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Abstract: As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose
and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products.
However, the efficient, practical, value-added product valorization of lignin remains quite challenging.
Although several studies have reviewed the valorization of lignin by microorganisms, this present
review covers recent studies on the valorization of lignin by employing yeast to obtain products
such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been
found to be suitable for the biological conversion of lignin and might provide new insights for future
research to develop a yeast strain for lignin to produce other valuable chemical compounds.
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1. Introduction

The depletion of fossil fuels has given rise to concerns in recent years [1]. As the
most plentiful aromatic biopolymer on the earth, representing around 300 billion metric
tons [2], lignin offers potential for biofuels and diverse chemical production by means of
biorefinery processes [3]. It is expected to profit the global economy while maintaining
sustainable development [4]. However, currently, most lignin substances are decomposed
by burning [5]. Achieving success in sustainable lignin valorization has been quite chal-
lenging so far [6]. The main reasons for this are mostly due to its rigid, complex structures,
strong smell, and its toxicity to some living organisms [7]. Certain biochemical approaches,
like thermochemical combined with enzymatic techniques, are commonly applied to gain
value-added lignin compounds [8]. Research related to the valorization of lignin via the
use of microorganisms has gained interest because of the potential to develop low-emission
processes yielding valuable biofuels and chemical compounds. The success of future biore-
fineries may depend on novel approaches to lignin utilization. This review highlights the
current situation of lignin valorization employing yeasts as a microbial platform to produce
valuable products.

1.1. Lignin Resources

Lignocellulosic biomass is mainly constituted of cellulose, hemicellulose, and lignin,
with the composition varying depending on the type of biomass (Table 1). Lignin is a
phenylpropane polymer unit [9] that builds up a strong integrated system with cellulose
and hemicellulose in biomass over covalent and hydrogenic linkages [10]. Lignin, as a
phenylpropanoid biopolymer, gives rigidity to the biomass structure [11]. In plants, lignin
provides important functions against environmental stresses such as diseases from microor-
ganisms and oxidative stress [12]. However, the potential of lignin remains to be explored
due to the complexity of its structure compared with cellulose and hemicellulose [13].
Several depolymerization methods, such as physical, chemical, and biological, have been
successfully applied to lignin to produce monomers and oligomers [14]. Monomers and
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oligomers can be used as substrates for biofuel and various chemicals [15,16]. The global
annual production of lignin by the paper and ethanol industries is around 100 million
tons [17]. Most lignin waste is used as a low-value substrate to produce heat and generate
electricity [18]. The quantity of lignin produced by these industries is predicted to increase
in the following years, especially in the biorefinery industry, due to the use of renewable
energy products such as fuels and chemicals.

Table 1. Relative composition of lignocellulosic biomass.

Lignocellulosic Biomass Lignin Hemicellulose Cellulose Reference

(%) (%) (%)

Hardwood
Aspen 19.5 21.7 52.7 [19]
Beech 20 33 45 [20]

Cherry wood 18 29 46 [20]
Poplar 20 24 49 [20]
Willow 29.3 16.7 41.7 [19]

Softwood
Fir 30 22 45 [20]

Pine armandii 24.1 17.8 48.4 [21]
Japanese cedar 33.8 23.1 38.6 [22]

Spruce 27.6 29.4 43 [23]
Others

Barley straw 14–19 27–38 31–45 [24]
Bamboo 20.81 19.49 39.8 [22]

Corn cobs 18.2 33.1 34.6 [22]
Corn strover 7–21 28 38–40 [24]
Rice straw 12–14 23–28 28–36 [24]

Wheat straw 20.2 34.4 37.5 [22]
Banana waste 14 14.8 13.2 [25]

Nut shells 30–40 25–30 25–30 [25]
Coffee grounds 19.8–26.5 5–10 59.2–62.9 [26]

Newspaper 18–30 25–40 40–55 [25]

