
Citation: Gharbi, A.; Bamatraf, K. An

Improved Arc Flow Model with

Enhanced Bounds for Minimizing the

Makespan in Identical Parallel

Machine Scheduling. Processes 2022,

10, 2293. https://doi.org/

10.3390/pr10112293

Academic Editors: Danyu Bai,

Xin Chen, Dehua Xu and

Jedrzej Musial

Received: 3 October 2022

Accepted: 23 October 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Improved Arc Flow Model with Enhanced Bounds for
Minimizing the Makespan in Identical Parallel
Machine Scheduling
Anis Gharbi * and Khaled Bamatraf

Industrial Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
* Correspondence: a.gharbi@ksu.edu.sa

Abstract: In this paper, an identical parallel machine problem was considered with the objective of
minimizing the makespan. This problem is NP-hard in the strong sense. A mathematical formulation
based on an improved arc flow model with enhanced bounds was proposed. A variable neigh-
borhood search algorithm was proposed to obtain an upper bound. Three lower bounds from the
literature were utilized in the improved arc flow model to improve the efficiency of the mathematical
formulation. In addition, a graph compression technique was proposed to reduce the size of the
graph. As a consequence, the improved arc flow model was compared with an arc flow model from
the literature. The computational results on benchmark instances showed that the improved arc flow
model outperformed the literature arc flow model at finding optimal solutions for 99.97% of the
benchmark instances, with the overall percentage of the reduction in time reaching 87%.

Keywords: identical parallel machines; improved arc flow; integer programming; scheduling; vari-
able neighborhood search

1. Introduction

Scheduling is a decision-making process that deals with optimizing resource allocation
to perform a collection of tasks in production or manufacturing processes. Scheduling is
involved in many real-life applications, such as jobs in a manufacturing plant, customers
waiting for services in front of a teller’s window, or airplanes waiting for clearance to
land or take off at an airport. Many studies have been carried out by researchers in
several scheduling environments, such as single machine scheduling and parallel machine
scheduling, to fill some gaps in these problems.

Single machine scheduling requires only the sequencing of jobs. However, scheduling
problems with more than one machine, such as parallel machines, involve both resource
allocation and sequencing, rather than simple sequencing [1]. The importance of parallel
machine scheduling may be viewed from both theoretical and a practical perspectives [2].
From a theoretical perspective, it is a general case of the single machine and a special case
of the flexible flow shop. A practical perspective is important since parallel operations are
frequent in the real world. The makespan objective in parallel machines is of considerable
interest, since it balances the load between the parallel machines.

In the parallel machine scheduling problem, each job is processed on only one machine
and each machine can process one job at a time. The identical parallel machine is a variant
of the machine scheduling problem that is characterized by a set of n independent jobs
J = J1, J2, . . . , Jn to be scheduled in m identical parallel machines M = M1, M2, . . . , Mm,
where (m < n). Each job J can be processed in only one machine with a processing time pj
that is identical on all the machines. Preemption is not allowed. Therefore, once a machine
is processing a job, it must complete its processing without interruption. The objective is to
minimize the total completion time of the last processed job in the schedule (makespan).

Processes 2022, 10, 2293. https://doi.org/10.3390/pr10112293 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10112293
https://doi.org/10.3390/pr10112293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-5658-7259
https://orcid.org/0000-0001-8149-3975
https://doi.org/10.3390/pr10112293
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10112293?type=check_update&version=1

Processes 2022, 10, 2293 2 of 18

The identical parallel machine scheduling problem to minimize the makespan is
described by Graham et al. [3] in terms of three fields: α|β|γ as Pm| |Cmax, where Pm
indicates the identical parallel machine environment with m machines, the second empty
field, which indicates no preemption or precedence constraints on the jobs, and Cmax in the
third field, which indicates the makespan minimization objective. This problem is proven
to be NP-hard [4]. Therefore, efficient exact algorithms were needed to be able to solve
large-size instances to optimality in less computational time.

The remainder of this paper is organized as follows: Section 2 presents a literature
review of the identical parallel machine scheduling problem and the arc flow model.
Section 3 details the methodology used in the problem. The computational results and
discussion are provided in Section 4. Finally, the conclusion and future work are shown
in Section 5.

2. Literature Review

The first known heuristic applied to the identical parallel machine was the longest
processing time (LPT) rule proposed by Ronald L. Graham [5]. LPT works by sorting
jobs in a non-increasing order of processing times and assigning jobs to the least-loaded
machine one by one until assigning all the jobs. The worst-case approximation ratio for
the LPT rule is 4/3–1/(3m), where m is the number of machines. Recently, Della Croce
and Scatamacchia [6] revisited the LPT rule and improved the ratio to 4/3–1/(3m-1).
Other popular approximation heuristics combine (Pm||Cmax) with bin-packing techniques:
MULTIFIT [7], COMBINE [8], and LISTFIT [9]. These heuristics provide a better worst-case
performance, but with higher computation times.

Metaheuristics also play an important role in obtaining good solutions for parallel
machine scheduling problems. Among these metaheuristics are the genetic algorithm [10],
simulating annealing [11], the variable neighborhood search [12], and other metaheuristics
in the literature.

Over the past years, researchers have increased their interest in finding efficient exact
methods capable of solving large and hard instances to optimality in less computational
time. Mokotoff [1] conducted a survey on parallel machine scheduling. Dell’Amico and
Martello [13] proposed a branch-and-bound algorithm based on sophisticated lower and
upper bounds and some dominance rules for (Pm||Cmax). Mokotoff [14] proposed an
exact method based on the cutting plane method for (Pm||Cmax). Then, Dell’Amico and
Martello [15] noted that their previous work [13], which had been published before the
work of Mokotoff [14], obtained better results in terms of the computation time and solved
all the studied instances to optimality. Dell’Amico et al. [16] presented a scatter search
algorithm and exact algorithm based on branch-and-price algorithms, which make use of
the duality between P||Cmax and the bin-packing problem. Haouari et al. [17] proposed
lower bounds based on the lifting procedure. The authors also proposed two heuristics
that required iteratively solving a subset sum problem. The previous work was extended
by Haouari and Jemmali [18], enhanced lower bounds were obtained, a new heuristic was
proposed based on solving a sequence of 0–1 knapsack problem, and these bounds were
embedded in a branch-and-bound algorithm. To test the performance of their algorithm,
the authors identified a set of hard instances for which the ratio between the number
of jobs and the number of machines was equal to 2.5. The proposed branch-and-bound
solved only about 68% of a total of 240 generated instances with different numbers of jobs
and machines.

The arc flow approach has been used recently in classical optimization problems,
and allows modeling with a pseudo-polynomial number of variables and constraints.
For a cutting-stock problem, de Carvalho [19] proposed a branch-and-price approach
for an arc-flow formulation. Next, it was extended for the bin-packing problem in De
Carvalho [20]. An alternative arc-flow formulation for the cutting-stock problem was
proposed in [21,22], which used a graph compression technique that reduced the size of the
constructed graph without affecting the optimal solution. These formulations were recently

Processes 2022, 10, 2293 3 of 18

tested and compared in [23] against several other models and problem-specific algorithms
on one-dimensional bin-packing and cutting-stock problems. J. Martinovic et al. [24]
compared the arc-flow model with a one-cut model for the one-dimensional cutting-stock
problem and presented reduction techniques for both models. M. Mrad et al. [25] proposed
a graph compression method to an arc flow formulation for a two-dimensional strip-
cutting problem. Other applications of arc flow include berth allocation problems [26],
vehicle-routing problems [27], and facility location problems [28].

In the area of scheduling, Mrad and Souayah [29] proposed an arc flow formulation
for the parallel machine scheduling problem to minimize the makespan. The proposed
mathematical model outperformed other proposed methods from the literature, since it
solved to optimality most of the hard instances from the literature in a few seconds on
average. On the other hand, some hard instances were still unsolved within a predefined
elimination time, mainly because the number of jobs was relatively large and the ratio of
the number of jobs to the number of machines was greater than or equal to 2.25.

A. Kramer et al. [30] studied the identical parallel machine scheduling problem to
minimize the total weighted completion time. An enhanced arc flow formulation with
reduction techniques was proposed, which reduced the number of variables and con-
straints. As a consequence, large instances with up to 400 jobs were solved to optimality
and instances with up to 1000 jobs provided a low optimal gap. Then, A. Kramer et al. [31]
extended the previous work of A. Kramer et al. [30] by adding a release time constraint
for each job. A mixed-integer linear program and a branch-and-price algorithm that re-
lied on the decomposition of an arc-flow formulation and the use of exact and heuristic
methods were proposed for solving pricing subproblems. S. Wang et al. [32] studied de-
terministic and parallel machine scheduling location problems and proposed a network
flow-based formulation, two formulation-based heuristics, and one polynomial time al-
gorithm. Trindade et al. [33,34] proposed an arc flow formulation for parallel and single
batch processing machine scheduling with non-identical job sizes and a machine capacity.
A. Kramer et al. [35] proposed five different formulations for identical parallel machine
scheduling with family setup times to minimize the total weighted completion time. The
formulations were one commodity formulation, three arc flow formulations, and a set
covering formulation. The results showed that one of the arc flow formulations and a
set covering formulation yielded a better performance. de Lima et al. [36] conducted a
survey on the foundation of the arc flow formulation and showed the relation between
their network and dynamic programming. The survey also discussed the main solution
methods for solving large-scale arc flow models and their main applications. de Lima
et al. [37] proposed a network flow framework to address huge network issues in arc flow
model solutions.

