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Abstract: Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is
an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical
requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and
Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational
time and/or memory burden and the large searching space required, respectively. This work aims to
overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale
PMS problem with n independent jobs and m identical machines with a single server is studied.
Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of
the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and
large PMS problems concerning standard performance metrics from the literature and a new metric
proposed in this work (standardized overall total tardiness). Computational experiments showed
that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of
the GA for large-size problems. The results indicated that the proposed algorithm should only be
used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting
its capabilities in small- and mainly medium-sized problems.

Keywords: scheduling; optimization; heuristic; genetic algorithm; identical parallel machines; apparent
tardiness cost rule

1. Introduction

In modern manufacturing, the Parallel Machine Scheduling (PMS) problem amounts to
scheduling several jobs using various identical machines while fulfilling specific practical
requirements, such as minimum total tardiness while executing the jobs [1–5]. Thus,
the PMS problem can be formulated as an NP-hard optimization problem that requires
sophisticated optimization techniques for scheduling the jobs using the available machines
while satisfying some practical constraints [6–10].

Many algorithms have been proposed in the literature to deal with the PMS problem.
According to refs. [11–15], the algorithms used in PMS can be globally divided into two
main groups: construction and improvement or interchange algorithms. The construction
algorithms choose one job at a time and fix it in the available position using dispatching
rules. One of the well-known construction rules is the Apparent Tardiness Cost (ATC)
rule [16]. Several scholars have used modified versions of ATC to minimize the total
tardiness in PMS [17–23].

On the other hand, the improvement or interchange algorithms work on an initial
solution and use local interchanges to improve the solution. Several scholars have used
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meta-heuristics as improvement algorithms, such as Genetic Algorithms (GAs). GAs
have been heavily used as improvement algorithms for PMS problems [24–40]. Simu-
lated Annealing (SA) [41,42], Ant Colony (AC) [43–45], Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [7,46–48], NSGA-III [1,49,50], and Non-dominated Ranking GA
(NRGA) [51] have also been used to optimize PMS as improving algorithms.

For example, Wang et al. [31] proposed modified versions of two meta-heuristics algo-
rithms (GA and SA) to obtain an approximate solution to large-scale PMS problems with
unrelated parallel machines. Sharma et al. [52] proposed and evaluated the effectiveness of
a multi-step crossover GA on randomly generated PMS problems of different sizes using
identical parallel machines. Laha et al. [42] proposed a SA meta-heuristics algorithm for
minimizing makespan in identical PMS problems. Jia et al. [45] proposed a fuzzy AC opti-
mization algorithm to obtain better solutions within a convenient time for fuzzy scheduling
problems (i.e., jobs characterized by fuzzy processing time) on parallel batch machines with
different capacities. Farmand et al. [8] investigated the effectiveness of two meta-heuristic
algorithms (Multi-Objective Particle Swarm Optimization (MOPSO) and NSGA-II) on small,
medium, and large-scale PMS problems with identical parallel machines.

In this paper, we consider a large-size identical parallel machine scheduling problem
Pm with n independent jobs and m identical machines with a single server. Traditional
computational algorithms, such as Mix Integer Programming (MIP) and GA, usually
fail or perform badly in such large-size problems due to computational time limitations
and/or memory limitations and the large search space required, respectively. A meta-
heuristic algorithm DAS/GA is developed in this paper to overcome these limitations
while further boosting the performance of the GA. The problem can be described as follows:
given a sequence of n independent jobs J = {J1, J2, . . . , Jn} and a set of m identical
machines M = {M1, M2, . . . , Mm}, the objective is to sequence the jobs on the machines
to minimize the total tardiness ∑i Ti of the schedule. Job Ji is associated with a processing
time PTi and a due date DDi with an independent setup time STsi, which is included in
PTi. One server S1 exists for dispatching the jobs to the available machines according
to the dispatching rules in the algorithm. The standard notation for this problem can
be denoted as Pm, S1|STsi|∑i Ti according to ref. [53], which is known to be an NP-hard
problem [54]. Individual heuristic algorithms (DAS) and GA are used as benchmarks to
assess the effectiveness of the proposed combined DAS/GA algorithm on 18 benchmark
problems selected to represent small, medium, and large PMS problems.

The assumptions made in this article are as follows: the jobs are independent; each job
has a single operation; the processing times include the corresponding setup times, and
the setup times are independent of the sequence; machines are identical and have 100%
availability and utilization while jobs are waiting; no preemption, no cancelation, and no
priority for jobs are allowed; all of the jobs are available at time zero, and the problem is
static and deterministic.

The rest of the article is organized as follows: Section 2 presents the framework of
the proposed heuristic-guided GA; Section 3 discusses the performance measures used to
evaluate the effectiveness of the proposed algorithm to the benchmarks; Section 4 explains
the data generation method for the experimentation problems setup; Section 5 discusses
the results of the application; and finally, Section 6 concludes the article and highlights
future work.