1.2. Structure of Lignin

As a natural macromolecule, the structure of lignin contains methoxy, phenolic hy-
droxyl, and terminal aldehyde groups [27]. Lignin consists of three types of phenyl-
propanoids, i.e., p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) [28], composed
with p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, respectively, as monomers
(Figure 1a) [6,28,29]. At a glance, the chemical structures of phenylpropanoids appear
similar; their differences depend on the interchange degree of the methoxy groups in
the aromatic rings [30]. These three monolignols generate phenoxyl radials, randomly
polymerized to form biopolymers with three-dimensional networks. The weighted average
molecular weights (Mw) of isolated lignin (milled wood lignin) from Eucalyptus globulus,
Southern pine, and Norway spruce are 6700, 14,900, and 23,500 Da, respectively [31],
with the molecular weight varying considerably according to the isolation method. The
Klason method measures lignin contents in softwood at 25–35%, hardwood at 20–25%,
and herbaceous plants at 15–25% [32]. Understanding the phenylpropanoid structures is
essential for choosing an appropriate pretreatment method, mainly when lignin dissolves
in the solvent [33]. The unit of phenylpropanoids in lignin are attached by chemical bond-
ing, namely α-O-4, β-β, β-1, β-5, β-O-4, 5-5, and 4-O-5 (Figure 1b). The most abundant
bond is β-O-4, comprising around 50% of all bonds [34]. Most major bonds have low
bond-dissociation energy (BDE) values, making it possible to convert lignin into other com-
pounds [35]. The three phenylpropane building blocks of lignin correspond to the lignin
structures p-hydroxyphenyl, guaiacyl, and syringyl. Softwood lignin consists primarily of
G-units with traces of H-units, whereas hardwood lignin contains both G- and S-units.
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Figure 1. Relative structures of three monomeric subunits in lignin (a). Linkage amount and its
position in lignin structure (number/100 phenylpropane units) (b). These are modified versions from
previous reports [28,29].

2. Current Lignin Valorization by Microbes

In the last decade, microbes have produced biofuels and high-value products such as
lipids, vanillin, pyrogallol, cis, cis-mucoid acid, lactate, succinate, ferulate, pyridine, and
biopolymers (PHAs, monolignols) from lignin and its derivates [36–41]. The breakdown of
the lignin is the initial step in synthesizing biofuels and biomaterials. To this end, enzymatic
degradation, specifically by microorganisms, is critical to obtain the compounds for lignin
utilization and may become a promising eco-friendly method in the near future. All lignin-
degrading enzymes, such as laccases, lignin peroxidases, manganese peroxidases, versatile
peroxidases, and dye-decolorizing peroxidases, can be produced by microorganisms such
fungi, bacteria, and yeasts [29]. In recent years, the development of strains and their
application as lignin-degrading enzymes have been reported [42].

3. The Use of Yeasts
3.1. Lipids

Many studies have focused on lipid production, i.e., single cell oils (SCOs), by microor-
ganisms [43]. SCOs are positioned as the third generation of biofuels, and research has been
reported based on the use of several microorganisms, such as, bacteria, microalgae, fungi,
and yeast, that can utilize lipids [44]. Most model microorganisms that have been reported
to accumulate lipids from lignin and its derivates are microbes. Compelling research has
characterized lignin metabolism by Rhodococcus opacus and R. rhodochrous [45,46]. Notably,
microbial metabolism, especially that of yeast, has merits thanks to its ability to deal with
several aromatic compounds due to its cell tolerance [47].

