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Abstract: Rice bran is a by-product of the rice milling process. It contains a high concentration of
protein. Rice brans are frequently utilized as feed cattle, fertilizer, and fuel. However, their application
as human nutrition supplements is uncommon, and the necessary process for this purpose is yet
to be established, including the drying process. This study aims to evaluate the effect of the spray-
drying parameters, the inlet temperature, inlet flowrate, and inlet air flowrate, on rice bran protein
(RBP) powder and optimize it using response surface methodology (RSM). A thermal water-based
extraction method was utilized prior to the drying process. The correlation between the spray-drying
parameters, i.e., the inlet temperature (120 to 210 ◦C), feed flowrate (5 to 55%), and air flowrate
(246 to 670 L/h), and the RBP yield were investigated. The quality of the RBP powder was evaluated
based on acid amino profiling in the mixture through de novo peptide sequencing. The optimized
operating conditions for the maximum yield of RBP powder (25.7 g RBP/100 g RRB) are 178 ◦C,
feed flowrate of 25%, and air flowrate of 450 L/h. The main peptides that contribute to RBP powder
protein are globulin and glutelin; meanwhile, prolamin is believed to degrade during the drying
process. The process also produced protein sugar, helping to produce fine particles powder without
the drying agent.

Keywords: optimization; spray-drying process; rice bran; protein quality

1. Introduction

A large amount of rice bran produced through the rice milling process is regularly
squandered as waste. This product is sold as animal feed or fertilizer at a low price [1].
This underutilization of a large amount of rice bran in Malaysia causes a slight decrease
in the production of rice in Malaysia because most investors feel that only the rice grains
are valuable in the rice milling process. Therefore, the sales revenue obtained from these
rice grains is unable to compensate for the high investment capital required for the rice
milling process [2]. Rice bran has many health benefits, thus leading to its application in
food, nutraceutical, and pharmaceutical industries [3]. The utilization of rice bran in a
beneficial way, such as producing the rice bran protein (RBP), would give added value to
the rice industry.

The extraction and drying process plays an important role in preserving the protein
quality in the rice bran for the development of supplementary protein for human beings.
However, the soluble protein in an aqueous solution is not suitable for commercialization
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when compared to the powdered form. Hence the use of the drying process is necessary
to achieve this outcome. Drying, by definition, is a common technique in producing
protein supplements, converting protein concentrates into powders. The drying process is
a dehydration method that has been widely used in the food industry for decades. This
process is crucial for longer storage life, food quality improvement, easier handling, and
ease of further processing, as well as cleanliness and safety [4].

Technically, the usable properties of the RBP are mainly influenced by the drying tech-
nique since it involves the heat and mass transfer mechanisms. Several drying techniques
can be used for manufacturing RBP powder, including drum, spray, freeze, vacuum, and
conventional oven-drying. However, each of these techniques has its advantages and disad-
vantages. RBP powder yield and quality may also differ in terms of their physicochemical
or nutritional properties, including their microstructures, subject to the drying methods [5].
Furthermore, most drying techniques are carried out under high temperatures, which is
inappropriate for heat-sensitive substances, such as protein, which may be damaged. One
of the best options for this process is spray-drying, which offers rapid evaporation.

Through rapid evaporation, the possibility of proteins denaturing is lower, despite
its exposure to high temperatures [6]. However, this possibility needs to be evaluated to
ensure that the high-quality powder is produced at the optimum spray-drying operating
conditions. Among the main parameters affecting this process are inlet temperature, inlet
feed flowrate, and inlet gas flowrate. The drying rate and duration of the drying cycle are
determined by the capacity of the air (gas) stream to absorb and take away moisture. Higher
inlet temperature will create better vapor holding capability, while higher the drying cycle
will expose the solute or protein for possible degradation, thus degrading its quality. On
the other hand, lower vapor holding capacity will increase the powder losses by sticking to
the drying wall.

Therefore, the effect of inlet temperature, inlet feed flowrate, and inlet gas flowrate
were evaluated. Moreover, the optimization process for this spray-drying process is
also crucial to obtaining high-quality yields without comprising total yield, as stated
by Emami et al. [7]. For this reason, response surface methodology (RSM) was utilized
for the optimization process. Protein quality for the product were also analyzed based on
amino acid profiling.