To summarize, we can say that so far, there are two kinds of proposed approaches for
makespan minimization on parallel machines: heuristics and exact methods. On the one
hand, heuristics have the potential to find good solutions in a reasonable amount of time.
However, they do not guarantee the optimality of the provided solutions. For instance,
one of the most recent heuristics for the studied problem [6] can still be outperformed by
older methods for some benchmark instances. On the other hand, exact algorithms deliver
optimal schedules, but are limited by the size of the instances (number of jobs/machines)
and the relatively high computation time. To illustrate, the state-of-the-art exact method [29]
still fails to solve some instances with as much as 154 jobs. Moreover, it requires thousands
of seconds to solve problems with less than 200 jobs.

The main aim of this paper was to move towards an efficient implementation of the
arc flow model for makespan minimization in an identical parallel machine scheduling
problem. Hence, the arc flow model proposed by Mrad and Souayah [29] was considered.
The improvements were made by proposing enhanced bounds and graph compression
techniques to reduce the number of variables and constraints in the constructed arc flow
model. A variable neighborhood search (VNS) algorithm was proposed with five neighbor-
hood structures and an initial solution obtained from the schedule of the longest processing

Processes 2022, 10, 2293 4 of 18

time (LPT) rule as an upper bound. Three lower bounds from the literature were considered
for the improved arc flow model. A better upper bound was considered as a graph com-
pression technique since it reduced the size of the graph. As a consequence, the number
of variables was reduced. Furthermore, another proposed graph compression technique
eliminated scheduling some jobs on the same machine, which made the resulting lower
bound of the problem exceed the current upper bound obtained by the VNS algorithm. It is
worth noting that devising an improved arc flow formulation has an important application
in reducing the computation time for solving hard optimization problems. This can be
attested by our experimental results as well as those of previous successful implementations
of such techniques [30,31].

3. Methodology

In this section, the methodology of applying the improved arc flow model with
enhanced bounds for the identical parallel machine scheduling problem to minimize the
makespan is explained. The first step was to calculate the bounds of the problem. Three
lower bounds were applied from the literature and the maximum among them was selected
as the lower bound for the problem. The second step was to find an upper bound using the
LPT rule. In Step 3, the obtained upper bound from the LPT rule became an input for the
proposed VNS algorithm to further improve, if possible, the upper bound. The lower and
upper bounds were then used to construct the graph of the improved arc flow model. To
build the graph, a graph compression technique was proposed to determine the set of jobs
that would have an arc leaving node 0. Then, the whole graph was constructed. After that,
a mathematical formulation was proposed for the improved arc flow model. Finally, the
mathematical model was solved with Cplex 12.10. If a solution was found within 20 min,
then an optimal solution was found. Otherwise, the instance was not solved to optimality
within the specified time limit. The flowchart of the methodology is shown in Figure 1. The
details for each step are illustrated in the following subsections.

Processes 2022, 10, x FOR PEER REVIEW 5 of 19

Figure 1. Flowchart of the improved arc flow methodology.

3.1. Lower Bounds
The lower bounds used in this paper are presented as follows, assuming that 𝑃𝑃1 ≤

𝑃𝑃2 ≤ ⋯ ≤ 𝑃𝑃𝑛𝑛. These lower bounds were proposed by Dell’Amico and Martello [13]:

𝐿𝐿𝐿𝐿1 = �
∑ 𝑃𝑃𝑗𝑗

𝑛𝑛
𝑗𝑗=1

𝑚𝑚
� (1)

𝐿𝐿𝐿𝐿2 = 𝑃𝑃𝑛𝑛 (2)

𝐿𝐿𝐿𝐿3 = 𝑃𝑃(𝑛𝑛−𝑚𝑚) + 𝑃𝑃(𝑛𝑛−𝑚𝑚+1) (3)

The best lower bound is the maximum value among them. Therefore,

𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐿𝐿1 , 𝐿𝐿𝐿𝐿2, 𝐿𝐿𝐿𝐿3) (4)

3.2. Upper Bound
In this paper, the variable neighborhood search (VNS) was proposed as an upper

bound for the arc flow graph. The VNS is detailed in the following subsection.

3.2.1. Variable Neighborhood Search
The variable neighborhood search (VNS) is a metaheuristic approach proposed by

Mladenovi’c and Hansen [38] that performs systematic neighborhood structures to im-
prove the quality of an existing solution. To start the VNS algorithm, an initialization
phase is required. In the initialization phase, an initial solution “S” is obtained (randomly
or by using a heuristic method), neighborhood structures “Nk(S)”, k = 1, 2, ..., kmax are de-
signed, where k is the index of a neighborhood and kmax is the maximum number of
neighborhoods, and the stopping criteria are determined.

Step 1. Calculate a lower bound for the problem.

Step 2. Obtain an initial solution using the LPT rule.

Step 3. Apply the VNS algorithm (Algorithm 1) to the
solution obtained in Step 2 to obtain a better upper
bound.

Step 4. Build the improved arc flow graph by
applying Algorithms 2 and 3.

Step 5. Formulate a mathematical model for the
constructed graph in Step 4.

Step 6. Solve the mathematical model with Cplex
12.10.

Start

An optimal solution is
found.

If a solution is obtained
in less than 1200 sec.

No

Yes

An optimal solution is not found.

End

Figure 1. Flowchart of the improved arc flow methodology.

Processes 2022, 10, 2293 5 of 18

3.1. Lower Bounds

The lower bounds used in this paper are presented as follows, assuming that
P1 ≤ P2 ≤ . . . ≤ Pn. These lower bounds were proposed by Dell’Amico and Martello [13]:

LB1 =

⌈
∑n

j=1 Pj

m

⌉
(1)

LB2 = Pn (2)

LB3 = P(n−m) + P(n−m+1) (3)

The best lower bound is the maximum value among them. Therefore,

LB = max(LB1, LB2, LB3) (4)

3.2. Upper Bound

In this paper, the variable neighborhood search (VNS) was proposed as an upper
bound for the arc flow graph. The VNS is detailed in the following subsection.

3.2.1. Variable Neighborhood Search

The variable neighborhood search (VNS) is a metaheuristic approach proposed by
Mladenovi’c and Hansen [38] that performs systematic neighborhood structures to improve
the quality of an existing solution. To start the VNS algorithm, an initialization phase is
required. In the initialization phase, an initial solution “S” is obtained (randomly or by
using a heuristic method), neighborhood structures “Nk(S)”, k = 1, 2, ..., kmax are designed,
where k is the index of a neighborhood and kmax is the maximum number of neighborhoods,
and the stopping criteria are determined.

The Initial Solution

In this work, we proposed the longest processing time (LPT) rule as the initial solution
for the VNS algorithm. The LPT rule works by first sorting the jobs in non-increasing order
of their processing times and assigning the jobs to the smallest available machine until all
jobs have been assigned.

The Neighborhood Structures

The neighborhood structures are methods designed to enhance the local search in the
VNS algorithm. To design the neighborhood structures for an identical parallel machine
scheduling problem with a makespan objective, two terminologies will be used:

• Problem machine (Pm): a machine in which the total scheduling time is the makespan.
• Non-problem machine (NPm): a machine in which the total scheduling time is less

than the makespan.

The five neighborhood structures used in this work are explained as follows:

1. Move (one): move a job i from a problem machine (Pm) to a non-problem ma-
chine (NPm) if (makespan of Pm (CPm)-makespan of NPm (CPm) > processing time of
job i (pi));

2. Exchange (one–one): exchange a job i from a (Pm) with a job j from a (NPm) if
(pi – pj > 0) and (CPm − CNPm > pi – pj);

3. Exchange (two–one): exchange two jobs, i and j, from a (Pm) with a job k from a (NPm)
if (pi + pj − pk > 0) and (CPm − CNPm > pi + pj –pk);

4. Exchange (one–two): exchange a job from a (Pm) i with two jobs, j and k, from a (NPm)
if (Pi − (pj + pk) > 0) and (CPm − CNPm > pi − (pj+ pk);

5. Exchange (two–two): exchange two jobs, i and j, from a (Pm) with two jobs, k and l,
from a (NPm) if (pi + pj − (pk + pl) > 0) and (CPm − CNPm > pi + pj − (pk + pl).

Processes 2022, 10, 2293 6 of 18

To illustrate how the neighborhood structures work, consider six jobs to be scheduled
in two identical parallel machines. The processing times in minutes of each job are shown
in Table 1.

Table 1. Processing times of jobs for neighborhood structures example.

Job No. Processing Time (Minutes)

1 10
2 8
3 5
4 3
5 2
6 1

Let us consider the initial solution with Cmax = 19 obtained by the schedule shown in
Figure 2. From Equation (4), LB = max(LB1, LB2, LB3) = max

(⌈ 29
2
⌉
, 10, 5 + 8

)
= 15. The

problem machine (Pm) is Machine 1, while Machine 2 is the non-problem machine (NPm).
It is worth noting that the selection of jobs for each neighborhood structure was selected
arbitrarily in this example just to illustrate how these neighborhood structures work.

Processes 2022, 10, x FOR PEER REVIEW 6 of 19

The Initial Solution
In this work, we proposed the longest processing time (LPT) rule as the initial solu-

tion for the VNS algorithm. The LPT rule works by first sorting the jobs in non-increasing
order of their processing times and assigning the jobs to the smallest available machine
until all jobs have been assigned.
The Neighborhood Structures

The neighborhood structures are methods designed to enhance the local search in the
VNS algorithm. To design the neighborhood structures for an identical parallel machine
scheduling problem with a makespan objective, two terminologies will be used:
• Problem machine (Pm): a machine in which the total scheduling time is the

makespan.
• Non-problem machine (NPm): a machine in which the total scheduling time is less

than the makespan.
The five neighborhood structures used in this work are explained as follows:

1. Move (one): move a job i from a problem machine (Pm) to a non-problem machine
(NPm) if (makespan of Pm (CPm)-makespan of NPm (CPm) > processing time of job i
(pi));

2. Exchange (one–one): exchange a job i from a (Pm) with a job j from a (NPm) if (pi – pj
> 0) and (CPm − CNPm > pi – pj);

3. Exchange (two–one): exchange two jobs, i and j, from a (Pm) with a job k from a (NPm)
if (pi + pj − pk > 0) and (CPm − CNPm > pi + pj –pk);

4. Exchange (one–two): exchange a job from a (Pm) i with two jobs, j and k, from a (NPm)
if (Pi − (pj + pk) > 0) and (CPm − CNPm > pi − (pj+ pk);

5. Exchange (two–two): exchange two jobs, i and j, from a (Pm) with two jobs, k and l,
from a (NPm) if (pi + pj − (pk + pl) > 0) and (CPm − CNPm > pi + pj − (pk+ pl).
To illustrate how the neighborhood structures work, consider six jobs to be scheduled

in two identical parallel machines. The processing times in minutes of each job are shown
in Table 1.