The combination of the metabolism of aromatic compounds to fatty acids may lead
to the possible large/industrial-scale production of biofuels and other chemicals from
lignin and its derivatives in the future [48]. Trichosporon has gained attention in the
past few years due to its ability to produce large quantities of lipids using lignocel-
lulosic substrates and high tolerance to various lignocellulosic inhibitors [49–52]. The
potential ability of Trichosporon to grow on lignin derivatives was studied using T. cu-
taneum. T. cutaneum ACCC 20271 yeast reportedly grows on lignin-derived phenolic
aldehydes such as 4-hydroxybenzaldehyde, vanillin, and syringaldehyde. Research has
shown that T. cutaneum has better tolerance to 4-hydroxybenzaldehyde (1.5 g/L) com-
pared with vanillin (0.1 g/L) and syringaldehyde (0.5 g/L). In the fermentation process,
4-hydroxybenzaldehyde, as a representative of p-hydroxyphenyl or H lignin, was found to
be suitable for use as a substrate for T. cutaneum for lipid production (16.6% or 0.85 g/L). At
the same time, the other phenolic aldehydes (vanillin and syringaldehyde) were converted
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to alcohols and acids. Then, 4-hydroxybenzaldehyde is converted into 4-hydroxybenzoate
by aldehyde dehydrogenases of T. cutaneum. Afterward, it is assimilated into protocatechu-
ate by dioxygenases with oxygen as the substrate. Protocatechuate is converted into acetyl-
CoA and succinyl-CoA via the β-ketoadipate pathway. Acetyl-CoA is used for lipid synthe-
sis directly or is assimilated first into the TCA cycle and used as the dominant precursor for
lipid synthesis [53]. Subsequently, T. cutaneum ACCC 20271 and MP11 stains demonstrated
the tolerance of 4-hydroxybenzaldehyde (0.8 g/L), 4-hydroxy-3-methoxybenzaldehyde
(0.8 g/L), and syringaldehyde (0.6 g/L) in wheat straw hydrolysate by biodegrading
these aldehydes with adequate cell growth and lipid accumulation (40.87%) [54]. Another
species from Trichosporon, named T. oleaginosus, has been reported to accumulate lipids on
several aromatic compounds (4-hydroxybenzoic acid, phenol, and resorcinol). T. oleagi-
nosus ATCC 20509 could endure and metabolize aromatic substrates by ortho-cleavage
aromatic metabolism pathways. Afterward, the fed-batch feeding strategy of T. oleaginosus
in resorcinol revealed a lipid production of 69.5% (1.64 g/L) [55].

Several oleaginous yeast species have demonstrated the ability to metabolize lignin
aromatic compounds. The oleaginous red yeast Rhodotorula toruloides can metabolize p-
coumaric acid, ferulic acid, vanillic acid, and 4-hydroxybenzoic acid [56]. Lipomyces starkeyi
has received significant attention as a SCOs producer due to its ability to accumulate
lipids at quantities of up to 70% in a nitrogen-limited mineral medium. It also showed
the ability to reduce lignin derivates such as syringaldehyde and vanillin [57]. Another
Cutaneotrichosporon genus, i.e., C. guehoae, reportedly utilized 4-hydroxybenzoic acid as the
sole carbon source [58]. However, the studies above did not clearly describe the correlation
of lipid production by the respective yeasts.

3.2. Enzyme for Lignin Degradation

Enzymes are essential to catalyzing lignin into their derivatives or aromatic monomers,
which provide for building blocks of some valuable chemical products. The production
of suitable enzymes is currently being explored [59]. Lignin-degrading enzymes were
discovered around a hundred years ago in Basidiomycota fungus Phanerochaete chryspo-
rium for peroxidases and laccases in a plant named Rhus vernicifera [60]. Later, several
enzymes that can depolymerize lignin were found in fungi and bacteria [61,62]. Lignin-
degrading enzymes are divided into two groups (Figure 2): laccases and peroxidases [63].
These enzymes are used in vitro applications to depolymerize lignin and its derivatives.
Implementing in vitro enzymatic conversion has some merits over directed-cell lignin
conversion, e.g., it could increase substrate and enzyme interaction while reducing the
cultivation time and improving ATP/NAD(P)H imbalance [64]. Nonetheless, yeast plays
another role in promising lignin-degrading enzyme producers. Several yeasts, such as
Saccharomyces cerevisiae, Yarrowia lipolytica, Pichia pastoris, Pichia methalonica, Kluyveromyces
lactic, Kluyveromyces maxianus, and Cryptococcus sp., were successfully used for the pro-
duction of laccases and peroxidases by using exogenous genes, not only from fungus-like
Ascomycota and Basidiomycota division, but also plants like oomycote and bacteria [65].
The advantages of using yeast for enzyme production include the easy handling of cells,
economical substrate for cultivation, rapid growth, quick genetic manipulation, and cell
capability for post-translation modification proteins through glycosylation, proteolytic or
disulfide mechanisms [66–68].
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3.2.1. Laccase Producing Yeasts