2. Methodology
2.1. Raw Material

In this study, rice bran was collected from the Kilang Beras BERNAS Sdn Bhd,
Kuala Perlis, Perlis. The raw rice bran was heated at 95 ◦C for 3 min to prevent the
hydrolytic rancidity of rice bran [8] and stored at the temperature of 4 ◦C prior to the
experimental procedure.

2.2. Extraction Process

The rice bran was extracted using a hot water extraction process. The hot water
extraction process was conducted using sterilizer (Hirayama HG-80, Saitama, Japan) at
121 ◦C and 0.26 MPa for 20 min as a modified method from the previous study [9]. The
rice bran sample was mixed at a ratio of 1:20 (g/mL) with distilled water in a Schott bottle
before the extraction process.

2.3. Spray-Drying Process

The experimental spray-drying process was conducted using a Mini Spray Dryer
(Buchi B 290, Essen, Germany) at the Faculty of Chemical Engineering &Technology,
UniversityMalaysia Perlis (UniMAP). For each experimental spray-drying process, 500 mL
of the rice bran extract was dried, and the protein yield was measured and recorded. The
protein yield was calculated using Equation (1).
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Yield =
Wfinal − Winitial

WRRB
× 100 (1)

where Yield (g RBP/100 g RRB) = yield of rice bran protein (RBP) in 100 g raw rice
bran (RRB);

Wfinal (g) = Weight of the cylone after the spray-drying process;
Winitial (g) = Weight of the cylone before the spray-drying process; and
WRRB (g) = Weight of raw rice bran.

In this study, the spray-drying operating parameters, namely inlet temperature, feed
flowrate, and air flowrate were evaluated in the range of 130–200 ◦C, 10–40% of pump rate
(3.5 to 12 mL/min), and 225–525 L/h, respectively. The other parameter in the spray-drying
system remained constant throughout the study, namely the aspirator percentage of 95%
and the nozzle pulse of 2.

2.4. Other Drying Methods for Rice Bran Protein (RBP) Powder

Oven-drying and freeze-drying were conducted to compare the efficiency of the spray-
drying method. For oven-drying, after water extraction, samples were collected and dried
in the Universal Oven (Memmert, Schwabach, Germany) located at the Faculty of Chemi-
cal Engineering & Technology, UniversityMalaysia Perlis (UniMAP). Of the supernatant
sample, 500 mL were taken and dried for 48 h at 100 ◦C within ±5 ◦C to remove all
the water.

Another method of drying is freeze-drying and also known as lyophilization. Of the
solution after water extraction, 500 mL were taken and pre-frozen at −83 ◦C and then
freeze-dried in accordance with the operating procedure at −53 ◦C for 48 h with Freeze
Dryer (Labogene cool safe, Allerød, Denmark).

2.5. Optimization of Spray-Drying Process Using Response Surface Methodology (RSM)

Response Surface Methodology (RSM) in Design-Expert software was used to create
an experimental design for optimizing the spray-drying process for RBP powder yield. The
Central Composite Design (CCD) was employed as the design model for the optimization
process. Experiments were randomized to reduce bias. Furthermore, as indicated in
Equation (2), the following predictive quadratic polynomial equation resulted from the
relationship between the response and the independent variables and was utilized to fit the
experimental results.

Y = Ao + ∑ AiXi + ∑ AiiX2
i + ∑ AijXiXj (2)

where Y = Response variable;

A0 = Regression coefficients of variables for intercept terms;
Ai = Regression coefficients of variables for linear terms;
Aii = Regression coefficients of variables for quadratic terms;
Aij = Regression coefficients of variables for interaction terms; and
Xi, Xj = Independent variables.

2.6. Statistical Analysis

Statistical analysis software was used to examine all the data, including the analysis of
variance (ANOVA) based on 95% confidence level (p < 0.005).
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2.7. Model Validation

The validation of the best model was conducted by comparing the experimental data
with the predicted value. The absolute average deviation (AAD) for the experiment was
calculated using Equation (3).

AAD =
1
n

n

∑
m=1

∣∣Ym − Yaverage
∣∣ (3)

where Ym = Experimental measured value; Yaverage = Experimental average value; and
n = Number of experiments run (3 in this study).

The deviation between the predicted value and experimental data was calculated and
evaluated based on absolute average relative deviation (AARD), as shown in Equation (4).

AARD =

(
Yexperiment − Ypredicted

Yexperiment

)
× 100 (4)

where Yexperiment = Average experimental value and Ypredicted = Predicted value.