Table 1. Processing times of jobs for neighborhood structures example.

Job No. Processing Time (Minutes)
1 10
2 8
3 5
4 3
5 2
6 1

Let us consider the initial solution with Cmax = 19 obtained by the schedule shown in
Figure 2. From Equation (4), 𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2 , 𝐿𝐿𝐿𝐿3) = 𝑚𝑚𝑚𝑚𝑚𝑚(�29

2
� , 10, 5 + 8) = 15. The

problem machine (Pm) is Machine 1, while Machine 2 is the non-problem machine (NPm).
It is worth noting that the selection of jobs for each neighborhood structure was selected
arbitrarily in this example just to illustrate how these neighborhood structures work.

Figure 2. The initial schedule of the illustrative example.

Machine 1 1 2 6

Machine 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2. The initial schedule of the illustrative example.

Since the condition (makespan of Pm (1)-makespan of NPm (2) > p6) is satisfied, then
applying the “Move (one)” neighborhood structure to move Job 6 from Pm (1) to NPm (2)
yields Cmax = 18 as illustrated in Figure 3.

Processes 2022, 10, x FOR PEER REVIEW 7 of 19

Since the condition (makespan of Pm (1)-makespan of NPm (2) > p6) is satisfied, then
applying the “Move (one)” neighborhood structure to move Job 6 from Pm (1) to NPm (2)
yields Cmax = 18 as illustrated in Figure 3.

Figure 3. The schedule after applying the “Move (one)” neighborhood structure.

Now, the conditions (p2 − p5 > 0) and (CPm − CNPm > p2 − p5) are satisfied. Applying the
“Exchange (one–one)” neighborhood structure results in obtaining Cmax = 17 with the
schedule illustrated in Figure 4. In this schedule, Machine 2 becomes the Pm machine and
Machine 1 is the NPm machine.

Figure 4. The schedule after applying the “Exchange (one–one)” neighborhood structure.

With the conditions (p4 + p2 − p1 > 0) and (CPm − CNPm > p4 + p2 –p1) being satisfied, the
“Exchange (two–one)” neighborhood structure is applied by exchanging Jobs 4 and 2 from
Pm (2) with Job 1 from NPm (1). The resulting schedule with Cmax = 16 is shown in Figure
5.

Figure 5. The schedule after applying the “Exchange (two–one)” neighborhood structure.

Note that the “Exchange (one–two)” neighborhood structure is similar to the previ-
ous one, with the difference being that one job from Pm is exchanged with two jobs from
NPm. Here, the conditions are not satisfied for the schedule in Figure 5.

Finally, the fifth neighborhood structure, “Exchange (two–two)”, is applied by ex-
changing Jobs 1 and 6 from Pm (2) with Jobs 2 and 5 from NPm (1). The obtained schedule
with Cmax = 15 is shown in Figure 6. Note that this is the optimal makespan, since it equals
LB.

Figure 6. The optimal schedule after applying the “Exchange (two–two)” neighborhood structure.

Steps of Variable Neighborhood Search Algorithm
The VNS algorithm is detailed by Algorithm 1.

Machine 1 1 2

Machine 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 1 5

Machine 2 3 4 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 2 5

Machine 2 3 1 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 1 6

Machine 2 3 2 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 3. The schedule after applying the “Move (one)” neighborhood structure.

Now, the conditions (p2 − p5 > 0) and (CPm − CNPm > p2 − p5) are satisfied. Applying
the “Exchange (one–one)” neighborhood structure results in obtaining Cmax = 17 with the
schedule illustrated in Figure 4. In this schedule, Machine 2 becomes the Pm machine and
Machine 1 is the NPm machine.

Processes 2022, 10, x FOR PEER REVIEW 7 of 19

Since the condition (makespan of Pm (1)-makespan of NPm (2) > p6) is satisfied, then
applying the “Move (one)” neighborhood structure to move Job 6 from Pm (1) to NPm (2)
yields Cmax = 18 as illustrated in Figure 3.

Figure 3. The schedule after applying the “Move (one)” neighborhood structure.

Now, the conditions (p2 − p5 > 0) and (CPm − CNPm > p2 − p5) are satisfied. Applying the
“Exchange (one–one)” neighborhood structure results in obtaining Cmax = 17 with the
schedule illustrated in Figure 4. In this schedule, Machine 2 becomes the Pm machine and
Machine 1 is the NPm machine.

Figure 4. The schedule after applying the “Exchange (one–one)” neighborhood structure.

With the conditions (p4 + p2 − p1 > 0) and (CPm − CNPm > p4 + p2 –p1) being satisfied, the
“Exchange (two–one)” neighborhood structure is applied by exchanging Jobs 4 and 2 from
Pm (2) with Job 1 from NPm (1). The resulting schedule with Cmax = 16 is shown in Figure
5.

Figure 5. The schedule after applying the “Exchange (two–one)” neighborhood structure.

Note that the “Exchange (one–two)” neighborhood structure is similar to the previ-
ous one, with the difference being that one job from Pm is exchanged with two jobs from
NPm. Here, the conditions are not satisfied for the schedule in Figure 5.

Finally, the fifth neighborhood structure, “Exchange (two–two)”, is applied by ex-
changing Jobs 1 and 6 from Pm (2) with Jobs 2 and 5 from NPm (1). The obtained schedule
with Cmax = 15 is shown in Figure 6. Note that this is the optimal makespan, since it equals
LB.

Figure 6. The optimal schedule after applying the “Exchange (two–two)” neighborhood structure.

Steps of Variable Neighborhood Search Algorithm
The VNS algorithm is detailed by Algorithm 1.

Machine 1 1 2

Machine 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 1 5

Machine 2 3 4 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 2 5

Machine 2 3 1 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 1 6

Machine 2 3 2 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 4. The schedule after applying the “Exchange (one–one)” neighborhood structure.

With the conditions (p4 + p2 − p1 > 0) and (CPm − CNPm > p4 + p2 –p1) being satisfied,
the “Exchange (two–one)” neighborhood structure is applied by exchanging Jobs 4 and
2 from Pm (2) with Job 1 from NPm (1). The resulting schedule with Cmax = 16 is shown
in Figure 5.

Processes 2022, 10, x FOR PEER REVIEW 7 of 19

Since the condition (makespan of Pm (1)-makespan of NPm (2) > p6) is satisfied, then
applying the “Move (one)” neighborhood structure to move Job 6 from Pm (1) to NPm (2)
yields Cmax = 18 as illustrated in Figure 3.

Figure 3. The schedule after applying the “Move (one)” neighborhood structure.

Now, the conditions (p2 − p5 > 0) and (CPm − CNPm > p2 − p5) are satisfied. Applying the
“Exchange (one–one)” neighborhood structure results in obtaining Cmax = 17 with the
schedule illustrated in Figure 4. In this schedule, Machine 2 becomes the Pm machine and
Machine 1 is the NPm machine.

Figure 4. The schedule after applying the “Exchange (one–one)” neighborhood structure.

With the conditions (p4 + p2 − p1 > 0) and (CPm − CNPm > p4 + p2 –p1) being satisfied, the
“Exchange (two–one)” neighborhood structure is applied by exchanging Jobs 4 and 2 from
Pm (2) with Job 1 from NPm (1). The resulting schedule with Cmax = 16 is shown in Figure
5.

Figure 5. The schedule after applying the “Exchange (two–one)” neighborhood structure.

Note that the “Exchange (one–two)” neighborhood structure is similar to the previ-
ous one, with the difference being that one job from Pm is exchanged with two jobs from
NPm. Here, the conditions are not satisfied for the schedule in Figure 5.

Finally, the fifth neighborhood structure, “Exchange (two–two)”, is applied by ex-
changing Jobs 1 and 6 from Pm (2) with Jobs 2 and 5 from NPm (1). The obtained schedule
with Cmax = 15 is shown in Figure 6. Note that this is the optimal makespan, since it equals
LB.

Figure 6. The optimal schedule after applying the “Exchange (two–two)” neighborhood structure.

Steps of Variable Neighborhood Search Algorithm
The VNS algorithm is detailed by Algorithm 1.

Machine 1 1 2

Machine 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 1 5

Machine 2 3 4 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 2 5

Machine 2 3 1 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 1 6

Machine 2 3 2 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 5. The schedule after applying the “Exchange (two–one)” neighborhood structure.

Processes 2022, 10, 2293 7 of 18

Note that the “Exchange (one–two)” neighborhood structure is similar to the previous
one, with the difference being that one job from Pm is exchanged with two jobs from NPm.
Here, the conditions are not satisfied for the schedule in Figure 5.

Finally, the fifth neighborhood structure, “Exchange (two–two)”, is applied by ex-
changing Jobs 1 and 6 from Pm (2) with Jobs 2 and 5 from NPm (1). The obtained schedule
with Cmax = 15 is shown in Figure 6. Note that this is the optimal makespan, since it
equals LB.