Laccases are among the important ligninolytic enzymes produced by microorgan-
isms for lignin depolymerization in lignocellulosic biomass [69]. Lignin degradation by
laccase is accomplished by oxidation or receiving an oxygen molecule as an electron accep-
tor [70]. Yeasts have been shown to produce their laccases via the exogenous laccase gene
YlLac [71,72]. Yeast Rhodotorula mucilaginosa reportedly produced laccase (3.27 U/mL) nat-
urally due to the presence of the laccase-containing domain 2 (LACC2) gene [73]. In 2017,
two yeasts, Kluyveromyces dobzhanskii Dw1 and Pichia manshurica Dw2, were reported to
produce laccases naturally using lignocellulosic biomass as a carbon source. A rice bran sub-
strate supported the laccase production of 88.625 U/L in K. dobzhanskii DW1 and sugarcane
bagasse of 79.107 U/L in P. manshurica DW2 [74]. Yeast, an industrial engineering platform
of laccases, shows different potential according to the strain. Pichia pastoris can be used
for most laccases as expression hosts, such as laccase containing domain 1 (LCC1), LCC2,
laccase (LAC), laccase 2 (LAC2), laccase 3 (LAC3), laccase 4 (LAC4), laccase A (LACA),
laccase B (LACB), laccase C (LACC) and laccase D (LACD), as well as some recombinant
laccases such as LCCA, LCCB, LCCC and LCC5I (Table 2). In the Kluyveromyces lactis, the
production of laccases POXA1b and POXC from the fungus Pleurotus ostreatus yielded
higher production than Saccharomyces cerevisiae [75]. Laccases produced in yeasts have
several applications in diverse fields [76]. One example is the delignification of Pinus
radiata lignin pulp by Basidiomycota fungi Coriolopsis gallica LCC1 laccase produced in
K. lactis [77]. Additionally, wheat straw lignocellulose was successfully pre-delignified
by P. pastoris LCC1 laccase from Pycnoporus sanguineus H275 [78]. In the implementation
of bioremediation, Laccase LCC2 from Monilinia fructigena was expressed in P. pastoris to
reduce the 2, 4, 6-trichlorophenol [79]. Laccase-producing yeasts have also been used for
dye decolorizing from fungi such as Coprinus comatus, Coprinus cinereus, Lenzites gibbosa,
Pleurotus sanguineus, Trametes genera like Trametes trogii and Trametes versicolor, as well as
for bacteria including Thermus thermophilus [80], Streptomyces cyaneus [81]. The resistance
present in S. cerevisiae was successfully enhanced by expressing the LACA gene from
Trametes sp. AH28-2 polymerizes 8 mM of vanillin into less toxic compounds [82]. Other
researchers have reported the successful development of S. cerevisiae in the presence of
coniferyl aldehyde by laccases LCC2 of Trametes versicolor [83]. The immense laccase activity
of yeasts was reported in the successful production of Cryptococcus sp. S-2 at 380,000 U/L by
LAC2 expression from fungi Gaeumannomyces graminis [84]. However, further optimization
is needed to use yeast as an industrial host for laccase producers.
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3.2.2. Peroxidases Producing Yeast

Peroxidases, namely lignin peroxidase (LiP), manganese-dependent peroxidase (MnP),
and versatile peroxidase (VP), have immense potential in biotechnology research and
industrial applications, as they play an essential role in the production of biofuels and
other valuable biochemicals [85]. LiP has similarities with other peroxidases in terms of its
catalytic and oxidative systems [86]. LiP, MnP, and VP catalyze lignin-derived compounds,
i.e., phenolic and non-phenolic, with hydrogen peroxide (H2O2) due to the presence of an
iron protoporphyrin IX for each mol of protein [87]. Several fungi have been reported to
be natural producers of peroxidases such as Phlebia brevispora and P. radiata from Phelebia
genera, Trametes versicolor, Phanerochaete chrysosporium, Ganoderma lucidum, and Coriolopsis
occidentalis. A few bacteria such as Acinobacter calcoaceticus, Klebsiella pneumonia, and
Streptomyces viridosporus, reportedly produce peroxidases naturally [63,88]. Meanwhile,
a few types of yeast reportedly can produce peroxidase (MnP) are Meyerozyma carribica
(1884 U/L), M. guilliermondii (1779 U/L), Debaryomyces hansenii (1806 U/L), and Vanrija
humicola (1586 U/L) [89,90]. Nonetheless, in the production of peroxidases, yeasts are
commonly used as a host for fungal recombinant extracellular enzymes [91]. P. pastoris can
produce LiP (15 U/L) by expressing the LiPH2 gene from Phanerochaete chrysosporium BKM-
F-1767 [92]. Later, research on P. pastoris and the production of LiP achieved a maximum
volumetric activity of 4480 U/L by optimizing the combination strategy in the fed-batch
fermentation process [93]. Another Pichia genus that can produce LiP by heterologously
expressed Phanerochaete chrysosporium is P. methanolica [94]. Finally, an industrial yeast
that can be used as a lignin peroxidases host is S. cerevisiae. LiP from P. chrysosporium was
successfully produced by S. cerevisiae and has been used to degrade 2,4-dichlorophenol [95].