2.8. High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) for Protein
Quality Analysis

Protein quality analysis was conducted through the acid amino profiling in the mixture
based on de novo peptide sequencing using high-performance liquid chromatography–
mass spectrometry (HPLC-MS) coupled with a tandem mass spectrometer. About 250 g of
the raw sample and 250 g of the sample after the dry spray process were kept to determine
the sample changes [10]. The fragmentation mode was set to collision-induced dissociation
(CID) and collision activated dissociation (CAD), and the ion source was set to ESI (nano-
spray) (y and b ions). For both samples, the MS scan mode was set to FT-ICR/Orbitrap and
MS/MS Scan mode linear Ion Trap [11]. The system consisted of liquid chromatography
(Dionex Ultimate 3000, Thermo Scientific, Waltham, MA, USA) in combination with an
electrospray ionization (ESI)/quadrupole ion trap mass spectrometer (Model Amazon SL,
Bruker, Germany). The separation was carried out using a reverse-phase column (Hypersil
GOLD 50 mm 3 0.5 mm, 5 mm C18), protected by a guard column (Hypersil GOLD 30 mm
3 0.5 mm, 5 mm C18).

The result of acid amino profile and proteins ID from HPLC-MS was cross-checked
with the UniProt database to determine the type of protein from the peptide. The mass
tolerance for precursor ions was set to 10 ppm, while the fragment ion tolerance was set
to 0.8 Da. Carbamidomethyl (+57.0214 Da) in cysteine and oxidation (+15.9994 Da) in
methionine were two of the dynamic changes [12].

2.9. Scanning Electron Microscope (SEM)

The powder sample’s morphology was observed using a Scanning Electron Micro-
scope (SEM). SEM is done to differentiate each process physically and changes during
each process. The RBP powders are first placed on aluminium stubs with double-sided
sticky carbon tape and sputter-coated with a 5 nm layer of a gold coating system for this
characterisation testing. The powders were then scanned using a SEM operating at a
5 kV accelerating voltage. Finally, the images of the surface morphology of the RBP were
viewed at the magnification of 500×,1000×, 1500×, and 2000×. Prior to SEM analysis, each
sample was stored with silica gel inside an airtight container to ensure the lower moisture
content and further enhance the availability of the sample, since SEMs are very sensitive
to moisture.
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3. Result and Discussion
3.1. Effect of Inlet Temperature on Spray-Drying Process on RBP Powder Yield

The influence of the inlet temperature on the yield of RBP powder from the spray-
drying process at a constant feed flowrate of 20% and air flowrate of 388 L/h is depicted in
Figure 1.
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Figure 1. Effect of inlet temperature in spray-drying process on RBP powder yield at a constant feed
flowrate of 20% and air flowrate of 388 L/h.

RBP powder yield increases from 9.9 g RBP/100 g RRB to 18.25 g RBP/100 g RRB
when the inlet temperature increases from 130 ◦C to 160 ◦C, as shown in Figure 1. Then,
it started to decrease to 15.5 g RBP/100 g RRB at inlet temperatures of 200 ◦C. This is
because as the temperature increases, higher water evaporation rates occur and reduce its
drying times due to the efficient heat transfer process. Low evaporation rates are produced
at the lower inlet air temperature, which leads to the formation of microcapsules with
high-density membranes, high water content, poor fluidity, and agglomeration. This will
increase the possibility of the RBP powder yield losses due to the stickiness of the drying
chamber wall. This can be seen by the micrograph view of the RBP powder at the different
temperatures from 120 to 200 ◦C, as shown in Figure 2.

As seen in (Figure 2a), a bigger spherical shape protein body was observed for the
sample at the temperature of 120 ◦C. This is possibly due to the incomplete drying of the
powder at lower temperatures, thus resulting in the coagulation particles represented by
the bigger droplets. According to de Oliveira et al. [13], bigger droplets also indicate less
protein. The powder spherical shape becomes smaller as the temperature increases to
160 ◦C (Figure 2b) and 200 ◦C (Figure 2c), where more small spherical shape protein bodies
are produced.