2. The Framework of the Proposed Heuristic-Guided Genetic Algorithm (DAS/GA)

The meta-heuristic algorithm DAS/GA proposed in this article consists of heuristic
DAS-h, followed by GA. DAS-h itself consists of 3 heuristics working sequentially: Due
Date Tightness heuristic (DDT-h), Apparent Tardiness Cost heuristics (ATC-h), and Swap
heuristic (S-h). Figure 1 shows the flowchart of the proposed DAS/GA.
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Figure 1. The flowchart of the proposed DAS/GA.

DAS/GA starts with the construction heuristic (DDT-h), which assigns jobs to different
machines based on their due dates’ tightness index values. Then, the produced schedule is
fed into the modified version of the ATC heuristic (ATC-h) to further improve the schedule.
The produced schedule is fed into a third improvement heuristic (S-h), which will fine-
adjust the schedule. The output schedule of S-h is used as one chromosome (i.e., schedule)
to seed the initial population in the GA. The heuristics and the GA comprising DAS/GA
meta-heuristic are discussed in detail in the following sections.

2.1. Due Date Tightness Heuristic (DDT-h)

In DDT-h, jobs are assigned to different machines based on their Due Date Tightness
index IDD

i values. This index is calculated by Equation (1), in which the DDi and PTi are
the due date and the processing time for job i, respectively. DDT-h sorts the jobs in an
ascending order based on their IDD

i values such that a smaller IDD
i value indicates a higher

priority job.

IDD
i =

DDi − PTi
PTi

(1)

To illustrate how the DDT-h works, consider 2 machines and 10 jobs along with their
processing times and due dates, as shown in Table 1. Their IDD

i values were calculated
according to Equation (1) and are recorded in Table 1.

Table 1. Data and IDD
i values for the illustrative example.

Job i 1 2 3 4 5 6 7 8 9 10

PTi 45 894 275 840 357 50 653 912 257 224
DDi 65 906 321 1528 378 69 692 1490 342 373
IDD
i 0.444 0.013 0.167 0.819 0.059 0.380 0.060 0.634 0.331 0.665

The 10 jobs are sorted in ascending order based on their IDD
i values, as reported

in Table 2.

Table 2. Sorted jobs based on IDD
i values.

Job i 2 5 7 3 9 6 1 8 10 4

IDD
i 0.013 0.059 0.060 0.167 0.331 0.380 0.444 0.634 0.665 0.819

After jobs were sorted, the job with the smallest IDD
i value is dispatched as the first

job on the first machine, the job with the second-smallest IDD
i value is dispatched as the

first job on the second machine, the job with third-smallest IDD
i value is dispatched as the

second job on the first machine, and so on. The resulting schedule is summarized in Table 3.
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Table 3. DDT-h schedule.

Position 1 2 3 4 5

Machine 1 2 7 9 1 10
Machine 2 5 3 6 8 4

2.2. Apparent Tardiness Cost Heuristic (ATC-h)

The Apparent Tardiness Cost heuristic (ATC-h) is an iterative heuristic that schedules
jobs one at a time from a set of remaining available jobs. The heuristic contains a priority
index Ii(t) that changes dynamically with time t. Variations of ATC-h were explained,
among other references, in refs. [17,20]. We highlight the main aspects of ATC-h in this
article for convenience and modify it to suit the Pm, S1|STsi|∑i Ti problem at hand. The
Ii(t) is calculated by multiplying two terms, which are the Weighted Shortest Processing
Time (WSPT) and the Least Slack (LS), as in Equation (2):

Ii(t) = WSPT × LS (2)

The Weighted Shortest Processing Time (WSPT) is given by Equation (3):

WSPT =
1

PTi
, (3)

and the LS is given by Equation (4):

LS = e−(
max(DDi−PTi−CTk , 0)

ζ×µPT
), (4)

where CTk is the cumulative time for predecessor job k, µPT is the mean of the processing
times for the remaining jobs, and ζ is a look-ahead parameter, which is determined through
experimentation. According to ref. [17], ζ can be calculated as in Equation (5):

ζ = 1.2× ln
( n

m

)
−

(
max

i
DDi −min

i
DDi

)
m

nµPT
(5)

Substituting Equations (3) and (4) in Equation (2) gives the final equation for Ij(t) as
in Equation (6):

Ii(t) =
1

PTi
× e−(

max(DDi−PTi−CTk , 0)
ζ×µPT

), (6)

where ζ is given by Equation (5). It should be noted that the processing time for a job
includes its setup time, and the setup time for the job is independent of the sequence that
includes the job, as stated in assumption 3 in this article. Hence, the equations reported in
ref. [17], which assume a dependent setup time to derive Ii(t), should be modified from
their original form in ref. [17] to Equations (4)–(6).

