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Abstract: This study proposes a recognition method based on symmetrized dot pattern (SDP) analysis
and convolutional neural network (CNN) for rapid and accurate diagnosis of insulation defect
problems by detecting the partial discharge (PD) signals of XLPE power cables. First, a normal
and three power cable models with different insulation defects are built. The PD signals resulting
from power cable insulation defects are measured. The frequency and amplitude variations of
PD signals from different defects are reflected by comprehensible images using the proposed SDP
analysis method. The features of different power cable defects are presented. Finally, the feature
image is trained and identified by CNN to achieve a power cable insulation fault diagnosis system.
The experimental results show that the proposed method could accurately diagnose the fault types
of power cable insulation defects with a recognition accuracy of 98%. The proposed method is
characterized by a short detection time and high diagnostic accuracy. It can effectively detect the
power cable PD to identify the fault type of the insulation defect.

Keywords: XLPE power cable; partial discharge; insulation defect problem; symmetrized dot pattern;
convolutional neural network; feature image

1. Introduction

Due to a steady increase in the residential and industrial demands under national
development, the transmission and distribution systems continuously develop towards
higher transmission voltage and capacity. Power cables have substituted the traditional
overhead transmission lines for power transmission. They have become one of the most
important and necessary pieces of equipment for transmission and distribution systems.
Over the long-term operation, the insulating material of power cables must bear electrical
stress. The failures in insulating properties resulting from careless construction, natural
disasters, insulation deterioration, and other factors are likely to occur. In worse cases,
internal partial discharge (PD) may occur, which results in the interruption of power trans-
mission, and even causes fires and personal injuries [1,2]. The PD signal is an important
index for distinguishing the power cable insulation material conditions. Early detection of
the PD signal and effective diagnosis of the insulation deterioration, defects, or damage of
power cables contributes to enhancing the power supply reliability and operational safety
of transmission and distribution systems [3,4].

The PD is a pulse-like phenomenon [5]. An impulsive current signal occurs in the
power cable earth wire. Sound, light, heat, and chemical reactions are diffused in ambient
space. The PD signal change is an effective index of power cable insulation defect condi-
tions [6–9]. The PD detection method has been used to study the insulation defect state in
some literature. Shang et al. [10] proposed a feature extraction method based on variational
mode decomposition (VMD) and multi-scale dispersion entropy (MDE) to overcome the
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limitations of conventional PD fault diagnosis. Their study performed the PD fault diagno-
sis using a hypersphere multiclass support vector machine (HMSVM). The experimental
results showed that the main feature parameters of PD could be extracted by combining
the VMD-MDE PD feature extraction method with the PD recognition of HMSVM. The
effectiveness and superiority of the proposed PD fault diagnosis method were proved as the
recognition accuracy was high. Polisetty et al. [11] proposed using commercial sonic sensors
and an artificial neural network (ANN) for five common PD classes in controlled conditions.
They discussed the influence of measurement distance and angle on classification accuracy.
They extended the applications to different types of PD recognition in outdoor insulation
systems and proved that the PD recognition accuracy of acoustic emission (AE) technology
was higher than 85%. Based on ANN, Dobrzycki et al. [12] proposed automatic recognition
of acoustic wave signals accompanying electric trees in the insulating materials. Their
study evaluated the efficiency of different ANNs in testing electric tree-related signals.
By adequately selecting statistical indices or input parameters of the analysis window,
they further verified that ANN effectively analyzed PD and solid dielectric electric trees.
Wang et al. [13] used ultrasonic sensors to test PD signals, used a threshold wavelet to
suppress the noise of PD ultrasonic signals, and proposed combining multi-scale analysis
with a backpropagation neural network to identify different types of PD models. The PD
type is classified to diagnose the cable terminal defect and evaluate the life and danger.
Gu et al. [14] studied a defect cast resin transformer. They transformed the PD signals into
energy distributions with time-frequency domain information by the Hilbert–Huang trans-
form. They proposed the Kolmogorov–Smirnov test with signal-energy ratio sorting as an
effective way to determine the optimal shifting number. The experimental results verified
that the accuracy of processing nonlinear and non-stationary signals could be increased.
Peng et al. [15] proposed a deep learning method for high-voltage cable PD recognition
based on convolutional neural networks (CNNs). First, the ethylene-propylene-rubber
cables’ PD data signals were measured. The transient PD pulse feature was extracted by
Wavelet Transform analysis. The CNN structure that influenced the accuracy of the PD
recognition method was discussed. The proposed method had better PD recognition accu-
racy than the traditional machine learning method. It solved the problem of distinguishing
the highly similar PD signals of high-voltage cable insulation defects. To overcome the
bottleneck and restrictions of the traditional machine learning method in increasing the
XLPE power cable PD recognition accuracy, Wang et al. [16] combined discrete wavelet
transform with the Lorenz chaotic system. This approach helped obtain the PD signal
feature map and used CNN to identify the power cable insulation fault type. The proposed
method could rapidly identify the power cable fault state. It has better recognition accuracy
and noise resistance than the traditional machine learning method.

