 0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0

, ω× =

 0 −r q
r 0 p
−q p 0

.

The three-axis attitude control torque of spacecraft is realized by the actuator of the
system. This paper considers the situation where the actuators experience a partial loss
of actuator effectiveness. Then, the spacecraft attitude dynamics in Equation (1) can be
modified as

Jω̇ = −ω× Jω + DE(t)u + d (2)

where D ∈ <3×m denotes the control distributed matrix, u = [u1, u2, . . . , um]T denotes
the desired control torque allocating to the individual actuator, m indicates the number
of actuators. E(t) = diag{e1, e2, . . . , em} ∈ <m×m denotes the health condition of the
actuators, which can be called the actuator effectiveness matrix, and ei ∈ [0, 1]. When ei = 1
implies that the ith actuator is operating healthy without any fault. When ei = 0 implies
completely failure of ith actuator. d = de −ω×∆Jω− ∆ω̇ is can be regarded as the lumped
disturbance vector.

Control objective. For the spacecraft attitude control system with external disturbance,
system uncertainty and actuator efficiency loss fault, the efficiency factor in the system is
reconstructed by designing a learning observer, and then a predefined-time fault-tolerant
tracking controller is designed based on the predefined-time stability lemma and sliding
mode theory, so that the attitude of the system can accurately track the command signal
within the predefined time. The structure block diagram of the observer-based predefined-
time attitude control for spacecraft is designed as shown in Figure 1.
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Figure 1. The structure of the observer-based predefined-time attitude control strategy.

The following lemma and assumptions are introduced, which will be used for deriving
our main results in the sequel.

Lemma 1 (Predefined-time stability [14]). For autonomous control systems ẋ(t) = f (x, t), if
there is exists a Lyapunov function V(x) : <n → < with V(0) = 0, V(x) > 0(∀x 6= 0). Then, it
can be concluded that the control system is globally predefined-time stable with respect to T in sense
that x(t) = 0 for all t ≥ T and x(t0) 6= 0, provided that

V̇(x) ≤ 1
ρT

exp[Vρ(x)]V1−ρ(x), x(t) 6= 0 (3)

where 0 < ρ < 1, T > 0 denotes predefined time value.

Assumption 1. The nonlinear function ω× Jω is uniformly bounded for ∀ω ∈ <3 with a Lipschitz
constant k > 0, which could be formulated in the following

||ω× Jω− ω̂× Jω̂|| ≤ k||ω− ω̂||, (ω, ω̂ ∈ <3) (4)

Assumption 2. The lumped disturbance vector d = [d1, d2, d3]
T is bounded, but the upper bound

is unknown. Namely, |di| < dm(i = 1, 2, 3), where dm is the unknown positive scalar.

Assumption 3. Because of physical limitations on the actuator, the control action generated is
limited by the saturation value, and for simplicity, we assume that all the actuator control input
torques have the same constraint value um, that is, |ui| ≤ um for i = 1, 2, . . . , m.

3. Design of Learning Observer

Inspired by the previous learning observer design [24], we designed an improved
learning observer design scheme for the efficiency factor of the actuator. The actuator loss
of effectiveness fault E(t) is a diagonal matrix, and E(t)u in Equation (2) can be written as

E(t)u = Ue(t) (5)

where U = diag{u1, u2, . . . , um} and e(t) = [e1, e2, . . . , em]T .
The faulty dynamics equation of rigid spacecraft (2) can be transformed into

Jω̇(t) = −ω×(t)Jω(t) + DUe(t) + d(t) (6)
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An improved learning observer is designed as follows{
J ˙̂ω(t) =− ω̂×(t)Jω̂(t) + DUê(t) + M(ω(t)− ω̂(t)) + n sgn(ω(t)− ω̂(t))

ê(t) =l ê(t− τ) + H1(ω(t)− ω̂(t)) + H2(ω(t− τ)− ω̂(t− τ))
(7)

where ω̂(t) ∈ <3 and ê(t) ∈ <m denote the angular velocity estimation and loss effective-
ness fault estimation, respectively. t− τ denotes the last time value and τ is usually taken
as the sampling time internal of the system. Signal ê(t) is also called learning observer
input, which is updated or driven successively by the state estimation error at the past and
current time, and previous learning observer input ê(t− τ). l is a positive constant and
H1 ∈ <m×3 and H2 ∈ <m×3 are positive-definite gain matrices chosen by designer. n is a
positive sign function gain. The parameter M ∈ <3×3 is a positive-definite matrix.

