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Abstract: The research on energy conversion and transportation of fuels at a microscopic level is of
great significance to the development of industry. As a new alternative fuel, alcohols are widely used
in industry and daily life, so it is necessary to investigate the thermophysical properties of them.
In this work, seven species of pure liquid alcohols were performed to investigate the microscopic
mechanisms of thermal energy transfer by non-equilibrium molecular dynamic (NEMD) method.
Firstly, the thermal conductivity of alcohols was calculated and was found to be consistent with
the experimental data. Then, the influence of temperature on energy transfer is investigated, the
results show that the contribution of convection energy transfer increases and both the inter- and
intramolecular terms decrease with the increase of temperature. Finally, the influence of molecular
length on energy transfer was investigated at the same temperature, and it is concluded that the
contribution of the convective term decreases and the interactive term increases to the total heat flux
with increasing the length of the chain. It is worth mentioning that the contribution of intramolecular
energy transfer gradually becomes a dominant part of the total energy transfer as the linear chain
molecule increases to a certain length and the number of carbon atoms at the intersection point of
inter- and intramolecular energy transfer is similar to the turning point of thermal conductivity.

Keywords: organic liquids; NEMD; thermal conductivity; heat conduction; molecular dynamics

1. Introduction

In the environment of gradual shortage of traditional fossil energy, many countries
have to search new alternative fuels [1,2]. Alcohols have been widely used as an alter-
native fuel [3–6]. Besides, they can also be also mixed with other fuels (such as gasoline,
biodiesel, etc.) to enhance and improve their properties [7–11]. First and foremost, it is sig-
nificant to investigate the thermophysical properties of new alternative fuels. Heat energy
transfer is one of the basic issues in the physical and chemical fields. Fundamentally, it
plays a significant role in revitalizing the energy industries [12]. As a basic thermophysical
property, thermal conductivity is essential in optimizing the internal combustion engine and
thermal design [13,14]. Experimental measurement is a common and important method to
obtain the thermal conductivity of organic liquid accurately. Jin et al. [14] investigated the
thermal conductivity of dimethyl carbonate using the transient hot-wire method at different
temperatures from 280 to 361 K. Ogiwara et al. [15] measured the thermal conductivity
of ten pure liquid alcohols and four of their binary mixtures by the relative horizontal
parallel-plate method. The thermal conductivity of materials can be measured accurately
and its macroscopic variation law can be obtained by experimental methods. However,
the experimental method cannot capture the microscopic mechanism of heat transfer in
different cases.

In recent years, molecular dynamic (MD) simulation has been increasingly emerging
as the result of the rapid development of computer technology. It provides a powerful tool
to analyze the heat thermal energy transfer at atomic or molecular levels [16–20] and has
yielded a series of satisfactory results. Ohara [21] investigated the intermolecular energy
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transfer (IET) in liquid water and its contribution by MD simulation. The results suggested
that the rotational IET occupies a dominant part. Torii et al. [22] explored the contribution
of inter- and intramolecular energy transfers to heat conduction in liquids of n-octane by
MD simulation, and put forward a new expression to calculate the heat flux. Guevara-
Carrion et al. [23] predicted the self-diffusion coefficient, shear viscosity and thermal
conductivity using MD simulation and the simulated results aligned well with experimental
data. Ohara et al. [24] investigated the contribution of inter- and intramolecular energy
transfer of liquid n-alkanes and found that the thermal energy is mainly transferred in the
space along the stiff intramolecular bonds.

Scholars have calculated thermal conductivity and investigated the energy transfer
of liquid n-alkanes and alcohols. However, to the best of our knowledge, there are few
studies that investigate the energy transfer of alcohols at different temperatures, and
the microscopic mechanism of heat conduction of liquid alcohols is still unclear. In this
paper, seven kinds of pure compound liquids of linear chain n-alcohols were selected as
a representative to investigate the contribution of energy transfer in each part to the total
heat flux and reveal the microscopic mechanism of heat conduction of liquid alcohols.

2. Computational Methods
2.1. Simulation System

The MD simulation system used for calculating the thermal conductivity of alcohols is
shown in Figure 1. The simulation system is a rectangle cell with side lengths of 40 Å (4∆L,
where ∆L = 10 Å), 40 Å (4∆L) and 200 Å (20∆L) in an x, y, z direction, respectively. In order
to eliminate the influence of the scale effect, periodic boundary conditions were imposed in
three dimensional directions. The system is divided into five parts, the hot chunks with a
length of ∆L are set at both ends of the system and the cold chunk with a length of 2∆L is
set at the center of the system. The areas between the hot and cold chunks are the control
volumes with a length of 8∆L. Furthermore, the chosen length of ∆L is larger than the
structure size of n-alcohols to reduce simulation error.
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Figure 1. The simulation model for calculating the thermal conductivity of n-alcohols.