However, the increase in inlet temperature has also exposed the protein to the degra-
dation process observed from 160 ◦C to 200 ◦C due to thermal degradation and oxidation.
This phenomenon was also observed in tomato powders’ drying process, which showed a
larger loss of lycopene content with the increase of inlet drying temperature [14]. Similarly,
Quek et al. [15] observed that the concentration of lycopene and β-carotene decreased in the
spray-dried watermelon powder as the increase in temperature of the inlet. Tonon et al. [16]
also stated that increasing the temperature causes the denaturation of protein and causes a
cohesive force between the spray-dried particle and the wall of the drying chamber. This
phenomenon also occurs in the previous study, such as the effect of spray-drying on black
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mulberry juice [17]. Therefore, an appropriate selection of inlet air temperature is important
to enhance the dryer evaporative capacity and thermal efficiency of the sample [18]. In this
study, the temperature between 150 to 180 ◦C was considered a good temperature range
for drying RBP powder.
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3.2. Effect of Feed Flowrate on Spray-Drying Process on the RBP Powder Yield

Figure 3 shows the effect of feed flowrate from 10% to 40% on the spray-drying process
for RBP powder at a constant inlet temperature of 160 ◦C and a 388 L/h air flowrate.

The effect of feed flowrate indicates an upward trend with insignificant differences
in yield up to 20% of feed flowrate between 15.75 to 17.55 g RBP/100 g RRB. However,
as the feed flowrate increased to 25% and higher, the yield began to decline to 7.75 g
RRB/100 g RRB at a feed flowrate of 40%. Generally, the increase in feed flowrate causes a
decreasing RBP powder yield. This is due to decreasing contact times between solution
and hot air in the drying chamber (vaporisation chamber) as the increased feed flowrate.
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The shorter contact time increases the chance of incomplete vaporisation of water, resulting
in a lower yield of RBP powder [16]. This inverse proportional effect of feed flowrate to
the spray dryer yield is also reported by Karaca et al. [19] on sour cherry juice concentrate
formulation and Fazaeli et al. [17] on black mulberry juice powder production. Although
rapid vaporization is spray-drying positive features compared with other drying processes,
such as oven and sun dying, enough vaporisation time is required to obtain an optimum
RBP powder yield. Moreover, larger droplets are produced at a higher feed flow, which
contains more moisture and results in more stickiness on the glass drying chamber [20].
The insignificant difference in the RBP powder yield at a lower flowrate of 10, 15, and
20% is due to the saturation of the RBP powder yield available in the feed solution, and
maximum powder is already being produced.
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Figure 3. Effect of feed flowrate on the spray-drying process of the Rice Bran Protein (RBP) powder
yield at a constant inlet temperature of 160 ◦C and a 388 L/h air flowrate.

3.3. Effect of Air Flowrate on Spray-Drying Process on the RBP Powder Yield

Another important parameter in the spray-drying process is air flowrate. This is
because the drying air supply to the drying chamber indicated the energy supply for
evaporation [21]. The effect of air flowrate on the spray-drying process to RBP powder
yield at the constant inlet temperature of 160 ◦C and feed flowrate of 20% is shown in
Figure 4.
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Figure 4. Effect of air flowrate on the Rice Bran Protein (RBP) powder yield at the constant inlet
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As shown in Figure 4, the increasing trend with a slight fluctuation at the higher
air flowrate was observed on the effect of air flowrate on the RBP powder yield. RBP
powder yield increased from 5.75 g RBP/100 g RRB to 16.65 g RBP/100 g RRB when air
flowrate increased from 225 L/h to 350 L/h. A gradual variation of RBP powder yield is
observed after 350 L/h where the value fluctuates between 15.75 g RBP/100 g RRB to 17.4 g.
According to Ghosal et al. [22], the changing in air flowrate are relatively varied in the
amount of heated dry air entering the spray chamber. Therefore, air flowrate is claimed to
have a linear positive effect on water evaporation in the spray-drying process. By increasing
the air flowrate, the powder yield is increased, showing that the energy available for water
evaporation was increased and causing a more positive impact on powder production [23].
Based on the spray-drying atomizer design, the high air flowrate was producing smaller or
tiny spray droplets, which boosted the drying process. According to Sadegh and Ecevit [24],
the atomization process purposely increased the specific surface area of the liquid by the
droplet’s formation and augments heat and mass transfer from liquid to processing gas.
Moreover, the dairy concentrate’s droplet surface area substantially increased due to the
atomization process and the droplet surface area was directly proportional to the rate of
evaporation [25]. Thus, it is necessary to succeed in fine atomization for a more efficient
operation of the spray dryer. Moreover, it is also essential to determine the physical
properties of the resultant powders, such as bulk density, wettability, dispersibility, and
solubility effect from the atomization [26]. Theoretically, as the air flowrate increases, the
energy required to produce this powder will increase due to higher energy consumption
during production. Therefore, it was essential to optimise this parameter. In conclusion,
the maximum air flowrate of 425 L/h is believed to be the best to obtain RBP powder with
the minimum energy consumption during the process.