Remark 1. In order to ensure that our estimated fault value remains within an interval (0, 1], we
improve our learning update law (6) as follows

ê(t) = Proj(emin ,1]{ l ê(t− τ) + H1(ω(t)− ω̂(t)) + H2(ω(t− τ)− ω̂(t− τ))} (8)

where emin indicates the lower limit of the efficiency loss factor, which is usually set to a very small
value, such as emin = 0.0001. Proj{·} stand for projection operator.

To evaluate the estimation performance of the robust learning observer, two new
variables have been defined as follows ω̃(t) = ω(t)− ω̂(t) and ẽ(t) = e(t)− ê(t). The
observer error equation can be obtained by subtracting (7) from (6)

J ˙̃ω(t) = −ω×(t)Jω(t) + ω̂×(t)Jω̂(t) + DUẽ(t)−Mω̃(t) + d(t)− n sgn(ω̃(t)) (9)

In order to express the main results, the following assumptions and lemmas are required.

Assumption 4. Since the efficiency loss factor of the actuator satisfies the constraint 0 ≤ ei(t) ≤ 1,
the following inequality can be held as ||e(t) − l e(t − τ)|| ≤

√
m(1 + l) , v̄, where v̄ is a

positive constant.

Lemma 2. If learning update law ê(t) is defined in Equation (6), the following inequality holds:

ẽT(t)ẽ(t) ≤b1vT(t)v(t) + b2l2 ẽ(t−τ)ẽ(t−τ) + b3ω̃T(t)HT
1 H1ω̃(t) + b4ω̃T(t−τ)HT

2 H2ω̃(t−τ) (10)

where v(t) = e(t)− l e(t− τ) and bi (i = 1, 2, 3) is a number greater than 0, and its value will be
given in the proof section.

Proof. The efficiency factor estimation error of the observer is

ẽ(t) = e(t)− l ê(t− τ)− H1ω̃(t)− H2ω̃(t− τ)

= v(t) + l ẽ(t− τ)− H1ω̃(t)− H2ω̃(t− τ) (11)

Next, we can get

ẽT(t)ẽ(t) =vT(t)v(t)− l2 ẽT(t−τ)ω̃(t) + ω̃T(t)HT
1 H1ω̃(t) + ω̃T(t−τ)HT

2 H2ω̃(t−τ)

+ 2l ẽT(t−τ)v(t)− 2ω̃T(t)HT
1 v(t)− 2ω̃T(t−τ)HT

2 v(t)

− 2l ω̃T(t)HT
1 ẽ(t−τ)− 2l ẽT(t−τ)HT

2 ω̃(t−τ) + 2ω̃T(t−τ)HT
2 H1ω̃(t) (12)
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Using the well-known Young’s inequality, that is ±2xTy ≤ aixTx + 1
ai

yTy for all
x, y ∈ <3, we have, for arbitrary positive constants ai (i = 1, 2, 3, 4, 5, 6),

− 2l ẽT(t− τ)v(t) ≤ a1l2 ẽT(t− τ)ẽ(t− τ) +
1
a1

vT(t)v(t)

− 2ω̃T(t)HT
1 v(t) ≤ a2ω̃T(t)HT

1 H1ω̃(t) +
1
a2

vT(t)v(t)

− 2ω̃T(t− τ)HT
2 v(t) ≤ a3ω̃T(t− τ)HT

2 H2ω̃(t− τ) +
1
a3

vT(t)v(t)