In nature, MnP has a critical function in degrading lignin compounds, since it can
oxidize Mn2+ to Mn3+ and diffuse to oxidize lignin and other phenolic compounds [96].
In 2003, MnP was successfully produced in P. pastoris by MnP1 from P. chrysosporium [97].
The optimization of a recombinant MnP production process based on pH and temperature
in a fed-batch fermentation of P. pastoris enhanced the enzyme activity (>2000 U/L) [98,99].
Recombinant MnP produced in P. pastoris was found in delignification applications to
eliminate lignin from hardwood and softwood pulp [100], and MnP from Ganoderma
lucidum produced in P. pastoris was found to be the decolorization platform for four types
of dyes, specifically, navy blue HGL, drimaren blue CL-BR, drimaren red K-4Bl, drimaren
yellow X-8GN. It also reduced the presence of phenol in the medium [101]. MnP1 from
P. chrysosporium was also observed in S. cerevisiae. It produced manganese peroxidase
to increase the growth of cells that was previously inhibited by the presence of toxic
compounds [102]. Later, a novel MnP3 gene from white-rot fungi named Cerrena unicolor
BB6P was successfully expressed in P. pastoris, showing 154.5 U/L of MnP activity [103].
Besides that, S. cerevisiae was successfully used with other peroxidases such as VP from
Pleurotus eryngii, i.e., king trumpet mushroom [104].
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Table 2. Lignin-degrading enzymes produced by yeast.

Enzymes Native Gene Yeast Reference

Laccase Pleurotus ostreatus POXA1b Kluyveromyces lactis [75]
POXC Saccharomyces cerevisiae

Coriolopsis gallic LCC1 Kluyveromyces lactis [77]
Pycnoporus sanguineus H275 LCC1 Pichia pastoris [78]
Trametes trogii LCC1 Pichia pastoris [105]
Trametes trogii LCC1 Kluyveromyces lactis [106]
Trametes versicolor LCC1 Pichia methalonica [107]
Monilinia fructigena LCC2 Pichia pastoris [79]
Trametes versicolor LCC2 Saccharomyces cerevisiae [83]
Lenzites gibbosa LAC Pichia pastoris [108]
Pleurotus sanguineus LAC Pichia pastoris [109]
Streptomyces cyaneus LAC Saccharomyces cerevisiae [81]
Gaeumannomyces graminis LAC2 Cryptococcus sp. S-2 [84]
Coprinus comatus LAC3 Pichia pastoris [110]

Thermus thermophillus LACTt Pichia pastoris [80]
Coprinus cinereus LCC5I Pichia pastoris [111]
Trametes sp. AH28-2 LACA Saccharomyces cerevisiae [82]
Trametes sp. AH28-2 LACB Pichia pastoris [112]
Trametes sp. 420 LACC Pichia pastoris [113]
Trametes sp. 420 LACD Pichia pastoris [114]
Trametes versicolor LCCA Pichia pastoris [115]
Trametes versicolor LCCB Pichia pastoris [116]

Yarrowia lipolytica YILAC Pichia pastoris [72]
Lignin peroxidase Phanerochaete chrysosporium BKM-F-1767 LiPH2 Pichia pastoris [92]

Phanerochaete chrysosporium LiPH2 Saccharomyces cerevisiae [95]
Phanerochaete chrysosporium LiPH8 Pichia methalonica [94]
Phanerochaete chrysosporium LiPH8 Saccharomyces cerevisiae [117]