This study obtained the PD signal feature image based on SDP and diagnosed the
insulation defect in the XLPE power cable using CNN. First, the high voltage potential
transformer was combined with an autotransformer to apply a regulating voltage to the
XLPE power cable conductor with insulation defects. The high-speed data capture card
captured the power cable PD signals measured by a high-frequency current sensor. The
PD time domain signals were transformed by SDP into visual feature images in the polar
form to visualize the signal frequency and amplitude variations when there were different
insulation defects. Finally, these SDP feature images were transferred to CNN to identify
the insulation fault type of the XLPE power cable. The experimental results show that the
power cable insulation fault recognition accuracy was as high as 98% compared to Ref. [16].
This finding proved that the proposed method could rapidly and effectively identify the
PD insulation defect type of power cable.

2. Power Cable PD Modeling and Test
2.1. Power Cable Defect Construction

The defects resulting from man-induced poor construction or the insulation defects
induced by an external environment are the major causes of the faults in the operation of
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power cables [17–19]. To study the PD of power cables, the XLPE-PVC single-core power
cable with a cross-section area of 38 mm2 and a withstand voltage of 25 kV was taken as
an experimental subject. A normal power cable model with an end connector (Type I) and
three common defective power cable fault models with end connectors (Type II~Type IV)
were built, and the PD phenomenon of power cable induced by different defect conditions
was discussed.

2.1.1. Normal Power Cable (Type I)

The power cable comprises a copper conductor, an inner semi-conducting layer, an
XLPE insulation layer, an outer semi-conducting layer, a screen, and a PVC covering from
inside to outside. To avoid the high voltage creepage along the cable surface, an end
connector of a wavy structure was mounted to increase the surface distance. It has stress
control (stress cone), waterproofing, screening, and insulation functions. As a result, the
electric field distribution could be equalized effectively, and the cable surface discharge
accident was prevented. The normal power cable model built in this study is shown in
Figure 1.
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Figure 1. Normal power cable model.

2.1.2. Defective Power Cable (Type II~IV)

If the power cable does not comply with construction specifications, the stress cone
will fail when installing the end connector. Subsequently, the dielectric constant and electric
field distribution inside the end connector are nonuniform, leading to a PD phenomenon.
Therefore, a defect model where the outer semi-conducting layer of the power cable was
only 5 mm long was built in this study. The stress cone of the end connector on the
outer semi-conducting layer could not be covered, and the PD induced by the defect
was detected.

During the installation of the end connector on the power cable, the dust in the
construction environment results in partial impurities on the insulation layer of the cable.
The residual impurities on the insulation layer influence the electric field distribution. The
insulation layer must be wiped in a fixed direction with a special cleaning patch. Regarding
the defect model simulating the residual impurities on the power cable insulation layer, this
study sprinkled copper powder on the cable insulation to simulate the construction without
cleaning. The PD induced by residual impurities on the insulation layer was detected.