− 2l ω̃T(t)HT
1 ω̃(t− τ) ≤ a4ω̃T(t)HT

1 H1ω̃(t) +
l2

a4
ẽT(t− τ)ẽ(t− τ)

− 2l ẽT(t− τ)H2ω̃(t− τ) ≤ a5l2 ẽT(t− τ)ẽ(t− τ) +
1
a5

ω̃T(t− τ)HT
2 H2ω̃(t− τ)

− 2ω̃T(t− τ)HT
2 H1ω̃(t) ≤ a6ω̃T(t− τ)HT

2 H2ω̃(t− τ) +
1
a6

ω̃T(t)HT
1 H1ω̃(t)

(13)

Combining above inequalities into (11) leads to

ẽT(t)e(t) ≤ (1 +
1
a1

+
1
a2

+
1
a3
)vT(t)v(t) + (1 + a1 +

1
a4

+ a5)l2 ẽT(t− τ)ẽ(t− τ)

+ (1 + a2 + a4 +
1
a6
)ω̃T(t)HT

1 H1ω̃(t) + (1 + a3 +
1
a5

+ a6)ω̃
T(t−τ)HT

2 H2ω̃(t−τ)

= b1vT(t)v(t) + b2l2 ẽT(t−τ)ẽ(t−τ) + b3ω̃T(t)HT
1 H1ω̃(t) + b4ω̃T(t−τ)HT

2 H2ω̃(t−τ) (14)

where b1 = 1 + 1/a1 + 1/a2 + 1/a3, b2 = 1 + a1 + 1/a4 + a5, b3 = 1 + a2 + a4 + 1/a6 and
b4 = 1 + a3 + 1/a5 + a6. This completes the proof.

Theorem 1 (Main Result). Consider estimation error Equation (9) satisfying Lemma 1. An improved
learning observer is designed in the form of (7) with the observer gains selected as c1 = λmin(M)−
a7
2 −k − 1 − b3||H1||2(1 + χ + u2

max
2a7
||D||2) > 0, c2 = 1 − b2l2(1 + χ + u2

max
2a7
||D||2) ≥ 0,

c3 = 1 − b4||H2||2(1 + χ + u2
max

2a7
||D||2) ≥ 0 and n ≥ dm, then efficiency factor estimation er-

ror ẽ(t) and the state estimation error ω̃(t) will converge to a small interval containing the origin.

Proof. Select the Lyapunov function as follows

Vo(t) =
1
2

ω̃T(t)Jω̃(t) +
∫ t

t−τ
ẽ(s)ẽ(s)ds +

∫ t

t−τ
ω̃(s)Tω̃(s)ds (15)

Taking the time derivation of Vo yield

V̇o(t)= ω̃T(t)J ˙̃ω(t)+ẽT(t)ẽ(t)−ẽT(t−τ)ẽ(t−τ) + ω̃T(t)ω̃(t)− ω̃T(t− τ)ω̃(t− τ) (16)

Substituting (9) into V̇o, (16) can be further obtained as follows

V̇o(t)=−ω̃T(t)(ω̂×(t)Jω̂(t)−ω×(t)Jω(t)) + ω̃T(t)DUẽ(t) + ω̃T(t)[d− n sgn(ω̃(t))]

− ω̃T(t)Mω̃(t) + ẽT(t)ẽ(t)− ẽT(t−τ)ẽ(t−τ) + ω̃T(t)ω̃(t)− ω̃T(t−τ)ω̃(t−τ) (17)

Using the Young inequality principle, the following inequality holds

ω̃T(t)DUẽ(t) ≤ a7

2
ω̃T(t)ω̃(t) +

u2
max

2a7
||D||2 ẽT(t)ẽ(t) (18)
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where a7 is a positive constant. Substituting the inequality (18) into (17) leads to