Processes 2022, 10, x FOR PEER REVIEW 7 of 19

Since the condition (makespan of Pm (1)-makespan of NPm (2) > p6) is satisfied, then
applying the “Move (one)” neighborhood structure to move Job 6 from Pm (1) to NPm (2)
yields Cmax = 18 as illustrated in Figure 3.

Figure 3. The schedule after applying the “Move (one)” neighborhood structure.

Now, the conditions (p2 − p5 > 0) and (CPm − CNPm > p2 − p5) are satisfied. Applying the
“Exchange (one–one)” neighborhood structure results in obtaining Cmax = 17 with the
schedule illustrated in Figure 4. In this schedule, Machine 2 becomes the Pm machine and
Machine 1 is the NPm machine.

Figure 4. The schedule after applying the “Exchange (one–one)” neighborhood structure.

With the conditions (p4 + p2 − p1 > 0) and (CPm − CNPm > p4 + p2 –p1) being satisfied, the
“Exchange (two–one)” neighborhood structure is applied by exchanging Jobs 4 and 2 from
Pm (2) with Job 1 from NPm (1). The resulting schedule with Cmax = 16 is shown in Figure
5.

Figure 5. The schedule after applying the “Exchange (two–one)” neighborhood structure.

Note that the “Exchange (one–two)” neighborhood structure is similar to the previ-
ous one, with the difference being that one job from Pm is exchanged with two jobs from
NPm. Here, the conditions are not satisfied for the schedule in Figure 5.

Finally, the fifth neighborhood structure, “Exchange (two–two)”, is applied by ex-
changing Jobs 1 and 6 from Pm (2) with Jobs 2 and 5 from NPm (1). The obtained schedule
with Cmax = 15 is shown in Figure 6. Note that this is the optimal makespan, since it equals
LB.

Figure 6. The optimal schedule after applying the “Exchange (two–two)” neighborhood structure.

Steps of Variable Neighborhood Search Algorithm
The VNS algorithm is detailed by Algorithm 1.

Machine 1 1 2

Machine 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 1 5

Machine 2 3 4 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 2 5

Machine 2 3 1 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Machine 1 4 1 6

Machine 2 3 2 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 6. The optimal schedule after applying the “Exchange (two–two)” neighborhood structure.

Steps of Variable Neighborhood Search Algorithm

The VNS algorithm is detailed by Algorithm 1.

Algorithm 1: VNS algorithm.

Obtain an initial Solution.
Find the set of problem machines S_Pm and the set of non-problem machines S_NPm.
Initialize iteration = 0, Max_iterations = 1, PmTime = makespan;
if (makespan ! = LB):
while (makespan ! = LB && iteration< Max_iterations)

r = 0, q = 0;
while (r < size of SPm && makespan ! = LB)

while (q < size of SNPm && makespan != LB)
SPm1 = SPm[r], SNPm1 = SNPm[q], k = 0;
while (k< kmax)

reduced = 0;
switch(k):

case (0): Move (One); break;
case (1): Exchange (One-One); break;
case (2): Exchange (Two-One); break;
case (3): Exchange (one-Two); break;
case (4): Exchange (Two-Two); break;

end switch
if makespan is enhanced in any neighborhood structure:

reducd = 1, Update PmTime;
if(reduced = 1)
Update (PmTime, S_Pm and S_NPm) Makespan= PmTime;

if (size of SNPm > 0 && makespan != LB)
r = 0, q = 0, k = 0, SPm1 = SPm[r], SNPm1 = SNPm[q];

else break;
else k = k + 1;

end while
q = q + 1;

end while
r = r + 1;

end while
iteration = iteration + 1;

end while
end if

It is worth noting that the maximum number of iterations in the VNS algorithm is
important only when generating the initial solution randomly. Therefore, at each iteration, a
random schedule is generated and neighborhood structures are applied. The final solution
is the best makespan among all iterations. On the other hand, obtaining the initial solution
using a heuristic such as the LPT rule will have no effect as the number of iterations
increases. Therefore, only one iteration is needed in the proposed VNS algorithm.

3.3. The Improved Arc Flow Model

In this section, we will show how to construct a graph for the proposed improved
arc flow model, give a numerical example to present the impact of the proposed model on
reducing the number of variables compared to the arc flow model proposed by Mrad and
Souayah [29], and formulate the studied problem based on the improved arc flow model.

Processes 2022, 10, 2293 8 of 18

3.3.1. Graph Building

The arc flow model for the Pm||Cmax problem was constructed by finding h disjoint
paths for each job on a graph initialized from the starting time at node 0 up to the ending
time at node T, where: 0 ≤ T ≤ UB. Consider a graph G with vertices V and arcs A,
G = (V, A),x where V = {0, . . . , UB} with the notation v representing a general index of each
vertex and A to represent the combination between the arcs of jobs An, where n = {1, . . . ,N}
and the loss arc is Ao (A = An ∪ Ao). The loss arc is an arc connecting each vertex (except
vertices 0 and UB) and the UB vertex. Each arc is defined by three terms: an initial node s, a
final node d, and a job n representing this arc such that:

An = {(s, d, n) : 0 < s < d < UB, d− s = Pn} and Ao = {(v, UB,−1} : ∀v ∈ V\{0, UB)}

where s and d represent, respectively, the initial and final nodes of the job arc An.
The set of arcs for each job n is constructed as follows: a directed arc is created between

two vertices s and d if there is a job n with process time Pn = d − s, given that d ≤ UB and
s < d. This set, i.e., An, can be reduced by applying some breaking symmetry rules [29]:

1. Jobs are sorted in decreasing order of their processing times.
2. An arc of a job n can’t be created from a node that is added from the arc of the same job.
3. Arcs for each job only start from the created nodes of previously considered jobs,

assuming that node 0 is created at the beginning of the graph-building process.

In addition to the above-listed breaking symmetry rules, a graph compression tech-
nique was proposed that prevents some arcs of jobs from being created from node 0. The
idea behind this technique is based on the fact that, by knowing the makespan of some
scheduled jobs on one machine, we can find the lower bound of the remaining jobs on
the remaining (m − 1) machines, where m represents the total number of machines. If the
resulting lower bound exceeds the upper bound, these jobs will not have arcs from node 0.
Instead, the arcs will be created from the first node created after node 0. Another graph com-
pression technique was used for reducing the number of loss arcs. A loss arc is only needed
for the last job in each machine schedule so that the flow conservation is satisfied. Therefore,
only a loss arc is created from a node v that satisfied d(∑n∈N Pn − v)/(m− 1)e ≤ UB. The
graph compression algorithm for the arcs of jobs is illustrated in Algorithm 2.

Algorithm 2: Graph compression algorithm for job arcs.

1. Initialize: removedJobs←0, SumOfProcessTimes←0
2. Sort jobs in increasing order of processing times.
3. for n ∈ N:

SumOfProcessTimes+ = pn
if(d(∑n∈N pn − SumO f ProcessTimes)/(m− 1)e > UB

removedJobs++;
else break;

4. Return JobsSelection = NumOfJobs-removedJobs;

The selected number of jobs from Algorithm 2 was used to build the graph from node
0 while the remaining jobs were used to build the graph from the next node after node 0, as
illustrated in Algorithm 3.

Processes 2022, 10, 2293 9 of 18

Algorithm 3: Graph building of the improved arc flow model.

Initialize: V [0, . . . ,UB]←0, JobArcs←0, lossArcs←0, NewV←∅, An←∅, and Ao←∅.
V [0]←1
for n ∈ N: (n = 0; n < JobsSelection; n++);
NewNodes←∅
for v ∈ V:
if(V[v] = 1 && (v + pn ≤ UB))
An←An ∪ (v, v + pn, n)
NewNodes←NewNodes ∪ (v + pn)

JobArcs++
end if
end for
for v ∈ NewNodes
V[NewNodes[v]] = 1
end for

for n ∈ N: (n = JobsSelection; n < N; n++)
NewNodes←∅
for v ∈ V\{node 0}:
if(V[v] = 1 && (v + pn ≤ UB))
An←An ∪ (v, v + pn, n)
NewNodes←NewNodes ∪ (v + pn)
end if
end for
for v ∈ NewNodes
V[NewNodes[v]] = 1
end for
for v ∈ V:
if(V[v] = 1)
NewV←NewV ∪ V[v]

for v∈ NewV\{0, UB}:
if(d(∑n∈N pn − NewV[v])/(m− 1)e ≤ UB)
Ao←Ao ∪ (NewV[v], UB, −1)

lossArcs++;
end for
Return NewV, An, Ao

3.3.2. Numerical Example

Consider five jobs to be scheduled in two identical parallel machines. The processing
times in minutes of each job are shown in Table 2.

Table 2. Processing times of jobs for graph-building example.

Job No. Processing Time (Minutes)

1 10
2 8
3 5
4 3
5 2

Let LB = 14 min using Equation (4) and UB = 15 min obtained by both the LPT and
VNS algorithms. The arc flow graph built using the algorithm proposed by [29] gives
11 nodes, 15 job arcs, and 9 loss arcs. Algorithm 2 can then be applied to check whether any
job arcs can be reduced. Starting from the job with the least processing time, i.e., Job 5, the
new lower bound is checked when one machine has only Job 5.

Processes 2022, 10, 2293 10 of 18

LBnew (job 5) = d(∑n∈N pn − SumO f ProcessTimes)/(m− 1)e =
d(28− 2)/(2− 1)e = 28 min > UB. Remove Job 5.

LBnew (jobs 5 and 4) = d((28− (2 + 3))/(2− 1)e = 23 min > UB. Remove Job 4.

LBnew (jobs 5, 4, and 3) = d((28− (2 + 3 + 5))/(2− 1)e = 18 min > UB. Remove Job 3.