The insulation of the power cable may be damaged by external factors such as man-
induced poor construction or the biting of animals. If the cable insulation damage does not
immediately induce a power outage accident, the cable insulation is likely to be infiltrated
by water vapor in long-term operation, and the insulation breakdown is induced and
eventually causes faults. Regarding the defect model simulating the power cable insulation
damage, the cable insulation in this study was damaged by a drilling bit with a diameter of
2 mm. The PD induced by the insulation layer damage was detected. The defective power
cable model built in this study is shown in Figure 2.
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Figure 2. Defective power cable model.

2.2. PD Signal Capture

Figure 3 shows the power cable test process designed in this study. First, the autotrans-
former was used to regulate the voltage of a high voltage potential transformer to generate
a 22.8 kV high voltage. These voltages were applied to the XLPE power cable conductor.
The high-frequency current sensor (HFCT) captured the current pulse signals of the power
cable earth wire. The high-speed data capture card received the output signals of HFCT for
calculation analysis. The bandwidth of HFCT was 1 MHz to 60 MHz, and the sampling
rate of the NI PXI-5105 high-speed data capture card was as high as 60 MS/s, which was
sufficient to display all PD signals detected by HFCT. Figure 4 shows the power cable PD
testing platform.
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3. Proposed Method
3.1. Symmetrized Dot Pattern (SDP)

The SDP provides a visual method to obtain the features of PD signals. Comprehensi-
ble images describe the amplitude and frequency variations of time sequence signals, and
the correlated results of discrete time axis signals are transformed. The snowflake-like point
set of sextuple symmetry is obtained and drawn in the polar coordinate space as a mirror
symmetry image [20–23]. The imaging principle of SDP analysis is shown in Figure 5.
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The time-domain PD signal is Xds = {ds1, ds2, ds3, . . . , dsi}, dsi is ith sampling point
of PD signal Xds, dsi+∆T is ith + ∆T sampling point of PD signal Xds after interval time ∆T.
According to the SDP principle, when the time domain PD signal point dsi is transformed
into polar coordinate space P(γ(i), αcw(i), αccw(i)), the radius γ(i) of the PD signal point
dsi mapped into the polar coordinates can be expressed as follows:

γ(i) =
dsi − dsmin

dsmax − dsmin
(1)

where dsmin is the minimum amplitude value of the time-domain PD signal Xds; dsmax is
the maximum amplitude value of the time-domain PD signal Xds; αcw(i) is the clockwise
rotation angle of the initial line of the adjacent interval time point xi+∆T in polar coordinates;
αccw(i) is the counterclockwise rotation angle of the initial line of adjacent interval time
point xi+∆T in polar coordinates, expressed as follows:

αcw = φ− dsi+∆T − dsmin
dsmax − dsmin

ζ (2)

αccw = φ +
dsi+∆T − dsmin
dsmax − dsmin

ζ (3)

where φ represents the initial rotation angle of the mirror symmetry plane (φ = 360m/n,
m = 1, 2, 3, . . . , n); n is the number of mirror symmetry planes (n is 6 in general); ∆T is the
time interval (range value 1~10); ζ is the amplification coefficient of rotation angle (smaller
than the value of φ in general).

The SDP transforms the time-domain PD signal waveform into a polar coordinate
plane P(γ(i), αcw(i), αccw(i)) locating point. The signal amplitude or frequency difference
is reflected in the position difference and curvature change of polar coordinate plane points.
Therefore, the SDP can visualize the PD signal information in images and display the
feature images of different PD phenomena. The SDP image transformed from the PD signal
waveform of the power cable defect model (Type II) proposed in this study is shown in
Figure 6.
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3.2. Convolutional Neural Network (CNN)