V̇o(t) ≤− [λmin(M)− a7

2
− k− 1] · ||ω̃(t)||2 − χ||ẽ(t)||2 − (n− dm)||ω̃(t)||

+(1 +
u2

max
2a7
||D||2 + χ) · ẽ(T)(t)ẽ(t)− ||ẽ(t−τ)||2 − ||ω̃(t−τ)||2 (19)

where χ is a positive constant.
Substituting Lemma 2 and Assumption 4 into Equation (18), one has

V̇o(t) ≤− [λmin(M)− a7

2
−k− 1− b3||H1||2(1 + χ +

u2
max

2a7
||D||2)]||ω̃(t)||2

− [1− b2l2(1 + χ +
u2

max
2a7
||D||2)]||ẽ(t− τ)||2 − χ||ẽ(t)||2

− [1− b4||H2||2(1 + χ +
u2

max
2a7
||D||2)]||ω̃(t−τ)||2 − (n−dm)||ω̃(t)||

+ b1(1 + χ +
u2

max
2a7
||D||2)m(1 + l)2 (20)

Then, if the gain of the learning observer satisfies the following inequalities,

c1 =λmin(M)− a7

2
−k− 1− b3||H1||2(1 + χ +

u2
max

2a7
||D||2)] > 0

c2 =1− b2l2(1 + χ +
u2

max
2a7
||D||2) ≥ 0

c3 =1− b4||H2||2(1 + χ +
u2

max
2a7
||D||2) ≥ 0

c4 =n− dm ≥ 0

the derivation of V(t) respect to time yields to

V̇o(t) ≤ −c1||ω̃(t)||2 − χ||ẽ(t)||2 + c5 (21)

where c5=b1(1 + χ + u2
max

2a7
||D||2)m(1 + l)2. It is further obtained from inequality (21) that

V̇o ≤ 0 when ||ω̃(t)|| >
√

c5
c1

or ||ẽ(t)|| >
√

c5
χ . According to theorem in [25], it can be

concluded that the learning observer error system is uniformly ultimately bounded.
Correspondingly, it is concluded that the estimation errors of angular velocity and

fault are ultimately uniformly bounded by

||ω̃|| ≤
√

c5

c1
, ||ẽ(t)|| ≤

√
c5

χ
(22)

By adjusting the parameters to increase the value of c1 and χ or decrease the value of
c5, the estimation error of the observer can converge to arbitrarily small residual interval.
Then, the proof of Theorem 1 is completed.

4. Design of Predefined-Time Attitude Tracking Controller

In this section, a predefined-time attitude fault-tolerant tracking controller is designed
by using the lemma of predefined-time stable and the reconstructed information Ê(t), which
can be obtained by learning observer, where Ê(t) = diag(ê1, ê2, . . . , êm). Ẽ(t) ∈ <m×m is
defined as the estimation error matrix, which satisfies Ẽ(t) = E(t)− Ê(t). From Theorem 1,
ẽi converges to an arbitrarily small value, and hence the following inequality can be
achieved ||DẼ(t)u + d|| ≤ ||D||∞um + dm , d̄, where d̄ is a unknown positive constant.
The mathematical model expression of spacecraft attitude control system can be rewritten as



Processes 2022, 10, 2294 8 of 14

{
σ̇ = G(σ)ω

Jω̇ = ω× Jω + DÊu + DẼu + d
(23)

For the faulty attitude system (23), define two new error variables z1 = σ − σd,
z2 = σ̇− σ̇d, where σd is the desired attitude command; therefore, the attitude tracking
error dynamics can be expressed as

ż1 = z2

ż2 =
dG(σ)

dt
ω + G(σ)ω̇− σ̈d

(24)