Seven kinds of n-alcohols with straight chain (i.e., C2H5OH, C3H7OH, C4H9OH,
C5H11OH, C6H13OH, C7H15OH and C8H17OH) are selected in this paper to investigate
the effect of a carbon chain on the heat transfer mechanisms. The OPLS-AA (Optimized
Potentials for Liquid Simulations All-Atom) field [25,26] was applied to calculate the
interactions for alcohols. The corresponding OPLS-AA calculating parameters of alcohols
are generated from the LigParGen web server [27], as listed in Tables 1–4. The crossed
Lennard-Jones parameters for a heterogeneous pair are obtained by the famous Lorentz-
Berthelot mixed rule [28], that is, εij = (εi·εj)1/2 and σij = (σi + σj)/2.
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Table 1. Nonbond parameters for alcohols.

Atom Type q (e−) ε (kcal/mol) σ (Å)

C1(CH3-) −0.290 0.066 3.500
C2(-CH2-) −0.230 0.066 3.500

O −0.590 0.170 3.120
H 0.400 0.000 0.000

Table 2. Bond stretching parameters for alcohols.

Bond Type Kr (kcal·mol−1·Å−2) R (Å)

CT-CT 268.000 1.529
CT-O 320.000 1.410
CT-H 340.000 1.090
O-H 553.00 0.945

Table 3. Angle bending parameters for alcohols.

Angle Type Kθ (kcal·mol−1·rad−2) θ (deg)

CT-CT-H 37.500 110.700
CT-CT-O 50.000 109.470
CT-O-H 55.000 108.500

CT-CT-CT 58.350 114.000
H-CT-H 33.000 107.800

Table 4. Torsion of dihedral for alcohols.

Dihedral Type KΦ1 (kJ/mol) KΦ2 (kJ/mol) KΦ3 (kJ/mol) KΦ4 (kJ/mol)

CT-CT-CT-CT 1.300 −0.200 0.200 0.000
H-CT-CT-H 0.000 0.000 0.300 0.000
CT-CT-O-H −0.356 −0.174 0.492 0.000
CT-CT-CT-O −1.552 0.000 0.000 0.000
H-CT-O-H 0.000 0.000 0.352 0.000
H-CT-O-H 0.000 0.000 0.352 0.000

In the system, the Verlet algorithm is used to solve Newton’s equation motion with
a time step of 1 fs. A cut-off radius of 15 Å is applied for calculating van der Waals
interactions, and the PPPM (particle-particle particle-mesh) solver [29,30] with an accurate
value of 10−5 is chosen for solving the Coulomb interactions to reduce computation time.
Firstly, the system is equilibrated in canonical ensemble (NVT) [31,32] for 1 ns with a Nosé-
Hoover thermostat and barostat to control temperature and pressure at desired values.
The NVT ensemble is then unfixed and the NVE ensemble is introduced in the system to
maintain energy conservation. A stable and uniform heat flux is applied to the system by
using the non-equilibrium molecular dynamic (NEMD) method [33]. After running for
8 ns to reach a new dynamic equilibrium state, a temperature gradient forms in the control
volumes. According to Fourier’s law, the thermal conductivity can be calculated as shown
in Equation (1):

λ = − J
2tAxy〈∂T/∂z〉 (1)

where, λ is the thermal conductivity, J is the total energy transferred in the simulation time (t)
in the NVE ensemble, Axy is the cross-sectional area and <∂T/∂z> is the temperature gradient.
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2.2. Simulation Method of Heat Conduction

In the simulation system, the stable and uniform heat flux of 500 MW/m2 is applied
in the z-component and the heat flux [34] Js is defined as in Equation (2):

Js =
1
Vs

〈
∑
i=1

viei − Sivi

〉
(2)

where, Vs is the volume of the system, ei is the per-atom energy (potential and kinetic) and
vi is the velocity of atom i in the first term, and Si in the second term is the per-atom stress
tensor [35,36]. The stress tensor for atom i is given by Equation (3), where substitute x, y, z
into a and b to obtain the nine components of the tensor:

Sab = −mvavb −Wab (3)

where the first term is a kinetic energy contribution for atom i, the second term is the
virial contribution due to the intramolecular and intermolecular interactions and it can be
approximatively expressed as Equation (4):