LBnew (jobs 5, 4, 3, and 2) = d((28− (2 + 3 + 5 + 8))/(2− 1)e = 10 min < UB stop;

Therefore, Jobs 3, 4, and 5 will not have arcs created from node 0.
The graph compression for loss arcs, when applied, yields only one loss arc flow from

node 13 that satisfies d(∑n∈N pn − NewV[j])/(m− 1)e ≤ UB ⇒
⌈

28−13
2−1

⌉
= 15 min = UB.

The arc flow network, as proposed in [29], is shown in Figure 7. The resulting improved
arc flow network with seven nodes, nine job arcs, and one loss arc is shown in Figure 8.
The optimal solution is shown in Figure 9.

Processes 2022, 10, x FOR PEER REVIEW 11 of 19

LBnew (jobs 5 and 4) = ⌈((28 − (2 + 3))/(2 − 1)⌉ = 23 minutes > 𝑈𝑈𝐿𝐿. Remove
Job 4.

LBnew (jobs 5, 4, and 3) = ⌈((28 − (2 + 3 + 5))/(2 − 1)⌉ = 18 minutes > 𝑈𝑈𝐿𝐿.
Remove Job 3.

LBnew (jobs 5, 4, 3, and 2) = ⌈((28 − (2 + 3 + 5 + 8))/(2 − 1)⌉ = 10 minutes <
𝑈𝑈𝐿𝐿 stop;

Therefore, Jobs 3, 4, and 5 will not have arcs created from node 0.

The graph compression for loss arcs, when applied, yields only one loss arc flow from
node 13 that satisfies ⌈(∑ 𝑝𝑝𝑛𝑛𝑛𝑛∈𝑁𝑁 − 𝑁𝑁𝑆𝑆𝑁𝑁𝑉𝑉[𝑗𝑗])/(𝑚𝑚 − 1)⌉ ≤ 𝑈𝑈𝐿𝐿 ⇒ �28−13

2−1
� = 15 minutes = 𝑈𝑈𝐿𝐿.

The arc flow network, as proposed in [29], is shown in Figure 7. The resulting im-
proved arc flow network with seven nodes, nine job arcs, and one loss arc is shown in
Figure 8. The optimal solution is shown in Figure 9.

Figure 7. Arc flow network.

Figure 8. Improved arc flow network.

Figure 9. Optimal solution.

0 10

1

2

85 13 15

3 3

3

4 4

11

44

3

4

2
5 5

7

5 5

12

5

5

0 10

1

2

8 13 15

3 3

11

44 4
5

12

5

5

0 10

1

2

8 13 15

3

11

44

12

5

Figure 7. Arc flow network.

Processes 2022, 10, x FOR PEER REVIEW 11 of 19

LBnew (jobs 5 and 4) = ⌈((28 − (2 + 3))/(2 − 1)⌉ = 23 minutes > 𝑈𝑈𝐿𝐿. Remove
Job 4.

LBnew (jobs 5, 4, and 3) = ⌈((28 − (2 + 3 + 5))/(2 − 1)⌉ = 18 minutes > 𝑈𝑈𝐿𝐿.
Remove Job 3.

LBnew (jobs 5, 4, 3, and 2) = ⌈((28 − (2 + 3 + 5 + 8))/(2 − 1)⌉ = 10 minutes <
𝑈𝑈𝐿𝐿 stop;

Therefore, Jobs 3, 4, and 5 will not have arcs created from node 0.

The graph compression for loss arcs, when applied, yields only one loss arc flow from
node 13 that satisfies ⌈(∑ 𝑝𝑝𝑛𝑛𝑛𝑛∈𝑁𝑁 − 𝑁𝑁𝑆𝑆𝑁𝑁𝑉𝑉[𝑗𝑗])/(𝑚𝑚 − 1)⌉ ≤ 𝑈𝑈𝐿𝐿 ⇒ �28−13

2−1
� = 15 minutes = 𝑈𝑈𝐿𝐿.

The arc flow network, as proposed in [29], is shown in Figure 7. The resulting im-
proved arc flow network with seven nodes, nine job arcs, and one loss arc is shown in
Figure 8. The optimal solution is shown in Figure 9.

Figure 7. Arc flow network.

Figure 8. Improved arc flow network.

Figure 9. Optimal solution.

0 10

1

2

85 13 15

3 3

3

4 4

11

44

3

4

2
5 5

7

5 5

12

5

5

0 10

1

2

8 13 15

3 3

11

44 4
5

12

5

5

0 10

1

2

8 13 15

3

11

44

12

5

Figure 8. Improved arc flow network.

Processes 2022, 10, 2293 11 of 18

Processes 2022, 10, x FOR PEER REVIEW 11 of 19

LBnew (jobs 5 and 4) = ⌈((28 − (2 + 3))/(2 − 1)⌉ = 23 minutes > 𝑈𝑈𝐿𝐿. Remove
Job 4.

LBnew (jobs 5, 4, and 3) = ⌈((28 − (2 + 3 + 5))/(2 − 1)⌉ = 18 minutes > 𝑈𝑈𝐿𝐿.
Remove Job 3.

LBnew (jobs 5, 4, 3, and 2) = ⌈((28 − (2 + 3 + 5 + 8))/(2 − 1)⌉ = 10 minutes <
𝑈𝑈𝐿𝐿 stop;

Therefore, Jobs 3, 4, and 5 will not have arcs created from node 0.

The graph compression for loss arcs, when applied, yields only one loss arc flow from
node 13 that satisfies ⌈(∑ 𝑝𝑝𝑛𝑛𝑛𝑛∈𝑁𝑁 − 𝑁𝑁𝑆𝑆𝑁𝑁𝑉𝑉[𝑗𝑗])/(𝑚𝑚 − 1)⌉ ≤ 𝑈𝑈𝐿𝐿 ⇒ �28−13

2−1
� = 15 minutes = 𝑈𝑈𝐿𝐿.

The arc flow network, as proposed in [29], is shown in Figure 7. The resulting im-
proved arc flow network with seven nodes, nine job arcs, and one loss arc is shown in
Figure 8. The optimal solution is shown in Figure 9.

Figure 7. Arc flow network.

Figure 8. Improved arc flow network.

Figure 9. Optimal solution.

0 10

1

2

85 13 15

3 3

3

4 4

11

44

3

4

2
5 5

7

5 5

12

5

5

0 10

1

2

8 13 15

3 3

11

44 4
5

12

5

5

0 10

1

2

8 13 15

3

11

44

12

5

Figure 9. Optimal solution.

3.3.3. Mathematical Formulation of the Improved Arc Flow Model

This section presents a mathematical formulation for the improved arc flow model in
which h independent paths containing all jobs should be selected to minimize the makespan.

Parameters:
An: set of job n arcs: ∀n ∈ N.
Ao: set of loss arcs.
A: set of all arcs: A = An ∪ Ao.
V: set of nodes.
Decision Variables:

xsd =

{
1 i f arc (s, d) is selected

0 otherwise
∀s, d ∈ A\{Ao}

xsd ∈ {0, 1, . . . , m} ∀s, d ∈ Ao

Cmax : makespan o f the f inal schedule

Objective Function:
minimize Cmax (5)

Constraints:
Cmax ≥ d ∗ xsd ∀(s, d) ∈ A\{Ao} & d ≥ LB (6)

∑
(0,d)∈A\{Ao}

x0d = m (7)

∑
(v,d)∈A

xvd − ∑
(s,v)∈A

xsv = 0 ∀v ∈ V\{0, UB} & d = s (8)

∑
(s,d)∈An

xsd = 1 ∀n ∈ N (9)

xsd ∈ {0, 1} ∀(s, d) ∈ A\{Ao} (10)

xsd ∈ {0, . . . , m} ∀(s, d) ∈ Ao (11)

LB ≤ Cmax ≤ UB (12)

The objective in Equation (5) minimizes the makespan. The makespan is the value of
Constraint (6) that corresponds to the maximum final node of the job arc selected, given that
it is greater than or equal to the lower bound. Constraint (7) means that the total number of
arcs leaving node 0 must be equal to the number of machines, since each connected arc in
the final solution represents a schedule of the jobs in one machine. The flow conservation
constraints are presented in Equation (8) to ensure that for the intermediate nodes, if an
arc enters a node, it must leave that node. Constraint (9) ensures one arc for each job.
Constraints (10) and (11) are binary and integer decision variables, respectively. The binary

Processes 2022, 10, 2293 12 of 18

decision variables are for the job arcs, while the integer decision variables are for the loss
arcs and are limited to m. Finally, Constraint (12) illustrates the bounds of the makespan.

4. Computational Results and Discussion

The proposed improved arc flow model was coded in C++ language and the mathe-
matical model was solved using Cplex 12.10. The proposed model was run on an Intel®

Core i7-4930 k CPU @3.40 GHz and 34.0 GB of RAM. The improved arc flow mode was
compared with the arc flow model proposed by Mrad and Souayah [29]. For a fair compari-
son, Mrad and Souayah’s algorithm [29] was run on the same PC. Both algorithms used the
same LPT rule. However, the algorithm proposed by Mrad and Souayah [29] used LPT as a
UB for their arc flow model. On the other hand, the LPT rule in the proposed improved arc
flow model was used as an initial solution for the VNS algorithm. All algorithms had a
time limit per instance = 1200 s. We will first mention the benchmark instances used in this
paper, and then present the computational results.