As seen in Equation (3), WSPT is the inverse of the processing times. This means that
jobs with lower processing times have higher priority (providing everything else remains
the same in LS). Moreover, Equation (4) shows that LS has two possible values: value 1
when the slack value for the job is negative, which indicates that the job is tardy, or any
value between 0 and 1 when the slack value is not negative, which indicates that the job is
not tardy. This means that a tardy job has the highest possible LS value and consequently
has the highest possible Ii(t) value among the jobs with equal processing times.

Every time a machine is available, the priority indices values of all the remaining jobs
are re-calculated, and the job with the highest Ii(t) value is chosen to be processed next.
The decision is dynamic, as the Ii(t) value of the job changes over time because it depends
on CTk, the cumulative time for its predecessor.
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The ATC-h needs an initial schedule to work on. This matter makes the final schedule
for ATC-h dependent on the initial schedule provided. Table 4 shows a possible initial
schedule for ATC-h.

Table 4. Initial schedule for ATC-h.

Position 1 2 3 4 5

Machine 1 4 5 6 1 2
Machine 2 10 9 7 8 3

Table 5 shows the Ii(t) values generated for the data in Table 1 based on the initial
schedule provided in Table 4.

Table 5. Ii(t) values for data in Table 1 and schedule in Table 4.

Machine 1

Job 4 5 6 1 2
RemarksIteration

1 0.0003 0.0027 0.0193 0.0214 0.0011 Job 1 first
2 0.0004 0.0028 0.0200 −1 0.0011 Job 6 second
3 0.0004 0.0028 −1 −1 0.0011 Job 5 third
4 0.0004 −1 −1 −1 0.0011 Job 2 fourth
5 0.0004 −1 −1 −1 −1 Job 4 fifth

Machine 2

Job 10 9 7 8 3
RemarksIteration

1 0.0036 0.0034 0.0014 0.0005 0.0034 Job 10 first
2 −1 0.0039 0.0015 0.0006 0.0036 Job 9 second
3 −1 −1 0.0015 0.0009 0.0036 Job 3 third
4 −1 −1 0.0015 0.0011 −1 Job 7 fourth
5 −1 −1 −1 0.001 −1 Job 8 fifth

Table 6 shows the schedule produced using ATC-h.

Table 6. ATC-h schedule.

Position 1 2 3 4 5

Machine 1 1 6 5 2 4
Machine 2 10 9 3 7 8

Figure 2 shows the standardized values of Ii(t) and IDD
i for the 10 jobs described in

Table 1. In ATC-h, as DDi − PTi value, the Due Date Tightness (DDT), increases, the Ii(t)
value decreases, and consequently the priority of the job decreases, while in DDT-h, as the
DDT value increases, the IDD

i value increases but the priority of the job decreases.
The Figure shows that the two heuristics have the same basic behavior for jobs with

small values of DDT like jobs 2, 3 and 7 but have fundamentally different behavior for jobs
with large values like jobs 4 and 8. This difference in the behavior is because the ATC-h
takes into account the cumulative processing time for the predecessor CTk in calculating LS
while DDT-h does not. The effect of the CTk on the Ii(t) values in ATC-h is evident in jobs 2
and 8, where both jobs have very close Ii(t) values even though they have a big difference
in their DDT values.



Processes 2022, 10, 2071 6 of 17Processes 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. The standardized values of 𝐼 (𝑡) and 𝐼  for data in Table 1. 

The Figure shows that the two heuristics have the same basic behavior for jobs with 
small values of DDT like jobs 2, 3 and 7 but have fundamentally different behavior for 
jobs with large values like jobs 4 and 8. This difference in the behavior is because the ATC-
h takes into account the cumulative processing time for the predecessor 𝐶𝑇  in calculating 𝐿𝑆 while DDT-h does not. The effect of the 𝐶𝑇  on the 𝐼 (𝑡) values in ATC-h is evident 
in jobs 2 and 8, where both jobs have very close 𝐼 (𝑡) values even though they have a big 
difference in their DDT values. 

2.3. Swap Heuristic (S-h) 
The aim of the Swap Heuristic (S-h) is to fine-adjust the schedule by removing one 

job (with positive tardiness) at a time from a tardy machine and assigning it to the machine 
with the lowest total tardiness. This heuristic is a fine-adjusting heuristic, so it is meant to 
be applied after ATC-h, which is a coarse-adjusting heuristic. The aim of this heuristic is 
to level the load on the machines. S-h is similar to ATC-h in terms of the need for an initial 
schedule and in terms of using the cumulative times in their calculations. 