CNNs are image classifiers extensively used for supervised learning, and the network
has excellent accuracy for image classification [24–27]. Compared to the traditional mul-
tilayer perception network, CNN can identify image details using the convolution and
pooling layers, whereas the other neural networks simply extract data for operation. The
main structure of the neural network comprises a convolution layer, a pooling layer, and
a fully connected layer with activation functions. The CNN structure proposed in this
study is shown in Figure 7. The features of the SDP image of PD were extracted from an
input layer, three convolution layers, and a pooling layer. Afterward, the fault type of
power cable defect was identified by the fully connected layer composed of a flatten layer,
a hidden layer, and an output layer. The layers are introduced below.
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3.2.1. Convolution Layer

The convolution layer captures the image features in the network. This layer uses
masks of different sizes for convolution operations, and the image feature extraction or
feature enhancement is performed using spatial filtering. One stride is moved each time
until all pixels of the original input image are calculated by the mask (inner product), and
the Feature Map is obtained. Figure 8 shows an example of the convolution operation with
a 3 × 3 mask. The operation of the convolution layer is expressed as Equation (4).

OFq
image =

L

∑
p=1

IFp
image ⊗Mp,q, q = 1, . . . , K (4)

where IFp
image is the pth input feature image; OFq

image is the qth output feature image; Mp,q is
the convolution kernel of the qth input feature image corresponding to pth output feature
image; ⊗ is the convolution operation; L is the number of input feature images; K is the
number of output feature images.
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Figure 8. Schematic diagram of convolution layer operation.

To enhance the nonlinear mapping of the output result of the convolution layer, the
activation function is applied after the convolution operation [28,29]. Sigmoid and ReLU
are the common activation functions. The gradient vanishing of the Sigmoid function
worsens as the number of iterations increases. The ReLU function can overcome the
gradient vanishing problem effectively. It is more effective in accelerating network training
than the Sigmoid function. It will not significantly influence the generalization accuracy of
the model. Therefore, this study used the ReLU function as a nonlinear function, expressed
as Equation (5).

f (x) =
{

0 , i f x < 0
x , i f x ≥ 0

(5)

wherein x is the output of the last neuron. If x < 0, the output of the nonlinear function is
0; if x ≥ 0, the input of the nonlinear function is equal to the output.

3.2.2. Pooling Layer

The pooling layer is used to reduce the feature size and maintain the invariance of
image features after capturing the feature image by the convolution layer. It reduces the
computation complexity of the entire network and maintains the features matching the
image. The conventional pooling layer is divided into max pooling and average pooling.
The max pooling computing mode is where a color block is taken as a unit to obtain the
maximum value, and the max pooling output can be obtained. Similar to max pooling, in
average pooling, one color block is taken as a unit to obtain the average pixel values and
the average pooling output. This study used the max pooling operation. Figure 9 shows an
example of a 2× 2 max pooling operation. If the input feature image (IFi,j) is L× L, the
output feature image (OFi,j) after the max pooling operation is L

2 ×
L
2 , the pooling layer

operation is expressed as Equation (6).

OFu,v = Max(IF2u,2v, IF2u,2v+1, IF2u+1,2v, IF2u+1,2v+1) , 0 5 u, v 5
(

L
2
− 1

)
(6)
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3.2.3. Fully Connected Layer

The fully connected layer is usually located in the traditional neural network model
at the tail end of CNN. Its primary function is to transform the image feature matrix
extracted by the convolution and pooling layers into a one-dimensional vector, and then
the backpropagation operation neural network performs training. Finally, the output
layer generates the image classification result. Figure 10 shows the structure of the fully
connected layer proposed in this study. If the flatten layer has Ni X neurons, the hidden
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layer has Nk H neurons, and the output layer has Nj Y neurons. Where WXH is the weight
of the relationship between the flattened and hidden layers. WHY is the weight of the
relationship between the hidden layer and output layer. Xi is the ith neuron of flatten layer,
Hk is the kth neuron of the hidden layer, Yj is the jth neuron of the output layer. The flatten
layer Ni is 5120 neuron data, the hidden layer Nk is 1000 neuron data, the output layer Nj
is 4 neuron data. The relationship between the flattened layer and the hidden layer of a
fully connected layer is expressed as Equation (7). The relationship between the hidden
layer and output layer is expressed as Equation (8).