4.1. Benchmark Instances

In this paper, we considered the benchmark instances proposed by Mrad and Souayah [29] for
the P||Cmax problem. The benchmark instances were set by first considering the type of instances
based on the ratio n/m, which has the following values: n/m ∈ {2, 2.25, 2.5, 2.75, and 3}.
Then, for each ratio, the processing times of the jobs were generated based on seven types of
classes. Class 1, Class 2, and Class 3 were generated using a discrete uniform distribution with the
intervals [1100], [2100], and [50,100], respectively. Class 4 and Class 5 both were generated using a
uniform distribution with a mean µ = 100, whereas the standard deviations were σ = 20 for
Class 4 and σ = 50 for Class 5. Class 6 was generated using a discrete uniform distribution in the
interval [n, 4n] and Class 7 was generated using a normal distribution with µ = 4n and σ = n. In
each type of ratio, each class had 10 combinations of n jobs and m machines. Each combination
had 10 instances. Therefore, the total number of generated instances was 3500 instances. The
combination of n and m is shown along with the results in Tables 3 and 4.

Table 3. Comparison of the mean CPU times (s) on Classes 1–4.

n/m n m
Class 1 Class 2 Class 3 Class 4

AF IAF AF IAF AF IAF AF IAF

2

20 10 0.0771 0.03526 0.0392 0.02603 0.0208 0.01761 0.0249 0.02234
40 20 0.1737 0.05529 0.0924 0.03867 0.031 0.02814 0.0491 0.04469
60 30 0.2219 0.06117 0.1332 0.05604 0.0359 0.03502 0.0739 0.0896
80 40 0.2901 0.10273 0.1821 0.08742 0.0536 0.05234 0.0974 0.08841

100 50 0.3773 0.11568 0.2228 0.1126 0.0585 0.04419 0.1159 0.08476
120 60 0.6823 0.17723 0.3848 0.19154 0.0687 0.05955 0.3592 0.29095
140 70 0.7539 0.20155 0.3492 0.15197 0.0697 0.0609 0.385 0.23621
160 80 0.9325 0.20272 0.3482 0.16256 0.0828 0.06271 0.2658 0.17787
180 90 1.3566 0.32176 0.5148 0.20159 0.0838 0.06604 0.667 0.39902
200 100 1.3098 0.27153 0.6568 0.24949 0.0902 0.0799 0.6158 0.30558

2.25

36 16 0.1362 0.03315 0.2356 0.07377 0.2605 0.04179 0.4068 0.06536
54 24 0.3236 0.10993 0.4543 0.14164 0.6416 0.08264 1.1268 0.10604
72 32 0.4944 0.12799 0.7636 0.20798 1.1344 0.09529 2.4926 0.15411
90 40 0.6538 0.15185 1.5459 0.29656 1.7575 0.13245 4.7855 0.28571

108 48 1.1464 0.30887 1.5738 0.39998 2.5898 0.15727 6.3198 0.29995
126 56 1.1979 0.31386 1.4974 0.36307 3.701 0.23519 9.6255 0.51936
144 64 1.6843 0.29565 2.0626 0.51169 3.5738 0.26678 10.4568 0.51346
162 72 3.3008 0.70363 1.4588 0.41291 5.7881 0.29463 12.1321 0.66862
180 80 2.4148 0.53003 2.9578 0.62703 6.0689 0.27774 15.0448 0.87539
198 88 3.4346 0.58915 4.2044 0.90267 5.8534 0.36493 20.1808 0.9274

Processes 2022, 10, 2293 13 of 18

Table 3. Cont.

n/m n m
Class 1 Class 2 Class 3 Class 4

AF IAF AF IAF AF IAF AF IAF

2.5

20 8 0.1083 0.0385 0.1152 0.04067 0.1106 0.03566 0.1261 0.04121
40 16 0.2846 0.09865 0.3873 0.14398 0.4902 0.07143 0.7562 0.118
60 24 0.3197 0.13935 0.4997 0.19241 1.1325 0.13782 1.981 0.17063
80 32 0.761 0.15574 0.945 0.39747 1.2863 0.17443 4.8875 0.32915

100 40 1.5134 0.25792 0.9268 0.32406 2.5409 0.25719 7.3425 0.5099
120 48 1.0613 0.33994 1.1129 0.40538 2.5391 0.32216 8.3755 0.65916
140 56 1.6769 0.43768 1.2984 0.58982 4.4313 0.47202 15.584 0.88034
160 64 1.6984 0.50926 1.7829 0.63383 4.4785 0.49164 22.5773 1.24152
180 72 2.0898 0.69955 1.6739 0.72796 5.7358 0.77288 21.9303 1.50267
200 80 2.9188 1.0436 2.389 0.91475 6.2676 0.82127 26.0193 1.36693

2.75

22 8 0.1746 0.06549 0.1118 0.04953 0.1503 0.10234 0.1498 0.05319
44 16 0.2987 0.13958 0.2941 0.16233 0.4824 0.12948 0.9315 0.13893
66 24 0.458 0.18898 0.5029 0.21454 1.2847 0.24273 2.1105 0.31473
88 32 0.9481 0.32052 0.7255 0.34517 2.3522 0.32662 4.0638 0.68388

110 40 1.3911 0.44476 1.3694 0.58596 2.7157 0.46807 5.6202 0.92024
132 48 2.007 0.77728 2.1578 0.67103 3.7053 0.58596 9.8738 1.63563
154 56 3.0137 0.94141 2.2004 1.02719 4.9362 0.92185 18.9603 1.60869
176 64 2.5642 0.9183 2.8724 1.26501 8.2793 1.03136 26.5827 1.83095
198 72 4.4431 1.33729 2.9442 1.22386 11.5653 1.22666 39.6504 2.86454
220 80 4.0233 1.3861 3.7405 1.58992 12.9586 1.41616 40.1836 3.00184

3

36 12 0.2643 0.15999 0.2042 0.1107 0.1376 0.05944 0.2147 0.07534
54 18 0.3655 0.19001 0.372 0.23032 0.2106 0.13473 0.3618 0.188
72 24 0.8163 0.35061 0.8154 0.37059 0.3485 0.20355 0.6852 0.38274
90 30 1.2901 0.48275 0.9756 0.49174 0.5079 0.33681 1.3291 0.53297

108 36 1.8092 0.80422 1.3209 0.82615 0.6825 0.46908 1.6426 0.82015
126 42 2.3945 1.03214 1.9296 1.1105 0.9414 0.4378 2.5098 1.1539
144 48 2.5131 1.09889 2.3889 1.10151 1.2057 0.74086 3.1758 1.44368
162 54 2.8894 1.53295 3.8152 1.54957 1.4903 0.83249 3.8759 2.3585
180 60 4.8238 1.83409 3.909 1.71357 2.0983 1.16229 4.321 1.96692
198 66 4.8045 1.66324 3.1346 2.21478 2.617 1.03554 6.4585 2.29203

4.2. Comparison of the Arc Flow Model and the Improved Arc Flow Model

In this section, a comparison between the arc flow model developed by Mrad and
Souayah [29] and the proposed improved arc flow model was conducted. The results of
the mean CPU times in seconds for both models are shown in two tables. Table 3 presents a
comparison of the two models for Classes 1–4, whereas Table 4 presents a comparison for
Classes 5–7.

The results in Table 3 show that for n/m = 2, the arc flow (AF) model obtained the
optimal solution in less than one second for almost all of the instances (except the last two
(n, m) combinations of Class 1. On the other hand, the improved arc flow (IAF) model
optimally solved all these instances in less than 0.40 s. The results suggest that instances
with a ratio of n/m = 2 seem to be the easiest ones. Indeed, for n/m = 2.25, the mean CPU
time for the arc flow model gradually increased, especially for some classes and some
combinations of n and m. For instance, the mean CPU time reached 20.1808 s for Class 4
with n = 198 and m = 88. In contrast, the improved arc flow model still found the optimal
solution for all classes in less than one second. Instances with ratios of 2.5 and 2.75 seem to
be the hardest ones, where the maximum recorded CPU times are observed for both the arc
flow model (40.1836 s) and the improved arc flow model (3.00184 s).

Processes 2022, 10, 2293 14 of 18

Table 4. Comparison of the mean CPU times (s) on Classes 5–7.

n/m n m
Class 5 Class 6 Class 7

AF IAF AF IAF AF IAF

2

20 10 0.0546 0.04656 0.0269 0.02201 0.0262 0.02078
40 20 0.1705 0.06297 0.0815 0.05031 0.0536 0.05235
60 30 0.4372 0.1362 0.1665 0.13898 0.1202 0.11593
80 40 0.3268 0.07655 0.3842 0.19209 0.3982 0.1859

100 50 0.8312 0.16459 0.4343 0.168 0.7655 0.39649
120 60 0.7307 0.11953 1.1057 0.43703 1.1212 0.59539
140 70 1.1903 0.16661 2.3826 1.00759 2.0292 1.05471
160 80 1.0261 0.16348 2.0445 0.55197 1.8262 0.96158
180 90 1.5475 0.24215 3.0562 1.22568 3.3475 1.27347
200 100 0.7404 0.20512 8.9567 1.84374 8.5372 1.73166

2.25

36 16 0.4131 0.1387 0.4715 0.11412 0.5134 0.07636
54 24 0.6209 0.28156 1.3551 0.22126 2.7366 0.16857
72 32 1.7974 0.56845 4.3433 0.39424 8.3424 0.31553
90 40 3.383 1.20387 13.1277 0.82299 29.066 0.58036

108 48 2.9051 0.65903 30.982 1.80474 71.9907 1.33954
126 56 8.5506 1.50027 53.108 4.90213 139.6497 2.30687
144 64 9.3202 2.22944 80.9374 8.66699 236.505 7.65391
162 72 10.0352 1.44473 167.0883 14.16798 332.8585 8.8986
180 80 12.4277 1.67685 273.3291 41.52442 510.0146 19.45461
198 88 5.0249 1.15768 447.1832 48.11236 646.0028 38.52895

2.5

20 8 0.1538 0.0684 0.11 0.03498 0.1349 0.03906
40 16 0.7204 0.27853 0.7472 0.16238 1.2275 0.12669
60 24 2.1967 0.57895 2.4699 0.5594 6.6195 0.43938
80 32 2.4471 0.85103 9.2258 1.96191 23.2269 1.24437