The pseudo-code for this heuristic is as follows (Algorithm 1): 

Algorithm 1: The pseudo-code of the Swap Heuristic (S-h) 
1: Input schedule from ATC-h 
2: Calculate the tardiness 𝑇  for each machine in machine set 𝑀 
3: Determine the machine 𝑀  with lowest 𝑇  

4: Determine the set that contains the rest of the other machines 𝑀  such that 𝑀 ∈𝑥 ∈ 𝑀|𝑥 ∉  𝑀  
5: Determine the set of jobs 𝐽  on 𝑀  
6: Calculate 𝐶 = ∑ 𝑃𝑇 ∈  
7: Do WHILE the overall total tardiness 𝑇𝑇 is improving or termination condition is reached 
8: FOR all machines indexed 𝑗 in 𝑀  do the following 
9: FOR all jobs indexed 𝑖 in 𝑀  do the following 
10: Calculate the cumulative processing time 𝐶  for job i on 𝑀  
11: IF 𝐶 + 𝑃𝑇 < 𝐶  do the following 
12: Remove job 𝑖 from 𝑀  and assign it to the end of the schedule for 𝑀  
13: Update 𝑇 , 𝑀 , 𝐽 ,𝑀 , and 𝐶  
14: Go to DO WHILE loop 
15: END IF 
16: END FOR indexed 𝑖 
17: END FOR indexed 𝑗 
18: END DO WHILE 
19: Report the new Schedule 

The heuristic chooses the job to be moved according to the Ineq. 7 (Equation (7)). 𝐶 + 𝑃𝑇 < 𝐶  (7) 

Figure 2. The standardized values of Ii(t) and IDD
i for data in Table 1.

2.3. Swap Heuristic (S-h)

The aim of the Swap Heuristic (S-h) is to fine-adjust the schedule by removing one job
(with positive tardiness) at a time from a tardy machine and assigning it to the machine
with the lowest total tardiness. This heuristic is a fine-adjusting heuristic, so it is meant to
be applied after ATC-h, which is a coarse-adjusting heuristic. The aim of this heuristic is to
level the load on the machines. S-h is similar to ATC-h in terms of the need for an initial
schedule and in terms of using the cumulative times in their calculations.

The pseudo-code for this heuristic is as follows (Algorithm 1):

Algorithm 1: The pseudo-code of the Swap Heuristic (S-h)

1: Input schedule from ATC-h
2: Calculate the tardiness Tj for each machine in machine set M
3: Determine the machine ML with lowest Tj
4: Determine the set that contains the rest of the other machines Mo such that Moj ∈ {x ∈ M|x /∈ ML}
5: Determine the set of jobs JL on ML
6: Calculate Ctl = ∑i ∈Jl

PTi
7: Do WHILE the overall total tardiness TT is improving or termination condition is reached
8: FOR all machines indexed j in Mo do the following
9: FOR all jobs indexed i in Moj do the following
10: Calculate the cumulative processing time Ctji

for job i on Moj

11: IF Ctl + PTi < Ctji
do the following

12: Remove job i from Moj and assign it to the end of the schedule for ML
13: Update Tj, ML, JL,Mo, and Ctl

14: Go to DO WHILE loop
15: END IF
16: END FOR indexed i
17: END FOR indexed j
18: END DO WHILE
19: Report the new Schedule

The heuristic chooses the job to be moved according to the Ineq. 7 (Equation (7)).

Ctl + PTi < Ctji
(7)

Ineq. 7 states that moving a tardy job from any machine in Mo to the end of the
schedule for ML always results in an improvement in the overall tardiness of the schedule.
The left-hand side of the inequality is a quasi-representation of the new tardiness value for
the removed job i in the new machine, while the right-hand side is a quasi-representation of
the tardiness value for the removed job i in its original machine. If the left-hand side is less
than the right-hand side of the inequality, then removing job i from the current machine
Moj and assigning it to ML guarantees enhancement of the overall total tardiness of the
schedule by the difference between the left-hand side and the right-hand side values.
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To illustrate the effect of this heuristic, consider the data in Table 7 and the correspond-
ing proposed schedule in Table 8.

Table 7. Process times and due dates for Table 8.

Job i 1 2 3 4 5 6 7 8 9 10

PTi 100 1150 275 840 357 50 750 912 450 224
DDi 165 1200 321 1528 378 69 692 1490 342 373

Table 8. The proposed schedule.

Position 1 2 3 4 5

Machine 1 2 7 9 1 10
Machine 2 5 3 6 8 4

The total tardiness for machine 1 is 7802 and for machine 2 is 1934; the overall total
tardiness for the schedule is 9736. The cumulative processing time for machine 2, which is
ML in this case, is 2434; hence, feeding the data of job 10 in Ineq. 7 gives a correct inequality,
as shown below:

(2434 + 224− 373) < (2674− 373)→ 2285 < 2301

Thus, removing job 10 from machine 1 and assigning it at the end of the schedule for
machine 2 should improve the overall total tardiness for the schedule by 2301 − 2285 = 16.
In fact, removing job 10 from machine 1 and assigning it at the end of the schedule for
machine 2 gives an overall total tardiness of 9720, which is 16 units less than the total
tardiness of the original schedule, with total tardiness for machine 1 of 5501 and total
tardiness for machine 2 of 4219. It should be noticed here how S-h levels the load on the
machines and enhances the overall total tardiness of the schedule.