Hk =
Ni
∑

i=1
Xi ×WXH [i][k] , i = 1 . . . Ni , k = 1 . . . Nk (7)

Yj =
Nk
∑

k=1
Hk ×WHY[k][j] , k = 1 . . . Nk , j = 1 . . . Nj (8)
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4. Experimental Results
4.1. Power Cable PD Signal Measurement and Processing

There are four types of models built in this study, including a normal power cable
model (Type I), a power cable outer semi-conducting layer defect model (Type II), a defect
model of power cable insulation with impurities (Type III), and a power cable insulation
damage defect model (Type IV). The PD signals of the power cable were measured based
on three cycles of grid 60 Hz power supply. For each type of PD signal, the sampling
time, sampling frequency, and the number of sampling points were 50 ms, 40 ms/s, and
2,000,000, respectively. The ground terminal HFCT of the power cable was connected with
a high-speed data capture card to capture PD signals. Figure 11 shows the original PD
signals of the power cable.

4.2. SDP Feature Image of Power Cable PD

The efficiency and accuracy of identifying the fault type are related to the performance
of signal feature extraction. The feature extraction is the key factor influencing the defect
fault diagnosis result. The PD signals of power cable defect models will be measured. The
time-domain PD signal waveform is directly transformed by SDP into the feature image
of the polar coordinate plane. The SDP feature images of normal and three power cable
defect fault types are shown in Figure 12. According to the feature images of power cables
in different fault states drawn by SDP, the feature images of different defect fault types
show significantly different point coordinate distributions and densities. The image point
coordinates of the normal power cable are uniformly distributed and noticeably presented
in concentric rings. When the power cable insulation has different defect conditions, the
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image point coordinates will have varying degrees of nonuniform density distribution. The
image point coordinate distribution shape and the point coordinate area distribution at
the geometric center of the image show symmetric snowflake-like variations. The above
SDP feature image characteristics can be used in CNN for training and identifying the fault
types.
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Figure 11. Power cable PD signals of different insulation defects. (a) Normal power cable; (b) power
cable outer semi-conducting layer defect; (c) power cable insulation with impurities; (d) power cable
insulation damage defect.

4.3. CNN Fault Recognition Result

To implement the power cable fault diagnosis system, the proposed algorithm was
developed using MATLAB 2020a. The computer test environment was Intel® Core™i7-
9700 CPU@3.0 GHz processor, NVIDIA GeForce RTX 2080 SUPER graphics adapter, and
Windows 10 professional 64-bit operating system. The PD sampling was performed for a
normal model and three defect fault types of power cables. Meanwhile, each power cable
fault type had 300 samples. According to the SDP operation method, 300 SDP feature
images were drawn for each type of power cable PD signal; 200 feature images were
randomly selected as training samples and validation samples, and 100 feature images
were used as test samples. The CNN structure for identifying the power cable fault types
proposed in this study comprises three convolution layers, three pooling layers, and one
fully connected layer (including the flatten layer, hidden layer, and output layer). Each
convolution layer penetrated one 3 × 3 mask and one ReLU activation function, and each
pooling layer penetrated one 2 × 2 max pooling. The hyperparameters used in the CNN
training period are shown in Table 1.
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Figure 12. SDP feature images of power cable defect fault types. (a) Normal power cable; (b) power
cable outer semi-conducting layer defect; (c) power cable insulation with impurities; (d) power cable
insulation damage defect.

Table 1. Hyperparameters in CNN training period.