Define the Lyapunov function of attitude angle error Va = 1
2 zT

1 z1. Select a sliding
mode variable as follows

s = z2 + ξ (25)

where ξ = 1
2h1T1

exp(Vh1
a )V−h1

a z1, 0 < h1 < 1, and T1 is the predefined time value.
According to Lemma 1, the predefined-time attitude tracking controller can be ex-

pressed as

u = (DÊ)†{ω× Jω− kssgn(s)− JG−1(
dG(σ)

dt
ω− σ̈d + ξ̇ +

1
2h2T2

exp(Vh2
b )(V−h2

b )s)} (26)

where 0 < h2 < 1, T2 is the predefined time value. Ė is the estimation of efficiency factor,
which can be obtained from learning observer (7). (DÊ)† denotes the pseudo-inverse
operation of the matrix DÊ. ks is the parameter gain of the system and its value is taken as
ks > d̄. Vb is the Lyapunov function of sliding mode variable, Vb = 1

2 sTs.

Theorem 2. For the faulty spacecraft attitude systems (23), by designing a fault-tolerant controller
based on the estimation information from the learning observer (7), the control system can be
stabilized in the predefined time T = T1 + T2, and the attitude of the system can track the desired
attitude angle command in the predefined time T.

Proof. Derivation of the Lyapunov functions Vb on sliding surfaces variable, we can obtain

V̇b = sT ṡ = sT[
dG(σ)

dt
ω− σ̈d + ξ̇ + G(σ)J−1(−ω× Jω + DÊu + DẼu + d)] (27)

Substituting control law (26) into above equation gives

V̇b = sT[G(σ)J−1((DẼu + d)− ks sgn(s))− 1
2h2T2

exp(Vh2
b )(V−h2

b )s]

≤ − 1
h2T2

exp(Vh2
b )(V1−h2

b ) (28)

According to Lemma 1, when t > T2, Vb → 0 and sliding mode variable s will converge
to 0 in the predefined time T2.

When s = 0, combining with (25), we have

z2 = −ξ = − 1
2h1T1

exp(Vh1
a )V−h1

a z1 (29)

Taking the derivative of Va with regard to time t, one has

V̇a = zT
1 ż1 = − 1

2h1T1
zT

1 exp(Vh1
a )V−h1

a z1 = − 1
h1T1

exp(Vh1
a )V1−h1

a (30)
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According to Lemma 1, when s = 0, tracking error vector z1 will converge to 0 within
the predefined time T1. In conclusion, the attitude system of the spacecraft will be stable
within the predefined time T = T1 + T2 under the action of the controller, and the attitude
angle of the system will track the reference command within the predefined time T. The
proof of Theorem 2 is completed.

5. Simulation

In order to verify the effectiveness and feasibility of the control scheme proposed in
this paper, a learning observer (LO) and a predefined-time controller (PTC) are designed
for a class of spacecraft operating in circular orbit. At the same time, they are compared
with the existing adaptive sliding mode observer (ASMO) [26] and terminal sliding mode
control (TSMC) schemes [10].

The initial value of attitude angle and angular rate of spacecraft attitude control
system is set as σ(0) = [0.3,−0.2, 0.2]T and ω = [0, 0, 0]T. The learning time interval of
the learning observer is τ = 0.01. The external disturbance is set to de = 0.01(||ω||2 +
0.05)·[sin(0.8t), cos(0.5t), cos(0.3t)]T. The moment of inertia of the system is set to J =
[36, 0, 0; 0, 17, 0; 0, 0, 26]T. In this section, we consider that the number of actuators is m = 3,
and they are installed orthogonally, that is, D is the identity matrix. The desired attitude
angle command is σd = [0, 0, 0]T. The design controller parameters and the observer values
are given in Table 1.

Table 1. Parameters and initial states for simulation.

Parameters Value

The initial value of observer ω̂(0) = ω(0), ê(0) = [1; 1; 1]
Observer gains l = 0.9, n = 2.5, emin = 0.0001.

M = [80, 0, 0; 0, 50, 0; 0, 0, 60],
H1 = [8, 0, 0; 0, 15, 0; 0, 0, 12; 10, 0, 1.2],
H2 = [20, 0, 0; 0, 3, 0; 0, 0, 8; 1, 0.5, 6.5].