100 40 3.8316 0.9225 31.2072 4.67202 55.3321 3.96598
120 48 8.6085 1.21499 63.2689 15.33955 120.1153 9.11037
140 56 6.8704 2.14134 103.8499 21.15889 278.7284 12.64758
160 64 10.0015 5.03549 159.5447 48.12724 603.3516 20.61922
180 72 14.5461 2.63308 649.3818 86.00928 1072.787 70.51515
200 80 7.5844 2.28975 731.0712 135.807 1066.674 80.6796

2.75

22 8 0.2144 0.11063 0.1243 0.04628 0.1512 0.07119
44 16 0.7747 0.32776 0.985 0.28238 1.6435 0.27984
66 24 1.0913 0.43548 2.6566 0.74888 10.0207 1.5892
88 32 3.7268 0.97732 6.8621 1.64574 50.0149 4.71296

110 40 3.8373 1.25362 16.7783 4.02252 150.8236 12.19673
132 48 8.0449 2.39961 43.7506 10.56909 556.608 40.22264
154 56 9.2885 1.73566 397.3662 28.1359 1110.385 86.52077
176 64 10.6577 2.67341 535.7069 57.68455 1183.907 133.7526
198 72 7.821 4.75334 862.2826 69.34135 1200 252.22
220 80 11.6044 5.52537 984.8733 120.0307 1200 377.1867

3

36 12 0.5453 0.22471 0.3122 0.14289 0.399 0.1651
54 18 1.4733 0.52422 0.8638 0.62028 1.4451 0.55498
72 24 1.9235 0.68507 2.6791 1.45521 5.7497 1.59318
90 30 3.1898 1.18902 5.9322 2.45864 9.0364 3.58461

108 36 4.9936 1.75473 13.2389 5.31357 26.4002 7.36371
126 42 5.9733 2.93804 52.8808 9.54336 25.9556 17.25403
144 48 9.3373 3.83546 45.7367 20.37307 269.8698 21.57858
162 54 12.0203 4.61985 249.3259 29.50285 765.1593 52.96896
180 60 10.536 5.94832 297.5118 37.64389 528.8696 93.47038
198 66 12.5762 6.14091 840.8658 108.2606 1007.825 164.7304

Overall, the results in Table 3 show that, although both models obtained the optimal
solution within the time limit, the improved arc flow model clearly outperformed the arc
flow model in terms of the required CPU time.

Processes 2022, 10, 2293 15 of 18

From Table 4, we observed that Class 5 can be considered the simplest class compared
to Classes 6 and 7. Indeed, all instances of this class were solved to optimality in a relatively
small time for both models. The maximum CPU time was 14.5461 s and 6.14091 s for the
arc flow model and the improved arc flow model, respectively. Classes 6 and 7 showed a
dramatic outperformance of our proposed approach with respect to the arc flow model.
Indeed, the improved arc flow (IAF) model was, on average, 5.68 and 12.70 times faster
than the arc flow (AF) one on Classes 6 and 7, respectively. This ratio could reach as much
as 60.53 times for Class 7 with n = 126 and m = 56. Moreover, we observed that, for two
combinations of n and m (n = 198, m = 72 and n = 220, m = 80) in Class 7, the arc flow model
(AF) reached the maximum time limit of 1200 s without finding the optimal solution for
any of the considered 20 instances. On the other hand, the proposed improved arc flow
model (IAF) was able to solve 19 of these instances to optimality within an average CPU
time of 252.22 s and 377.1867 s, respectively.

To present overall insight into the performance of the proposed improved arc flow
model, Table 5 shows the total time of the arc flow model [29], the total time of the proposed
improved arc flow algorithm, and the percentage of improvement (% improvement) in the
total mean CPU time for each type of ratio (n/m). The % improvement calculated how much
savings in time were obtained by the proposed improved arc flow model compared with
the arc flow model [29] and was calculated as follows:

% improvement = 100× (TimeAF − TimeIAF)

TimeAF
(13)

Table 5. Comparison of the total mean CPU time (s).

n/m AF IAF % Improvement

2 562.67 184.78 67.16
2.25 32,495.649 2243.8063 93.09
2.5 51,981.90 5477.01 89.46

2.75 86,054.30 12,546.10 85.42
3 42,882.7581 6419.338 85.03

Total Time 213,977.2771 26,871.0343 87.44

A positive % improvement indicated that the proposed improved arc flow model
obtained a lower total CPU time compared with the arc flow model [29].

The results in Table 5 show that the IAF algorithm considerably reduced the total time
for all types of ratios. The percentage of time reduction ranged from 67.16% up to 93.09%
with the overall percentage of reduction in time reaching 87.44%. Figure 10 shows a visual
representation of the total CPU times of both algorithms.

To know how many instances out of 10 were not solved to optimality for both algo-
rithms, Table 6 illustrates the number of unsolved instances for the combinations of (n, m)
in Classes 6 and 7, i.e., instances where the solver could not reach the optimum solution
within the time limit (1200 s). The instances of the other (n, m) combinations for Classes 6
and 7 are not shown in Table 6 since an optimal solution was found for both models.

The results show that Class 6 and Class 7 with the ratios (n/m) = 2.5, 2.75, and 3 were
the hardest instances for the AF model [29]. The total number of unsolved instances for
Class 6 and Class 7 in all the ratios was 19 and 58 instances, respectively. Therefore, a total
of 77 instances out of 3500 instances were not solved to optimality by the AF model [29],
with a percentage of 97.80% solved instances. On the other hand, only one instance in Class
7 of the ratio (n/m) = 2.75 with a combination (n = 220, m = 80) was not solved to optimality
by the proposed improved arc flow model. The percentage of solved instances was 99.97%
with an increase of 2.17% in the solved instances compared with the AF model [29].

Processes 2022, 10, 2293 16 of 18
Processes 2022, 10, x FOR PEER REVIEW 17 of 19

Figure 10. Bar chart for total CPU time comparison (s).

To know how many instances out of 10 were not solved to optimality for both algo-
rithms, Table 6 illustrates the number of unsolved instances for the combinations of (n, m)
in Classes 6 and 7, i.e., instances where the solver could not reach the optimum solution
within the time limit (1200 s). The instances of the other (n,m) combinations for Classes 6
and 7 are not shown in Table 6 since an optimal solution was found for both models.

Table 6. Number of unsolved instances.

n/m n m
Class 6 Class 7

AF IAF AF IAF

2.5
180 72 3 0 5 0
200 80 3 0 6 0

2.75

154 56 0 0 7 0
176 64 1 0 9 0
198 72 5 0 10 0
220 80 4 0 10 1

3
162 54 0 0 2 0
180 60 0 0 3 0
198 66 3 0 6 0

The results show that Class 6 and Class 7 with the ratios (n/m) = 2.5, 2.75, and 3 were
the hardest instances for the AF model [29]. The total number of unsolved instances for
Class 6 and Class 7 in all the ratios was 19 and 58 instances, respectively. Therefore, a total
of 77 instances out of 3500 instances were not solved to optimality by the AF model [29],
with a percentage of 97.80% solved instances. On the other hand, only one instance in
Class 7 of the ratio (n/m) = 2.75 with a combination (n = 220, m = 80) was not solved to
optimality by the proposed improved arc flow model. The percentage of solved instances
was 99.97% with an increase of 2.17% in the solved instances compared with the AF model
[29].

5. Conclusions and Future Work
The scheduling of identical parallel machine scheduling problems to minimize the

makespan was studied in this paper. An improved arc flow model with a mathematical

562.67

32495.65

51981.90

86054.30

42882.76

184.78 2243.81 5477.01
12546.10

6419.34

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

2 2.25 2.5 2.75 3

C
PU

 ti
m

e
(s

)

Ratio (n/m)

AF IAF

Figure 10. Bar chart for total CPU time comparison (s).

Table 6. Number of unsolved instances.

n/m n m
Class 6 Class 7

AF IAF AF IAF

2.5
180 72 3 0 5 0
200 80 3 0 6 0

2.75

154 56 0 0 7 0
176 64 1 0 9 0
198 72 5 0 10 0
220 80 4 0 10 1

3
162 54 0 0 2 0
180 60 0 0 3 0
198 66 3 0 6 0

5. Conclusions and Future Work

The scheduling of identical parallel machine scheduling problems to minimize the
makespan was studied in this paper. An improved arc flow model with a mathematical
formulation was proposed for this problem. Enhanced upper and lower bounds were
utilized in the arc flow model to improve its efficiency. A variable neighborhood search was
proposed as an upper bound that started with an initial solution obtained using the longest
processing time rule, and five neighborhood structures were used to improve the local
search. A graph compression technique that prevented some jobs from appearing together
on the same machine was proposed to reduce the size of the graph and therefore reduce the
number of variables in the mathematical model. The proposed improved arc flow model
was compared with an arc flow model from the literature. The computational results on
benchmark instances showed that the improved arc flow model outperformed the arc flow
model from the literature at reducing the total time needed to solve instances, with the
overall reduction in time reaching 87%. In addition, the number of solved instances to
optimality increased to 99.97% of the instances.

Processes 2022, 10, 2293 17 of 18

Future work should investigate other graph compression techniques for this schedul-
ing problem and apply the improved arc flow model in other scheduling environments,
such as unrelated parallel machine scheduling.