Wab = 1
2

Np

∑
n=1

(r1aF1b + r2aF2b) +
1
2

Nb
∑

n=1
(r1aF1b + r2aF2b) +

1
3

Na
∑

n=1
(r1aF1b + r2aF2b + r3aF3b)

+ 1
4

Nd
∑

n=1
(r1aF1b + r2aF2b + r3aF3b + r4aF4b) +

1
4

Ni
∑

n=1
(r1aF1b + r2aF2b + r3aF3b + r4aF4b)

+Kspace(ria, Fib)

(4)

where, the first term is a pairwise energy contribution, r1 and r2 are the positions of the two
atoms in the pairwise interaction, and F1 and F2 are the forces on the two atoms resulting
from the pairwise interaction. The second term is a bond contribution of similar form for
the Nb bonds which atom i belongs to. There are similar terms for Na angles, Nd dihedrals,
and Ni improper interactions. There is also a term for Kspace contribution from long-range
Coulombic interaction, if defined. Furthermore, Equation (3) can be represented in the
form of atomic stress [37,38]. For pairwise interactions, the atomic stress of atom i is shown
as Equation (5):

σ
pair
i = −1

2

N

∑
j 6=i

rij ⊗ Fij (5)

where rij is the relative position of atom i in relation to atom j, Fij is the force acting upon
atom i with atom j in pairwise interaction. The sum over all the atomic stress of atoms
equals the virial contribution in the system Wpair = −∑N

i σ
pair
i . Similarly, other terms can

also be represented as this form. Hence, the stress tensor of system Wtotal can be also be
expressed as follows in Equation (6):

Wtotal = Wpair + Wbond + Wangle + Wdihedral + Wimproper + Wkspace (6)

According to the various contributions listed above on, Jtotal can be divided into two
categories, i.e., the convective term and the interaction term. The interaction term contains
an intermolecular interaction term and an intramolecular interaction term:

Jtotal = Jconvection + Jinteract = Jconvection + Jinter + Jintra (7)

where, Jconvection includes the potential term and kinetic term, Jinter is composed of pairwise
interaction (JvdW) and Kspace interaction, ande Jintra can be divided into bond term, angle
term, dihedral term and improper term, listed as follows in Equations (8)–(10):

Jconvection = Jpot + Jkin (8)

Jinter = JvdW + Jkspace (9)
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Jintra = Jbond + Jangle + Jdihedral + Jimproper (10)

In this study, seven kinds of n-alcohols molecules selected for simulation are all linear
chain molecular, therefore, the improper energy equals zero and the improper contribution
to total heat flux is zero also.

3. Results and Discussion
3.1. Thermal Conductivity

According to the NEMD method, the thermal conductivity of n-alcohols was calculated
at different temperatures. To verify the simulation model and calculating method, the
thermal conductivity of ethanol was investigated at temperatures T = 233.15, 263.15, 293.15,
and 323.15 K at normal atmospheric pressure and the simulated results comparing with the
experimental data [39,40] are given in Table 5 and Figure 2.

Table 5. Comparison between the simulated and experimental values of thermal conductivity for
ethanol at different temperatures.

T/K 233.15 263.15 293.15 323.15

λEXP/W·m−1·K−1 0.1807 0.1723 0.1650 0.1570
λNEMD/W·m−1·K−1 0.1785 0.1726 0.1686 0.1590

Dev./% −1.22 0.17 2.18 1.27
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Figure 2. Comparison between the simulated and experimental values of thermal conductivity for
ethanol at different temperatures.

It can be clearly seen that the thermal conductivity of ethanol decreases linearly with
the increase of temperature. The relative deviation between the simulated and experimental
results is less than 2.5%. Thus, the simulated values fit well with the experimental data,
indicating that the simulation method and model can be applied to calculate the thermal
conductivity of n-alcohols and analyze the heat transfer mechanism from a microscopic
perspective. The thermal conductivity of seven kinds of liquid n-alcohols with linear chains
are then calculated at a temperature of 323.15 K. The simulated results and compared
experimental data are given in Table 6 and Figure 3.
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Table 6. Comparison between experimental and simulated values of thermal conductivity for seven
kinds of n-alcohols at 323.15 K.