3.4. Optimization of the Spray-Drying Process for RBP Powder Production

The optimization of the spray-drying for RBP powder was conducted using response
surface methodology (RSM) based on central composite design (CCD) with three inde-
pendent parameters, inlet temperature, feed flowrate, and air flowrate, and one response,
which is RBP powder yield. The experimental condition matric coded based on CCD were
presented in Table S1.

Based on statistical analysis, a good agreement quadratic polynomial model is obtained
in this study to represent the RBP powder with a predicted R2 value of 0.8439 and adjusted
R2 of 0.9467. The equation is generated as shown Equation (5).

Yield = −1.24C2 − 0.3777B2 − 0.6783A2 + 0.5375BC + 0.0625AC + 6.39C + 1.23B + 0.8897A + 18.76 (5)

where Yield (Yield (g RBP/100 g RRB) = Yield of rice bran protein (RBP) in 100 g raw rice
bran (RRB);

A = Inlet temperature (◦C);
B = Feed flowrate (%); and
C = Air flowrate (L/h).

Based on Equation (5), three-dimensional response surface plots for RBP yield at differ-
ent parameter relations are developed, as shown in Figure 5. Overall, the model shows a sig-
nificant effect on RBP yield as determined by the f value (9,28) = 56.28, p < 0.0001. As shown
in Figure 5a–c, it can be observed that the air flowrate and feed flowrate within this range
are showing the significant effect on RBP yield as determined by f value (1,28) = 445.49,
p < 0.0001, and f value (1,28) = 16.46, p < 0.0007.

Refer to Figure 5a, the maximum point was identified to be at an air flowrate of
450 L/h and feed flowrate of 25% at the RBP yield of 25 g RBP/100 g RRB. RBP powder
yield’s substantially increasing trend is observed as the air flowrate increased from 325 L/h
to 450 L/h from 12 to 25 g RBP/100 g RRB. A similar trend with a considerable increasing
pattern is also observed for feed flowrate. However, inlet temperatures from the range of
150 to 180 ◦C are not showing significant for this response as determined by the f value
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(1,28) = 8.63, p < 0.0085. This can be observed in Figure 5b,c, where the increase of tem-
perature from 150 to 180 ◦C caused the insignificant change of RBP yield from 24 to 25 g
RBP/100 g RRB. In general, the higher inlet temperature results in higher water vaporiza-
tion, swelling effect and water solubility, as shown in tomato powder study [14], tamarind
powder [27], and pomegranate powder [28]. Based on this model, the optimum point of the
RBP yield is determined based on the conjugate gradient method. The optimum conditions
predicted are the inlet temperature is 178 ◦C, feed flowrate set to 25%, and air flowrate
of 450 L/h. The predicted conditions were validated with the experimental as shown in
Table 1.
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Table 1. Model validation with experimental data.

Response
(R1)

Experimental Data
(g RBP/100 g RRB) Predicted Value

(g RBP/100 g RRB)
Error

AARD (%)
Average AAD

Yield 25.66 0.55 24.9 2.96

As shown in Table 1, the experimental data for the yield is 25.66 ± 0.55 g RBP/100 g
RRB, and the predicted value is 24.9 g RBP/100 g RRB. The errors recorded are relatively
low and acceptable based on the AARD value of 2.96%. In comparison with other drying
methods, spray-drying shows relatively lower RBP yields compared with oven-drying and
freeze-drying methods, which recorded yields of 61.0 and 47.8 g RBP/100 g, respectively.
Spray-drying offers the industry a viable process that provides a continuous process,
efficient heat utilization, and good product but will impose higher losses in comparison to
oven-drying and freeze-drying.

3.5. Comparison between Other Drying Methods

Although oven-drying and freeze-drying produce the higher yields of RBP powder,
the process does not produce good powder products as, ideally, powders tend to have
smooth and spherical morphology with little or no surface distortion. The morphology
during drying can have a direct effect on active ingredients and volatile substances like
flavour. This can be observed through a micrograph of the RBP sample produced with
spray-drying, oven-drying, and freeze-drying, as shown in Figure 6.