Author Contributions: Conceptualization, K.B. and A.G.; methodology, K.B. and A.G.; software, K.B.;
validation, K.B. and A.G.; formal analysis, K.B. and A.G.; investigation, K.B. and A.G.; resources, K.B.
and A.G.; data curation, K.B. and A.G.; writing—original draft preparation, K.B.; writing—review and
editing, K.B. and A.G.; visualization, K.B. and A.G.; supervision, A.G.; project administration, A.G.;
funding acquisition, A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, award
number 13-MAT1544-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morozoff, E. Parallel machine scheduling problems: A survey. Asia-Pac. J. Oper. Res. 2001, 18, 193.
2. Michael, L.P. Scheduling: Theory, Algorithms, and Systems; Springer: Berlin/Heidelberg, Germany, 2018.
3. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.
4. Gary, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; WH Freeman and Company: New

York, NY, USA, 1979.
5. Graham, R.L. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 1969, 17, 416–429. [CrossRef]
6. della Croce, F.; Scatamacchia, R. The longest processing time rule for identical parallel machines revisited. J. Sched. 2020, 23,

163–176. [CrossRef]
7. Coffman, J.; Edward, G.; Garey, M.R.; Johnson, D.S. An application of bin-packing to multiprocessor scheduling. SIAM J. Comput.

1978, 7, 1–17. [CrossRef]
8. Lee, C.-Y.; Massey, J.D. Multiprocessor scheduling: Combining LPT and MULTIFIT. Discret. Appl. Math. 1988, 20, 233–242.

[CrossRef]
9. Gupta, J.N.; Ruiz-Torres, A.J. A LISTFIT heuristic for minimizing makespan on identical parallel machines. Prod. Plan. Control

2001, 12, 28–36. [CrossRef]
10. Min, L.; Cheng, W. A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines.

Artif. Intell. Eng. 1999, 13, 399–403. [CrossRef]
11. Lee, W.-C.; Wu, C.-C.; Chen, P. A simulated annealing approach to makespan minimization on identical parallel machines. Int. J.

Adv. Manuf. Technol. 2006, 31, 328–334. [CrossRef]
12. Alharkan, I.; Bamatraf, K.; Noman, M.A.; Kaid, H.; Nasr, E.S.A.; El-Tamimi, A.M. An order effect of neighborhood struc-

tures in variable neighborhood search algorithm for minimizing the makespan in an identical parallel machine scheduling.
Math. Probl. Eng. 2018, 2018, 3586731. [CrossRef]

13. Dell’Amico, M.; Martello, S. Optimal scheduling of tasks on identical parallel processors. ORSA J. Comput. 1995, 7, 191–200.
[CrossRef]

14. Mokotoff, E. An exact algorithm for the identical parallel machine scheduling problem. Eur. J. Oper. Res. 2004, 152, 758–769.
[CrossRef]

15. Dell’Amico, M.; Martello, S. A note on exact algorithms for the identical parallel machine scheduling problem. Eur. J. Oper. Res.
2005, 160, 576–578. [CrossRef]

16. Dell’Amico, M.; Iori, M.; Martello, S.; Monaci, M. Heuristic and exact algorithms for the identical parallel machine scheduling
problem. INFORMS J. Comput. 2008, 20, 333–344. [CrossRef]

17. Haouari, M.; Gharbi, A.; Jemmali, M. Tight bounds for the identical parallel machine scheduling problem. Int. Trans. Oper. Res.
2006, 13, 529–548. [CrossRef]

18. Haouari, M.; Jemmali, M. Tight bounds for the identical parallel machine-scheduling problem: Part II. Int. Trans. Oper. Res. 2008,
15, 19–34. [CrossRef]

19. de Carvalho, J.V. Exact solution of cutting stock problems using column generation and branch-and-bound. Int. Trans. Oper. Res.
1998, 5, 35–44. [CrossRef]

20. de Carvalho, J.V. Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 1999,
86, 629–659. [CrossRef]

http://doi.org/10.1137/0117039
http://doi.org/10.1007/s10951-018-0597-6
http://doi.org/10.1137/0207001
http://doi.org/10.1016/0166-218X(88)90079-0
http://doi.org/10.1080/09537280150203951
http://doi.org/10.1016/S0954-1810(99)00021-7
http://doi.org/10.1007/s00170-005-0188-5
http://doi.org/10.1155/2018/3586731
http://doi.org/10.1287/ijoc.7.2.191
http://doi.org/10.1016/S0377-2217(02)00726-9
http://doi.org/10.1016/j.ejor.2004.06.002
http://doi.org/10.1287/ijoc.1070.0246
http://doi.org/10.1111/j.1475-3995.2006.00562.x
http://doi.org/10.1111/j.1475-3995.2007.00605.x
http://doi.org/10.1111/j.1475-3995.1998.tb00100.x
http://doi.org/10.1023/A:1018952112615

Processes 2022, 10, 2293 18 of 18

21. Brandao, F.; Pedroso, J.P. Bin packing and related problems: General arc-flow formulation with graph compression. Comput. Oper.
Res. 2016, 69, 56–67. [CrossRef]

22. Brandao, F.D.A. Cutting & Packing Problems: General Arc-Flow Formulation with Graph Compression. Ph.D. Thesis, Universi-
dade do Porto, Porto, Portugal, 2017.

23. Delorme, M.; Iori, M.; Martello, S. Bin packing and cutting stock problems: Mathematical models and exact algorithms. Eur. J.
Oper. Res. 2016, 255, 1–20. [CrossRef]

24. Martinovic, J.; Scheithauer, G.; de Carvalho, J.V. A comparative study of the arcflow model and the one-cut model for one-
dimensional cutting stock problems. Eur. J. Oper. Res. 2018, 266, 458–471. [CrossRef]

25. Mrad, M.; Ali, T.G.; Balma, A.; Gharbi, A.; Samhan, A.; Louly, M. The Two-Dimensional Strip Cutting Problem: Improved Results
on Real-World Instances. Eurasia Proc. Educ. Soc. Sci. 2021, 22, 1–10. [CrossRef]

26. Kramer, A.; Lalla-Ruiz, E.; Iori, M.; Voß, S. Novel formulations and modeling enhancements for the dynamic berth allocation
problem. Eur. J. Oper. Res. 2019, 278, 170–185. [CrossRef]

27. Macedo, R.; Alves, C.; de Carvalho, J.V.; Clautiaux, F.; Hanafi, S. Solving the vehicle routing problem with time windows and
multiple routes exactly using a pseudo-polynomial model. Eur. J. Oper. Res. 2011, 214, 536–545. [CrossRef]

28. Kramer, R.; Iori, M.; Vidal, T. Mathematical models and search algorithms for the capacitated-center problem. INFORMS J.
Comput. 2020, 32, 444–460. [CrossRef]

29. Mrad, M.; Souayah, N. An arc-flow model for the makespan minimization problem on identical parallel machines. IEEE Access
2018, 6, 5300–5307. [CrossRef]

30. Kramer, A.; Dell’Amico, M.; Iori, M. Enhanced arc-flow formulations to minimize weighted completion time on identical parallel
machines. Eur. J. Oper. Res. 2019, 275, 67–79. [CrossRef]

31. Kramer, A.; Dell’Amico, M.; Feillet, D.; Iori, M. Scheduling jobs with release dates on identical parallel machines by minimizing
the total weighted completion time. Comput. Oper. Res. 2020, 123, 105018. [CrossRef]

32. Wang, S.; Wu, R.; Chu, F.; Yu, J.; Liu, X. An improved formulation and efficient heuristics for the discrete parallel-machine
makespan ScheLoc problem. Comput. Ind. Eng. 2020, 140, 106238. [CrossRef]

33. Trindade, R.S.; de Araújo, O.C.; Fampa, M. Arc-flow approach for parallel batch processing machine scheduling with non-identical
job sizes. In International Symposium on Combinatorial Optimization; Springer: Warsaw, Poland, 2020; pp. 179–190.

34. Trindade, R.S.; de Araújo, O.C.B.; Fampa, M. Arc-flow approach for single batch-processing machine scheduling. Comput. Oper.
Res. 2021, 134, 105394. [CrossRef]

35. Kramer, A.; Iori, M.; Lacomme, P. Mathematical formulations for scheduling jobs on identical parallel machines with family setup
times and total weighted completion time minimization. Eur. J. Oper. Res. 2021, 289, 825–840. [CrossRef]

36. de Lima, V.L.; Alves, C.; Clautiaux, F.; Iori, M.; de Carvalho, J.M.V. Arc flow formulations based on dynamic programming:
Theoretical foundations and applications. Eur. J. Oper. Res. 2022, 296, 3–21. [CrossRef]

37. de Lima, V.L.; Iori, M.; Miyazawa, F.K. Exact solution of network flow models with strong relaxations. Math. Program. 2022, 1–34.
[CrossRef]

38. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]

http://doi.org/10.1016/j.cor.2015.11.009
http://doi.org/10.1016/j.ejor.2016.04.030
http://doi.org/10.1016/j.ejor.2017.10.008
http://doi.org/10.55549/epess.1040517
http://doi.org/10.1016/j.ejor.2019.03.036
http://doi.org/10.1016/j.ejor.2011.04.037
http://doi.org/10.1287/ijoc.2019.0889
http://doi.org/10.1109/ACCESS.2018.2789678
http://doi.org/10.1016/j.ejor.2018.11.039
http://doi.org/10.1016/j.cor.2020.105018
http://doi.org/10.1016/j.cie.2019.106238
http://doi.org/10.1016/j.cor.2021.105394
http://doi.org/10.1016/j.ejor.2019.07.006
http://doi.org/10.1016/j.ejor.2021.04.024
http://doi.org/10.1007/s10107-022-01785-9
http://doi.org/10.1016/S0305-0548(97)00031-2

	Introduction
	Literature Review
	Methodology
	Lower Bounds
	Upper Bound
	Variable Neighborhood Search

	The Improved Arc Flow Model
	Graph Building
	Numerical Example
	Mathematical Formulation of the Improved Arc Flow Model

	Computational Results and Discussion
	Benchmark Instances
	Comparison of the Arc Flow Model and the Improved Arc Flow Model

	Conclusions and Future Work
	References