Substance λEXP/W·m−1·K−1 λNEMD/W·m−1·K−1 Dev./%

Ethanol 0.1570 0.1590 1.27
1-Propanol 0.1474 0.1427 −3.19
1-Butanol 0.1447 0.1398 −3.39
1-Pentanol 0.1436 0.1385 −3.55
1-Hexanol 0.1457 0.1400 −3.91
1-Heptanol 0.1475 0.1431 −2.98
1-Octanol 0.1540 0.1449 −5.91
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Figure 3. Comparison between experimental and simulated values of thermal conductivity for seven
species of alcohols at 323.15 K.

In Figure 3, seven kinds of n-alcohols are expressed in terms of carbon atoms for
convenience. It is found that the values of thermal conductivity reduce first and then
increase for ethanol to 1-Octanol with the turning point at 1-Pentanol. That is, the thermal
conductivity of 1-Pentanol is the smallest at the same temperature. Besides, as seen in
Table 6, the maximum relative deviation is−5.91% between the simulated and experimental
values [41], indicating that the simulated values are also in good agreement with the
experimental values. To explore this interesting variation, several kinds of energy transfers
in the n-alcohols liquids and their contributions to the total heat flux are discussed in the
following sections.

3.2. Temperature Dependence of Energy Transfer

As mentioned above in Equations (8)–(10), the total heat flux of the heat transfer in
organic liquid contains seven parts. In this section, ethanol (C2H5OH) was taken as an
example, and the contribution of each part to the total heat flux was calculated to reveal
the microscopic mechanism of heat conduction. Figure 4 depicts the contribution of each
part to the total heat flux in the conduction process of C2H5OH at different temperatures.
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different temperatures.

It can be clearly seen from Figure 4 that the contribution of energy transfer in each part
to the total heat flux changes as the temperature increases. In particular, the contributions of
intermolecular and intramolecular energy transfers occupy up to 81% of the total heat flux
at a temperature of 233.15 K, and it decreases to 67% of the total heat flux at a temperature
of 323.15 K. Therefore, it is not hard to find out that the energy transfer of the interaction
part is the dominant factor in the process of heat conduction, while, the dihedral term and
Kspace term only occupies a small faction (below 0.53%) of the total energy transfer due
to the neutral molecule and little dihedral energy. To show it clearly, the contribution of
these two terms are represented separately in Figure 5, and the two terms don’t present a
regularity with the increase of temperature. For intramolecular interaction, bond and angle
interactions occupy the main part and both terms decrease with the increase of temperature.
The intermolecular interaction emerges the same trend as the intramolecular term. However,
the convective interaction increases as temperature increases. And in the convective
interaction, the proportion of kinetic energy is larger than that of potential energy.

As the temperature increases, the thermal motion of molecules increases, resulting
in an obvious increase in the contribution of energy transfer due to molecular motion.
Furthermore, the total volume of liquid ethanol will increase with increasing temperature,
and the density decreases in turn. The density of liquid ethanol was calculated at various
temperatures and compared with the experimental data, as shown in Figure 6, and the
maximum relative deviation is smaller than ±3% [38]. With the decrease of density, the
number of molecules in per unit volume will decrease and the energy transfer efficiency will
then reduce. Therefore, the thermal conductivity decreases with the increase of temperature.
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3.3. Chain Length Dependence of Energy Transfer

For the organic liquid, molecular length affects the heat conduction because the
translation, rotation, and vibration of molecular chains are related to the molecular length.
The effect of molecular length on the contribution of energy transfer in each part to the total
heat flux was investigated in this part. Figure 7 shows the contribution of energy transfer
in each part to the total heat flux for seven species of alcohols at a temperature of 323.15 K.



Processes 2022, 10, 1987 9 of 12

Processes 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

temperatures and compared with the experimental data, as shown in Figure 6, and the 
maximum relative deviation is smaller than ±3% [38]. With the decrease of density, the 
number of molecules in per unit volume will decrease and the energy transfer efficiency 
will then reduce. Therefore, the thermal conductivity decreases with the increase of 
temperature. 

 
Figure 6. The simulated and experimental values of density of liquid C2H5OH at different 
temperatures. 

3.3. Chain Length Dependence of Energy Transfer 
For the organic liquid, molecular length affects the heat conduction because the 

translation, rotation, and vibration of molecular chains are related to the molecular length. 
The effect of molecular length on the contribution of energy transfer in each part to the 
total heat flux was investigated in this part. Figure 7 shows the contribution of energy 
transfer in each part to the total heat flux for seven species of alcohols at a temperature of 
323.15 K. 

 
Figure 7. Contribution of energy transfer in each part to the total heat flux for seven species of 
alcohols at 323.15 K. 