2.4. Genetic Algorithm (GA)

The GA has been used intensively in PMS with the aim of minimizing the overall
total tardiness of the schedule [25,33–35]. GA has two kinds of operations: the genetic
operation and the evolution operation. Crossover and mutation in GA belong to the genetic
operation, while the selection mechanism belongs to the evolution operation [55]. The
crossover operator in GA aims to roughly search the solution space while the mutation
operator aims to finely search the solution space by exploiting the promising areas found
by the crossover operator [56].

Chromosome representation, mutation, and selection strategies should be tailored to
fit the problem at hand. These strategies are explained in the following sections.

2.4.1. Chromosome Representation

In this proposed GA, the chromosome consists of m rows, one row for each machine,
and n− (m− 1) columns (positions) for each row, to ensure that each machine has at least
one job on it. In this representation, gene ξij = k means that the ith position on the jth

machine is occupied by job k. In this representation, each gene carries three pieces of
information: the value of the gene itself represents the job, while the position of the gene,
determined by i and j indices, represents the machine and the position on that machine for
the job. This representation ensures the feasibility of the chromosomes and offspring and
thus avoids the need for any repair actions.

Consider the data used in Table 1. Table 9 shows one possible chromosome for this
data. The phenotype can be easily retrieved from the genotype in this representation, as
gene ξ22 = 5 means that job 5 is the second job to be processed on machine 2, while ξ17 = 0
means that there are no jobs processed in position 7 or beyond for machine 1.
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Table 9. One possible chromosome for data in Table 1.

Position 1 2 3 4 5 6 7 8 9

Machine 1 2 7 6 3 1 9 0 0 0
Machine 2 10 5 8 4 0 0 0 0 0

2.4.2. Fitness Function

In this GA, the fitness function used is the overall total tardiness of the schedule, as
expressed in Equation (8):

TT =
m

∑
j=1

∑
dξij

<(Sξij
+PTξij

)

i=1:n−(m−1)

(
Sξij + PTξij − DDξij

)
, (8)

where Sξij , PTξij , and DDξij are the start time, processing time, and due date for gene ξij.
The fitness function value for the chromosome in Table 9 is as follows:

2

∑
j=1

∑
dξij

<(Sξij
+PTξij

)

i=1:5

(
Sξij + PTξij − DDξij

)
= (7618) + (1011) = 8629.

2.4.3. Mutation

This GA is a crossover-free GA in which only mutation is used to produce the offspring
from a single parent. Four different mutation types were used to mutate the selected
chromosome. The Two Genes Exchange mutation (TGEm) affects only two jobs on the
same machine, as it chooses two random jobs from a randomly selected machine and
switches their positions. The Number of Jobs mutation (NoJm) changes the number of jobs
on two randomly selected machines as it swaps randomly selected jobs from one randomly
selected machine to another randomly selected one, provided that the minimum of one job
per machine constraint is conserved. NoJm imitates the S-h, but it differs from S-h in two
aspects. First, S-h swaps one job each time it is applied while NoJm may swap more than
one job each time it is applied. Second, unlike S-h, NoJm does not guarantee that the change
is beneficial. The Flip Ends mutation (FEm) flips the ends of the schedule for a randomly
selected machine such that the first job becomes the last job and the last job becomes the first
job on that machine. Flip Middle mutation (FMm), flips the sequence of the jobs between
two randomly selected positions near the middle of the machine’s schedule.

TGEm plays the role of the traditional mutation in the GA, in which it generates a
limited disturbance in the chromosome; hence, it performs fine search. The other three
types of mutations play the role of crossover in the GA, as they introduce high disturbances
in the chromosome; hence, they play the role of coarse search. The offspring produced
by these four types of mutations are always feasible offspring thanks to the chromosome
representation discussed earlier. Consequently, there is no need for any repair actions on
the offspring. Moreover, in this GA, a 25% mutation rate is adopted. This means that the
number of offspring generated by mutation is the same as the population size, as each
chromosome selected for the mutation will produce 4 offspring.

2.4.4. Selection

An elitist selection strategy is adopted in this GA. Under this strategy, all the parents
and the offspring form a pool in which they have to compete for their survival. Those who
have better fitness values will be selected as the parents of the next generation.
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2.5. Mathematical Model

Binary programming for Pm, S1|STsi|∑i Ti is formulated in studies such as refs. [57,58].
The objective function of this model is

TT =
m

∑
k=1

p

∑
j=1

Tjk (9)

The constraints are

p

∑
j=1

m

∑
k=1

Xijk = 1 , ∀ i = 1, . . . , n (10)

job

∑
i=1

Xijk ≤ 1 , ∀ j = 1, . . . , p and k = 1, . . . , m (11)

Cjk = C[j−1]k +
n

∑
i=1

PTi ∗ Xijk ∀ j = 1, . . . , p, k = 1, . . . , m. C0k = 0 (12)

Cjk −
n

∑
i=1

DDi ∗ Xijk − Tjk ≤ 0 ∀ j = 1, . . . , p, ∀k = 1, . . . , m (13)

Tjk ≥ 0 (14)

Xijk Binary (15)

In this mathematical model, indices i, j, and k are indices for job, position, and machine,
respectively, and p is the number of positions on the machine. Moreover, Xijk = 1 if job
i is processed in position j at machine k and is “0” otherwise, Cjk is the completion time
for position j at machine k, Tjk is a positive value that represents the tardiness value for
position j at machine k.