Manganese-dependent
peroxidase

Phanerochaete chrysosporium MnP1 Pichia pastoris [97]
Ganoderma lucidum MnP1 Pichia pastoris [101]
Phanerochaete chrysosporium MnP1 Saccharomyces cerevisiae [102]
Cerrena unicolor BB6P MnP3 Pichia pastoris [103]

Versatile peroxidase Pleurotus eryngii VPL2 Saccharomyces cerevisiae [104]
Pleurotus eryngii wtVP Saccharomyces cerevisiae [118]

4. Other Biochemicals Produced by Yeasts

High tolerance to several lignin-derived compounds may be useful in lignin valoriza-
tion research [119]. The funneling pathways (metha- and ortho-cleavages) mechanism
revealed the potential to use of yeasts to convert lignin-derived compounds into other
compounds [120]. In the fermentation of Trichosporon guehoae, ferulic acid is reportedly
converted into vanillic acid [58]. Another yeast, T. cutaneum, showed the ability to convert
lignin aldehyde compounds, namely syringaldehyde (2 g/L) and vanillin (2 g/L), into
their acids (vanillic acid and syringic acid) and alcohols (syringyl alcohol and vanillyl
alcohol) [53]. Various studies have found vanillic and syringic acid to be useful materials in
pharmacology, with anti-inflammatory, anti-microbial, and anti-cancer applications [121].
Furthermore, vanillyl alcohol may be of use in the treatment of Parkinson’s disease [122].

5. Future Perspectives and Feasibility of the Use of Yeasts for Lignin Valorization

Lignin is an abundant biomass material with a complex structure. As a bioresource,
it comes directly from nature and is a waste product of the paper, agriculture (pulp), and
biorefinery industries. Efforts to maximize its potential have grown significantly through
biorefinery research intending to produce desirable compounds. Current innovations in
this scope seek to slow the depletion of fossil resources due to their massive consumption
in many industrial sectors. Much research has been conducted to investigate the use
of lignin as a material for producing lipids, biopolymers, and other valuable aromatic
compounds. Compounds derived from lignin can be used in many fields, including energy,
food, cosmetics, pharmaceuticals, textiles, and other chemical industries. Nonetheless,
most lignin ends up as a low-value material, resulting in further carbon pollution.
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Lignocellulosic biomass is mainly composed of carbon, hydrogen, and oxygen, and has
been used as a carbon source in the production of biofuels and biochemicals. Additionally,
the use of lignin and its derivatives as a carbon source in the natural carbon cycle has
gained attention in the last decade. Due to its natural firmness and rigidity, utilizing
lignin has always been challenging. Lately, excellent extraction results from biomass are
significant for lignin valorization. Several biomass pretreatment methods to overcome the
difficulties associated with the utilization of lignin have been developed, such as physical,
chemical, and biological. Physical pretreatment methods, including irradiation (microwave
and ultrasound), mechanical (milling, grinding, chipping), and heat treatments (hot water
treatments), are often used for lignin extractions. However, physical pretreatment has
several drawbacks, e.g., high operational cost, high energy use, and the resulting inhibitor
byproducts [123]. Meanwhile, chemical pretreatment processes using alkalis (NaOH,
Ca(OH)2, and KOH), organic solvents (benzene, hexane, ethanol, and methanol), and
strong acids (H2SO4, HCl, and HNO3) have disadvantages of generating pollution and high
operational cost [124]. Meanwhile, biological conversion methods offer several advantages
regarding their eco-friendly and cost-effective nature. Several microorganisms have the
ability to degrade lignin through enzymatic and biochemical processes. Yeast, as a part
of the microorganism phylogeny, plays an important role in the biological conversion of
lignin. The valorization of lignin by using yeast has been increasing due to its high growth
rate, fast genetic manipulation, high tolerance to inhibitors, and relatively easy handling
of the cells. The high adaptation level of yeast cells to stress-causing lignin derivates may
lead to bioproduct formation in the cells. Several yeasts are capable of converting lignin
derivatives into valuable bioproducts such as SCOs, vanillic acid, vanillyl alcohol, and
syringic acid. Yeasts are capable of depolymerizing lignin into their monomers and have
been employed as a production host for lignin-degrading enzymes from Ascomycota and
Basidiomycota fungi. The lignin is broken down by lignin-degrading enzymes (laccases,
lignin peroxidases, manganese-dependent peroxidase, and versatile peroxidases) produced
by yeasts into lignin derivatives. However, the production is still relatively low and cannot
be used on an industrial scale. Hence, in terms of genetic improvements and fermentation
steps, optimization should now be the focus. Valorization through the use of yeasts is
still limited regarding substrate conversion into desirable products. Hybrid utilization by
combining enzyme depolymerization and lignin monomer conversion employing yeasts to
produce valuable bioproducts may become an effective strategy to valorize lignin further.