Hyperparameter Option Set Value

Solver for training network (Solver Name) sgdm

Hardware resource for training network (Execution Environment) GPU

Initial learning rate (Initial Learn Rate) 0.005

Maximum number of epochs (Max Epochs) 100

Size of mini-batch (Mini Batch Size) 100

Option for data shuffling (Shuffle) every-epoch

Data to use for validation during training (Validation Data) The same data type of training data

Frequency of network validation (Validation Frequency) 10

The CNN model designed in this study was trained and learned by using the collected
800 SDP feature images of power cable fault types as training samples (200 SDP feature
images of each type). To verify that the trained CNN model can identify different power
cable fault types, 400 SDP feature images different from the training sample images were
collected as test samples, with 100 samples for each fault type. Table 2 shows the power
cable classification and recognition results. The results show that the proposed method
could effectively identify different fault types of power cables, and the recognition accuracy
was as high as 98%. Additionally, the recognition result of power cable defect fault types
is displayed in a confusion matrix, as shown in Figure 13. Wherein the x-axis is the
actual fault type and the y-axis is the predicted fault type. The green and red grids of
the confusion matrix represent the number of accurate recognitions and the number of
mistakes, respectively. Each fault type’s recognition accuracy and error rates are the green
and red values in the whiteish-gray grids on the x-axis. The overall recognition accuracy
and error rates are the green and red values in the gray grid in the lower right corner of the
confusion matrix, respectively.
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Table 2. Power cable classification and recognition results of the proposed method.

Fault Type Normal Outer Semi-Conducting
Layer Defect

Insulation with
Impurities

Insulation Damage
Defect

Test pattern (items) 100 100 100 100

Accurate pattern (items) 100 98 98 96

Recognizing rate (%) 100 98 98 96

Total recognizing rate (%) 98
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The same training sample data and test sample data were compared with Ref. [16], in
which the DWT was combined with the chaos theory to obtain the XLPE PD signal feature
image, and then the fault type was identified by CNN. The comparison is shown in Table 3.
Regarding training and recognition time, DWT + ChaosTheory + CNN required 25 s for
training and 0.29 s for recognition. Whereas, SDP+CNN required 23 s for training and 0.3 s
for recognition. In terms of accuracy, the accuracy (98%) of SDP+CNN was better than the
accuracy (97.5%) of DWT + ChaosTheory + CNN. Therefore, the SDP proposed in this study
does not need DWT to filter the PD background noise. It can transform the feature image
computing time in Chaos Theory more rapidly and achieve better recognition accuracy.

In the power cable PD measurement environment, the measured PD signals were
likely to be disturbed by outside noise. To verify the noise resistance of the proposed
method, the original signals were provided with different degrees of signal-to-noise ratio
(SNR) white noise. According to Table 3, the recognition accuracy decreased as the noise
increased (SNR decreased). If SNR = 10, the proposed method had higher recognition
accuracy (95.5%) than DWT + ChaosTheory + CNN (91.5%).
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Table 3. Comparison results of the proposed method and Ref. [16].

Detection Method Feature Extraction Execution Time
(s)

Training Time
(s)

Test Time
(s)

Recognition Accuracy (%)
Ranking

SNR = 0 SNR = 15 SNR = 10

SDP+CNN 651 (800 samples) 23 0.3 98 97.5 95.5 1

DWT + Chaos
Theory + CNN [16] 3488 (800 samples) 25 0.29 97.5 94.5 91.5 2

5. Conclusions

This study built a normal and three common insulation defect models of power
cables and measured the actual PD phenomenon. It also proposed a power cable fault
detection method. To highlight the PD signals, the key feature image was transformed
by SDP. The feature image was used as the key to fault diagnosis, and the fault type was
identified by CNN. The experimental results show that the recognition accuracy of the
proposed method was as high as 98%. The training and recognition times were only 23 s
and 0.3 s, respectively. Subsequently, the robustness of the proposed method for actual
noise was verified. Different degrees of SNR noise were added to the original PD signals,
and the recognition rate was still higher than 95.5%. This proves that the proposed method
can obtain good recognition accuracy and interference resistance, and the training and
recognition time of power cable fault detection could be saved effectively. The future
research directions are described below.

1. Using a hardware circuit to implement the power cable fault diagnosis system will
contribute to evaluating the power cable insulation state and preventive diagnosis
of faults;

2. Using the proposed method for fault diagnosis of other power equipment to imple-
ment advanced maintenance work of power equipment and to enhance the running
life and reliability of power systems.
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