Equation (9) calculates the overall total tardiness of the schedule by summing the
individual tardiness values for the positions on the machines. Equation (10) guarantees that
each job is assigned only once, while Equation (11) guarantees that each position on each
machine, if occupied, will be occupied only once. Equation (12) calculates the cumulative
processing time for the job, and Equations (13) and (14) together dictate that if the position
on the machine is occupied by a tardy job, then the tardiness of the position equals the
tardiness of that job; otherwise, the tardiness of the position and consequently the tardiness
of the job is zero.

3. Performance Measures

The performance of DAS-h, DAS/GA, and GA was measured in this article using two
performance measures suggested by ref. [17], (Relative Error (RE) and Average Relative
Improvement (ARI)), and a third performance measure that is suggested in this article: the
standardized overall total tardiness StdrdTT.

RE is the difference between the tardiness of the method used TTh and the tardiness of
the optimal schedule TTop found by the binary programming model discussed in Section 2.5
using CPLEX software relative to TTop. Mathematically RE is given by Equation (16). It
should be noted that this measure can only be used when TTop > 0. If TTop could not
be found due the memory limitations or if TTop = 0, TTop will be substituted by TTBest,
which is the best TT found among the different methods used to solve the problem.

RE =
TTh − TTop

TTop
(16)



Processes 2022, 10, 2071 10 of 17

ARI is used only with GA and DAS/GA to measure their tardiness TTGA|DAS/GA
with respect to the tardiness of DAS-h, which is TTDAS-h. Mathematically, ARI is given by
Equation (17):

ARI =
TTGA|DAS/GA

TTDAS-h
(17)

StdrdTT is the relative deviation between the overall total tardiness of the method and
the minimum overall total tardiness among the methods used, divided by the overall total
tardiness among the methods used. Mathematically, StdrdTT is given by Equation (18):

StdrdTT =
TTH−min(TTDAS-h ,TTDAS/GA , TTGA)

min(TTDAS-h ,TTDAS/GA , TTGA)
, ∀ H

∈ {DAS-h, DAS/GA, GA}
(18)

It should be noted that RE and StdrdTT is the same for cases where TTop = 0.

4. Data Generation for Experiments

In this section, 18 benchmark problems are considered for experimentation. The
problems’ instances were generated such that they cover small, medium, and large problems
to study the performance of the different methods, ATC-h, DAS, DAS/GA, and GA, under
these cases. The average of 20 replicates was considered in calculating the performance of
GA, DAS/GA, and ATC-h, as they demand a random start-up schedule. The running time
for DAS/GA and GA is only 1 min per replicate. The instances for the experimentation
problems were generated according to Fisher’s standard method as discussed in refs. [57,59].
The method starts by generating n integer processing times PTis from a uniform distribution
such that PTi ∼ U[1, 100]. The corresponding due dates DDis are generated from
another uniform distribution such that DDi ∼

[
P
(

1− τ − R
2

)
/m, P

(
1− τ + R

2

)
/m

]
,

where P =
n
∑

i=1
PTi, τ ∈ {0.2, 0.4, 0.6, 0.8, 1} and R ∈ {0.2, 0.4, 0.6, 0.8, 1}. The template

used for the instances is J_M_τ_R. For example, 2000_10_04_04 means scheduling 2000
jobs on 10 identical machines such that due dates are generated using τ = 0.4 and R = 0.4.

5. Results and Experiments

Table 10 shows the performance measures for 18 problems generated according to
Fisher’s standard method as discussed earlier. It should be noted that CPLEX software did
not find the optimal solution, Opt. TT, for problems beyond problem 11 due to memory
limitations. This shows the importance of this work and other related works in solving big
NP-hard PMS problems where binary programming fails due to technical issues.

Figure 3a shows a comparison between the performances of the different methods
using the RE measure. Figure 3b shows that the performance of GA slightly outperformed
the performance of DAS/GA for small problems and significantly for medium problems.
On the other hand, for large problems, the performance of DAS/GA significantly outper-
formed the performance of GA. This means that DAS-h helped GA improve its performance
significantly in large problems but deteriorated its performance for medium problems.
Figure 3c shows that the trend between the performances of GA and DAS-h is the same as
the trend captured in Figure 4b between GA and DAS/GA. The performance of GA slightly
outperformed the performance of DAS-h for small problems and significantly for medium
problems, while for large problems the performance of DAS-h significantly outperformed
the performance of GA. From Figure 3b,c, one can see that the behavior of DAS-h masks
the behavior of DAS/GA for large problems, as DAS/GA has the same behavior of DAS-h
relative to GA in this range of problem sizes. The comparison between the performance of
DAS-h and DAS/GA shown in Figure 3d supports this argument. The Figure shows that
DAS/GA slightly outperformed DAS-h for small problems and significantly for medium
problems; the methods had a negligible difference in their performance for large problems.
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Table 10. Results for the 18 problems used in the experimentation.