6. Conclusions

Lignin and its derivatives are renewable materials with potential value for the pro-
duction of numerous chemical products, such as lipids, PHAs, vanillin, and high-value
acids like vanillic acid and syringic acid. The utilization of lignin resources will reduce
the demand for nonrenewable fossil-based fuels and chemicals when those resources are
depleted. As a microbial platform to produce valuable products, the valorization of lignin
by yeasts might open new avenues of research into lignin valorization.
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Versatile Peroxidase by Flow Cytometry-Based High-Throughput Screening System. Biochem. Eng. J. 2020, 157, 107555. [CrossRef]

119. Deparis, Q.; Claes, A.; Foulquié-Moreno, M.R.; Thevelein, J.M. Engineering Tolerance to Industrially Relevant Stress Factors in
Yeast Cell Factories. FEMS Yeast Res. 2017, 17. [CrossRef] [PubMed]

120. Harwood, C.S.; Parales, R.E. The Beta-Ketoadipate Pathway and the Biology of Self-Identity. Annu Rev. Microbiol. 1996, 50,
553–590. [CrossRef] [PubMed]

121. Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat,
M.M.; Georgetti, S.R.; Casagrande, R.; et al. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment,
Oxidative Stress, Cytokine Production, and NFκB Activation in Mice. J. Nat. Prod. 2015, 78, 1799–1808. [CrossRef]

122. Kim, I.S.; Choi, D.-K.; Jung, H.J. Neuroprotective Effects of Vanillyl Alcohol in Gastrodia Elata Blume Through Suppression
of Oxidative Stress and Anti-Apoptotic Activity in Toxin-Induced Dopaminergic MN9D Cells. Molecules 2011, 16, 5349–5361.
[CrossRef]

123. Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of
Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [CrossRef]

124. Saratale, G.D.; Oh, M.-K. Improving Alkaline Pretreatment Method for Preparation of Whole Rice Waste Biomass Feedstock and
Bioethanol Production. RSC Adv. 2015, 5, 97171–97179. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/17436624
http://doi.org/10.1007/s00284-006-0068-8
http://www.ncbi.nlm.nih.gov/pubmed/17334840
http://doi.org/10.1134/S0003683814020124
http://doi.org/10.4014/jmb.1310.10079
http://www.ncbi.nlm.nih.gov/pubmed/24448164
http://doi.org/10.1016/j.jbiosc.2019.12.009
http://www.ncbi.nlm.nih.gov/pubmed/32035791
http://doi.org/10.1016/j.bej.2020.107555
http://doi.org/10.1093/femsyr/fox036
http://www.ncbi.nlm.nih.gov/pubmed/28586408
http://doi.org/10.1146/annurev.micro.50.1.553
http://www.ncbi.nlm.nih.gov/pubmed/8905091
http://doi.org/10.1021/acs.jnatprod.5b00246
http://doi.org/10.3390/molecules16075349
http://doi.org/10.3389/fenrg.2018.00141
http://doi.org/10.1039/C5RA17797A

	Introduction 
	Lignin Resources 
	Structure of Lignin 

	Current Lignin Valorization by Microbes 
	The Use of Yeasts 
	Lipids 
	Enzyme for Lignin Degradation 
	Laccase Producing Yeasts 
	Peroxidases Producing Yeast 


	Other Biochemicals Produced by Yeasts 
	Future Perspectives and Feasibility of the Use of Yeasts for Lignin Valorization 
	Conclusions 
	References