Controller parameters h1 = 0.5, h2 = 0.3, ks = 5,
T1 = 10, T2 = 10..

In the simulation, the following two cases are considered.
Case 1. Proposed LO vs. adaptive sliding mode observer in [26]
In this case, the main purpose is demonstrating the validity of the proposed learning

observer approach. In order to facilitate the analysis, We set different efficiency factors on
the three actuators: constant or time-varying faults. Denote E(t) = diag{e1(t), e2(t), e3(t)}
and the fault scenario is set as

e1(t) =

{
1 , t < 5s

0.8, t ≥ 5s
, e2(t) =

{
1, t < 8s

0.6, t ≥ 8s
, e3(t) =

{
1 , t < 10s

0.4 + 0.05 cos(0.25t), t ≥ 10s

Figure 2 shows the response curve of fault reconstruction by two observers. The
two observers have good estimation performance for constant faults, but the adaptive
sliding mode observer can not estimate time-varying faults well. Figure 3 shows the
fault estimation error curves of the two observers. When no efficiency loss fault occurs in
the system, the adaptive sliding mode observer is greatly affected by the comprehensive
disturbance. The estimation error of the second channel ẽ2 fluctuates greatly. It takes 5 s
for the adaptive sliding mode observer to make the estimation error converge to a small
range. When the efficiency loss fault occurs, the learning observer can accurately estimate
the efficiency factor in about 3 s. It can be seen from the Figure 4 that no matter what
form of efficiency loss fault occurs, the learning observer can accurately reconstruct the
fault factor within 3 s after the fault occurs. Compared with the learning observer, the
adaptive sliding mode observer takes a longer time (about 8 s) to track the constant fault;
however, for the time-varying fault, their estimation results are poor and there is a large
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estimation error. Figure 4 shows the estimation error curve of system state variables ω.
Both observers have good estimation effect on the state variables of the system, and the
estimation error converges to a very small interval. In conclusion, the learning observer
proposed in this paper can quickly and accurately estimate the efficiency loss failure
(constant or time-varying) of the actuator.

Case 2. Proposed LO-based predefined-time controller (PTC) vs. terminal sliding
mode controller (TSMC) in [10].

For comparison, a terminal sliding mode fault tolerant controller is implemented in
the attitude control system. Figure 5 demonstrates the attitude angle tracking performance
and Figure 6 shows the response of system angular velocity. Figure 7 is the response of
actuator torque under the two different control methods. It can be seen from Figure 5 that
the system attitude angle changes gently under the predefined-time controller, and the
attitude angle tracks the reference command within 20 s. Figures 6 and 7 show that the
output torque of the actuator directly affects the angular rate change of the system. When
each actuator appears, the control torque change of the scheme proposed in this paper is
relatively gentle, which will not cause a large range of changes in the angular rate curve.
When no fault occurs (the first 5 s), the angular rate converges to the neighborhood of 0 in
3 s. At the time of failure, the attitude angular rate has only a small fluctuation, and then
returns to the stable state within 2 s.

Overall, the results of the above two cases fully verify the stability and robustness
of the learning observer-based predefined-time tracking control system under external
disturbances, system uncertainties and loss of actuator effectiveness.
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Figure 7. The response of actuator torque.

6. Conclusions

This paper proposes an observer-based fault-tolerant tracking control scheme for a
spacecraft attitude system with loss of faults effectiveness. Firstly, a learning observer is
designed to reconstruct the efficiency factor of the system actuator. It is theoretically proved
that the estimation error of the observer can converge to any small interval. Based on the
predefined-time control theory, a fault-tolerant tracking control scheme is designed using
the fault reconstruction information of the learning observer. The numerical simulation
is applied to compare with the existing observer and control method, which shows the
advantages of the scheme proposed in this paper. This paper only considers the case that
the actuator has efficiency loss failure, but we do not consider the case that the actuator has
limited output and multiple faults. In addition, the control allocation problem of actuators
will be the subject of future research.
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