# Problem Opt.
TT

DAS DAS/GA GA
TT RE TT RE ARI TT RE ARI

1 20_02_02_02 147 162 0.1020 151.8 0.0327 0.9370 151.7 0.0320 0.9364
2 20_05_02_02 149 195 0.3087 161.7 0.0852 0.8292 160.1 0.0745 0.8210
3 20_10_10_10 195 246 0.2615 226.0 0.1590 0.9187 218.1 0.1185 0.8866
4 30_02_02_02 83 188 1.2651 83.0 0.0000 0.4415 83.0 0.0000 0.4415
5 30_10_02_02 101 787 6.7921 171.4 0.6970 0.2178 170.7 0.6901 0.2169
6 40_02_02_02 13 26 1.0000 13.0 0.0000 0.5000 13.0 0.0000 0.5000
7 40_05_02_02 68 166 1.4412 102.8 0.5118 0.6193 85.6 0.2588 0.5157
8 40_10_02_02 0 0 NA 0.0 NA NA 0.0 NA NA
9 50_05_02_02 49 188 2.8367 104 1.1224 0.5532 102.2 1.0857 0.5436

10 100_02_02_02 25 141 4.6400 25 0.0000 0.1773 25.0 0.0000 0.1773
11 100_5_02_02 86 240 1.7907 140.7 0.6360 0.5863 104.4 0.2140 0.4350
12 100_10_02_02 NA 195 0.0285 189.6 0.0000 0.9723 190.0 0.0021 0.9744
13 300_15_06_06 NA 28164 0.0084 27929 0.0000 0.9917 41182.0 0.4745 1.4622
14 500_10_05_05 NA 50428 0.0041 50220 0.0000 0.9959 74571.0 0.4849 1.4788
15 750_15_04_04 NA 47727 0.0004 47707 0.0000 0.9996 73344.0 0.5374 1.5367
16 1000_10_06_06 NA 355500 0.0003 355396 0.0000 0.9997 590010.1 0.6601 1.6597
17 1500_15_04_04 NA 168559 0.0011 168378.7 0.0000 0.9989 274604.3 0.6309 1.6291
18 2000_10_04_04 NA 399815 0.0004 399673 0.0000 0.9996 649413.5 0.6249 1.6243
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The negligible difference in performance between DAS-h and DAS/GA shown in
Figure 3d for large problems suggests that when combining DAS-h with GA to form the
DAS/GA meta-heuristic, DAS/GA will be trapped in a region of good local optima created
by DAS-h; consequently, the effect of GA will be negligible as it is trapped in this region.

In Figure 4, the standardized total tardiness values StdrdTTH for the different methods
were compared. Figure 4a shows the exact same trends as found in Figure 3a between
the performances of the different methods but using the StdrdTT performance measure.
Figure 4b shows that GA slightly outperformed DAS/GA for small problems and signif-
icantly for medium problems. For large problems, DAS/GA significantly outperformed
GA, which is the same as the trend in Figure 3b. Figure 4c shows the same trend found in
Figure 3c between the performances of GA and DAS-h.

Figure 4d shows that DAS/GA outperformed DAS-h for small problems and signif-
icantly for medium problems; however, the methods had a negligible difference in their
performance for large problems, which is the same trend as found in Figure 4d.

Figure 5 shows a comparison between DAS/GA and GA using RAI measure. The figure
reveals the same trend found earlier using RE and StdrdTT measures in Figures 3b and 4b,
respectively: GA slightly outperformed DAS/GA for small problems and especially for
medium problems. For large problems, DAS/GA significantly outperformed GA. DAS-h
helped GA to improve its performance significantly in large problems but deteriorated its
performance for small and especially for medium problems, as the ARI values for DAS/GA
for large problems are almost constant and approximately 1, but for small problems and
especially for medium problems, the values are less than 1.
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Figure 5. Comparison between DAS/GA and GA using ARI measure.

Moreover, looking at the ARI values for DAS/GA for large problems supports the
argument made earlier: DAS-h creates a region of good local optima for large size problems
that trap GA in it and renders the effect of GA negligible, and hence in this region DAS-h
dictates the behavior of DAS/GA. The values of ARI support this argument, as the ARI
values for large problems are almost 1, which indicates that the behavior of DAS/GA is
very close to the behavior of DAS-h, and hence the effect of GA is almost negligible in
DAS/GA compared to the effect of DAS-h.