As shown in Figure 6a, the freeze-dried sample showed a plate of layered particles
where the granulated protein had adhered to it. Meanwhile, the oven-dried sample shows
the coagulated particle and forms a large powder structure, as shown in Figure 6b. As
discussed earlier in the previous section, spray-drying produced a good sphere-shaped
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powder where all the protein bodies can be seen in the fine granulated form; smooth and
spherical with little to no surface distortion. To obtain the same powder characteristic as a
spray-dried sample, an extra method is required to convert freeze-dried and oven-dried
products into a granulated form, such as grinding or milling [29].
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3.6. Protein Identification Analysis Based on Amino Acid Profiling

Amino acid profiling for rice bran protein (RBP) and raw rice bran (RRB) was con-
ducted for protein quality identification. Based on this amino acid profiling, the type of
peptide responsible for protein structure was identified. Overall, there are an increasing
number of protein types from the RRB sample to RBP powder. This is due to the peptides
produced after the spray-drying process being much purer compared to the RRB, thus
creating an increased signal protein identification [30]. Table 2 shows the summary of
peptides of interest detected in RRB and RBP.
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Table 2. Raw rice bran (RRB) and rice bran protein (RBP) in protein identification summary results.

Protein Raw Rice Bran (RRB) Rice Bran Protein (RBP)

Globulin D D
Glutelin D D
Prolamin D ND
Glucose ND D
Fructose ND D

D = Detected, ND = Non-detected.

The analysis identified Globulin, Glutelin, and Prolamin with 1, 6, and 1 groups identi-
fied, respectively, in RRB. For RBP, the analysis identified Globulin, Glutelin, Glucose, and
Fructose with 1, 6, 1, and 12 groups identified, respectively, and no prolamin was detected
in RBP. The sequence data for Globulin, Glutelin and Prolamin detected in RRB are shown
in Figures S1, S3 and S5 respectively. Meanwhile, the sequence data for Globulin, Glutelin,
Glucose, and Fructose detected in RBP are shown in Figures S2, S4, S6 and S7, respectively.

Based on the analysis, globulin and glutelin were identified as the main monomers
in RRB and RBP. Globulin comprises about 15–25% of the protein stored in rice bran.
Globulin is soluble in salt solution and can be identified with a molecular weight of
16 kDa and 25 kDa, respectively [31,32]. From the de novo peptide sequencing of globulin
structure in RRB and RBP, carbamidomethylation and oxidation are compared with RBP
powder. Carbamidomethylation is usually cystine blocked from oxidation [33]. The
supporting peptide for carbamidomethylation is peptide KVAYVLDGEGEAEIVCPHLSRG
with 9 ppm and peptide DGEGEAEIVCPHLSRG with 8.8 ppm, while the oxidation peptide
are RMYLAGMNSVLKK with 9.4 ppm and RMYLAGMNSVLKK with 9.0 ppm. For
illustration purposes, the structure of the peptide obtained from the analysis was modelled
based on the structure modelling in the UniProt database. Figure 7 shows the structure of
globulin protein in the rice bran product. The model shows the confidence level per residue
confidence score. The bodies of the protein have a high confidence level, while the tail is in
low confidence levels, as shown in the UniProt database.
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Another protein component found in both samples is glutelin. Glutelin is considered
a major protein fraction in rice grain as it comprises 11% to 27% of the total rice bran.
Glutelin is readily soluble under alkaline conditions [32]. The molecular weight of glutelin
is recorded as between 45 to 150 kDa. Based on de novo peptide sequencing, the supporting
peptide that has a marker for carbamidomethylation is the peptide NGLDETFCTMRV.
Meanwhile, for RBP powder the peptines are NGLDETFCTMRV, but for RBP, a mutation
occurs at the peptide RGLLLPHYTD (sub N) GASLVYIIQGRG. This is probably caused by
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the heat shock during the spray-drying process [34]. Figure 8 shows the glutelin from rice
bran products with a high confidence level of >90 per residue confidence, as mentioned in
the UniProt database.

Processes 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 7. Globulin structure in the rice bran product developed based on structure modelling. 