It can be seen that the contribution of interaction energy transfer to the total heat flux 
at 323.15 K shows an obvious increase from 67% to 83% when the number of carbon atoms 
increases from two (ethanol) to eight (1-Octanol). However, this increasing trend is not 
unlimited. Because the molecules keep moving all the time, the contribution of energy 
transfer due to molecular motion to the total heat flux still accounts for a certain 
proportion. For the interaction term, the contribution of intermolecular energy transfer 

Figure 7. Contribution of energy transfer in each part to the total heat flux for seven species of
alcohols at 323.15 K.

It can be seen that the contribution of interaction energy transfer to the total heat
flux at 323.15 K shows an obvious increase from 67% to 83% when the number of carbon
atoms increases from two (ethanol) to eight (1-Octanol). However, this increasing trend
is not unlimited. Because the molecules keep moving all the time, the contribution of
energy transfer due to molecular motion to the total heat flux still accounts for a certain
proportion. For the interaction term, the contribution of intermolecular energy transfer
occupies a dominate part in alcohols with a shorter molecular chain. By increasing the
number of carbon atoms, the contribution of intramolecular energy transfer gradually
increases, while the intermolecular energy transfer decreases. And the contributions of
the bond and angle energy transfer occupy the most important part of the intramolecular
term. The contributions of dihedral and Kspace energy transfer still account for only a
small proportion (below 0.4%) because of the small amount of the dihedral energy and the
neutral molecule. Similarly to that discussed above, the percentage of the dihedral term
and the Kspace term shows no regularity with increasing the number of carbon atoms, as
shown in Figure 8. As reported in the previous literature [34,42], the virial contribution
expressed in Equation (4) might produce erroneous results in the case of heat flux when
applied to systems with many-body interactions, such as angle, dihedral, or improper
potentials. The contribution of angle and dihedral term is larger than what we found in
this simulation. To reveal the microscopic mechanism of heat conduction very accurately,
the more strict formula for calculating the heat flux with many-body interactions should
be used.

It can be clearly seen from Figure 7 that the contribution of the kinetic energy transfer
has hardly changed, and the potential energy transfer gradually decreases with increasing
the number of carbon atoms. Through the above phenomena, it is considered that the
contribution of interaction energy transfer has greater significance than the contribution
of convection to the energy transfer with increasing the length of the molecular chain. In
summary, the interaction energy transfer is responsible for more than 60% of the total
energy transfer for seven species of liquid n-alcohols at 323.15 K, and the contribution of
interaction to the total heat flux will gradually increase with increasing the length of the
linear molecular chain at same temperature.
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As the length of the linear molecular chain increases, the conversion between inter-
molecular and intramolecular term has aroused great interest in this work, as shown in
Figure 9. This is because it might be related to the changing trend of thermal conductivity
for the seven species of liquid n-alcohols (seen in Figure 3), as shown in Figure 9. It can be
clearly seen that the intramolecular energy transfer increases according to increasing the
length of molecules. However, this increase is gradually decelerated. The contribution of
intramolecular term has reached 54% when the number of carbon atoms is eight, while the
intermolecular term continues to decrease with the increase of the length of molecular chain.
It is found that the number of carbon atoms at the intersection of inter- and intramolecular
terms is about six, which is similar to the turning point of thermal conductivity.
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4. Conclusions

In this paper, a non-equilibrium molecular dynamic (NEMD) method was applied to
calculate the thermal conductivity of seven kinds of liquid n-alcohols and investigate the
contribution of energy transfer in each part to the total heat flux to reveal the microscopic
mechanism of the heat conduction of organic liquids. Firstly, the results show that the
simulated results of thermal conductivity of ethanol at different temperatures calculated
through the NEMD method are consistent with the experimental data, which proves the
accuracy of the simulation model and method. The effect of temperature and the length
of the molecular chain on the contribution of energy transfer in each part to the total heat
flux is then discussed. The results show that the contribution of interaction energy transfer
dominates the process of heat conduction, even though the convective energy transfer
gradually increases with the increase of temperature. With the increasing of the length of
the molecular chain, the interaction term occupies up to almost 80% of the total heat flux
in the conduction process, and at the same time the convective energy transfer gradually
decreases. Furthermore, the inter- and intramolecular terms in the interaction part changes
contrarily, and the intersection point of the inter- and intramolecular terms is similar to the
turning point of thermal conductivity. According to the change of the thermal conductivity,
it is obvious that intramolecular energy transfer will play an important and dominant role
in the process of heat conduction if the length of the molecular chain continues to increase.
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