Figure 6 compares the evolution line of DAS/GA and GA for problem 500_10_05_05.
The Figure shows the same basic behavior for their evolution lines, except that DAS/GA’s
evolution line, shown in Figure 6b, started from a better point and reached a better fitness
value than GA. Moreover, the figure shows that GA had a higher number of enhancement
points in its evolution line than DAS/GA. This observation agrees with what was noted
earlier about the effect of the region of local optima that DAS-h introduces in DAS/GA.
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Figure 6. Evolution lines for (a) DAS/GA and (b) GA for problem 500_10_05_05.

To explore this observation more, Figure 7 shows a comparison between Average
Number of Enhancements Per Replicate (ANEPR) for both meta-heuristics DAS/GA and
GA. It is noted that as the problem size increased, the ANEPR for the GA method increased
significantly, while for the DAS/GA method, the ANEPR was independent of the prob-
lem size, as the DAS/GA method showed a random relation between ANEPR and the
problem size.

Processes 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

problem size, as the DAS/GA method showed a random relation between ANEPR and the 
problem size. 

 
Figure 7. Bar graph for the number of enhancements for DAS/GA and GA. 

This shows that generating a strong initial solution for DAS/GA for large-size prob-
lems using DAS-h will cause DAS/GA to be trapped in a region of local optima and hence 
limit the number of enhancements made to the strong initial solution. This matter makes 
the difference between the performances of DAS-h and DAS/GA negligible, as revealed in 
Figures 3d and 4d and the DAS/GA curve in Figure 5, and hence supports the argument 
made earlier that DAS-h dictates the behavior of DAS/GA in this region of large-size prob-
lems. 

Figure 8 shows a comparison between the performance of ATC-h and DAS-h. The 
Figure shows that DAS-h outperformed ATC-h for most of the problems, whether they are 
small, medium, or large. Moreover, the Figure shows that the largest difference between 
the two heuristics is for the medium-size problems, where DAS-h significantly outper-
formed ATC-h. 

 
Figure 8. Comparison between ATC-h and DAS-h performance. 

This superior performance of DAS-h can be linked to the structure of this heuristic, 
where DDT-h first constructs a good initial feasible schedule; then, this schedule is coarse-
tuned using ATC-h, after which the S-h fine-tunes the schedule. 

Problem 1716151413121110987654321

20

15

10

5

0

A
N

EP
R

GA
DAS/GA

DAS/GA Vs GA

Figure 7. Bar graph for the number of enhancements for DAS/GA and GA.

This shows that generating a strong initial solution for DAS/GA for large-size prob-
lems using DAS-h will cause DAS/GA to be trapped in a region of local optima and
hence limit the number of enhancements made to the strong initial solution. This matter
makes the difference between the performances of DAS-h and DAS/GA negligible, as
revealed in Figures 3d and 4d and the DAS/GA curve in Figure 5, and hence supports
the argument made earlier that DAS-h dictates the behavior of DAS/GA in this region of
large-size problems.

Figure 8 shows a comparison between the performance of ATC-h and DAS-h. The
Figure shows that DAS-h outperformed ATC-h for most of the problems, whether they
are small, medium, or large. Moreover, the Figure shows that the largest difference be-
tween the two heuristics is for the medium-size problems, where DAS-h significantly
outperformed ATC-h.
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This superior performance of DAS-h can be linked to the structure of this heuristic,
where DDT-h first constructs a good initial feasible schedule; then, this schedule is coarse-
tuned using ATC-h, after which the S-h fine-tunes the schedule.

This superior performance of DAS-h in medium-range problems explains the strong
deterioration in the performance of DAS/GA relative to GA in medium-size problems.
DAS-h generates a region of local optima that traps DAS/GA, and consequently the
performance of DAS/GA is limited in this region to the performance of DAS-h. Unlike
the case with large-size problems, in medium-size problems GA alone can reach better
regions than the region provided by DAS-h in DAS/GA; therefore, GA alone outperforms
the performance of DAS/GA in medium-size problems, as the region provided by DAS-h
traps DAS/GA in it and limits the capabilities of GA in DAS/GA to reach better regions.

6. Conclusions

This article proposed a Heuristic-Based Genetic Algorithm (DAS/GA) to minimize
the overall total tardiness in scheduling large-size identical parallel machines with a single
server. The results showed that DAS-h significantly enhanced the performance of GA
for large-size problems where MIP failed due to high execution time and/or memory
limitations, and GA performed badly due to the large search space. The results also showed
that the usage of the proposed meta-heuristic DAS/GA algorithm should be limited only
to large-size problems because DAS-h limited the capabilities of GA in small-size problems
and especially in medium-size problems and because MIP performed well in small-size
problems, which rendered the usage of DAS/GA unnecessary in this range of problems.

Future works will investigate existing meta-heuristic algorithms for scheduling large
identical parallel machines with a single server.
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