Another protein component found in both samples is glutelin. Glutelin is considered 
a major protein fraction in rice grain as it comprises 11% to 27% of the total rice bran. 
Glutelin is readily soluble under alkaline conditions [32]. The molecular weight of glutelin 
is recorded as between 45 to 150 kDa. Based on de novo peptide sequencing, the support-
ing peptide that has a marker for carbamidomethylation is the peptide NGLDETFCT-
MRV. Meanwhile, for RBP powder the peptines are NGLDETFCTMRV, but for RBP, a 
mutation occurs at the peptide RGLLLPHYTD (sub N) GASLVYIIQGRG. This is probably 
caused by the heat shock during the spray-drying process [34]. Figure 8 shows the glutelin 
from rice bran products with a high confidence level of >90 per residue confidence, as 
mentioned in the UniProt database. 

 
Figure 8. Glutelin in the rice bran product developed based on structure modelling. 

Prolamin is the smallest fraction among the four main protein fractions in rice bran. 
It only comprises 4% of the rice bran. Prolamins are soluble in 60–70% aqueous ethanol 
and easily soluble in acid and alkali. The molecular weight of protamine is 12–17 kDa [32]. 
In the RRB sample, the supporting peptide that has a marker for carbamidomethylation 
is the peptide RNCQVMQQQCCQQLRM. Only RRB shows a prolamin, while for RBP, 
prolamin is non-detected (ND). Prolamin is probably denatured during the spray-drying 
process, since the heat for spray-drying is high in temperature [35]. Generally, rice 

Figure 8. Glutelin in the rice bran product developed based on structure modelling.

Prolamin is the smallest fraction among the four main protein fractions in rice bran.
It only comprises 4% of the rice bran. Prolamins are soluble in 60–70% aqueous ethanol
and easily soluble in acid and alkali. The molecular weight of protamine is 12–17 kDa [32].
In the RRB sample, the supporting peptide that has a marker for carbamidomethylation
is the peptide RNCQVMQQQCCQQLRM. Only RRB shows a prolamin, while for RBP,
prolamin is non-detected (ND). Prolamin is probably denatured during the spray-drying
process, since the heat for spray-drying is high in temperature [35]. Generally, rice pro-
lamin is known as an effective agent in activating human anti-leukaemia immunity, but
Kim et al. [36] suggest that the reduction of 13 kD prolamin can improve the nutritional
quality of rice through the increasing of lysine level. Figure 9 shows the prolamin from rice
bran product with a low confidence level of 70 > pLDDT > 50 per residue confidence, as
mentioned in the UniProt database.
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Besides protein, the analysis also detected two types of sugar protein found in RBP
but undetectable in RRB. Both are glucose and fructose, with 1 and 12 proteins identified,
respectively. The formation of these components is due to the thermal hydrolysis of fibre in
RRB bran during the extraction process.

Figure 10 shows the glucose and ribitol identified in the RBP. There are three pep-
tides, RALALQLAEEGIR.V, RTNIFSYFFMSKH, and KGQEEKDAEETLRA, that support
this protein.
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Figure 10. Glucose and ribitol in the rice bran product developed based on the structure model.

Figure 11 shows the structural model based on its peptide make-up in the UniProt
database with a high confidence level of >90 per residue confidence. Fructose-bisphosphate
aldolase sequence for rice bran powder (RBP) with its peptide support KGILAADEST-
GTIGKRL and its structure with high confidence level > 90 in the UniProt database. The
Uniprot database also stated that this protein is involved in step 4 of the subpathway
synthesising D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose.
This subpathway is part of the pathway glycolysis, which is itself part of carbohydrate
degradation. The existence of these sugar protein is helping the spray-drying process to
produce fine powder without drying agents, such as maldodextin, arabic gum, and gelatin.
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Figure 11. Fructose-bisphosphate aldolase develops based on structure modelling.

4. Conclusions

The study on the effect of spray-drying operating conditions, namely inlet temperature,
feed flowrate, and air flowrate, on the RBP powder yield and protein concentration was
executed. The optimum conditions obtained based on response surface methodology (RSM)
are at the temperature of 178 ◦C, feed flowrate set to 25%, and air flowrate of 450 L/h.
Predicted RBP powder yields were validated with experimental data which produced a
lower and acceptable error as determined by the AARD value of 2.96%. The protein quality
analysis was performed on the RBP product, and RRB demonstrated that the main peptides
contributing to this protein were globulin and glutelin. Meanwhile, prolamin is believed to
degrade during the drying process, as it is not detected in RBP powder. The process also
produced protein sugar, helping produce a powder of fine particles without a drying agent.
The spray-drying produced a good quality powder with a spherical shape, as observed in
the micrograph picture.
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