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Abstract: Four-mecanum-wheeled omnidirectional mobile robots (FMOMR) are widely used in
many practical scenarios because of their high mobility and flexibility. However, the performance
of trajectory tracking would be degenerated largely due to various reasons. To deal with this issue,
this paper proposes a data-driven algorithm by using the T-S fuzzy quaternion-value neural network
(TSFQVNN). TSFQVNN is tailored to obtain the controlled autoregressive integral moving average
(CARIMA) model, and then the generalized predictive controller (GPC) is designed based on the
CARIMA model. In this way, the spatial relationship between the three-dimensional pose coordinates
can be preserved and training times can be reduced. Furthermore, the convergence of the proposed
algorithm is verified by the Stone–Weierstrass theorem, and the convergence conditions of the
algorithm are discussed . Finally, the proposed control scheme is applied to the three-dimensional
(3D) trajectory tracking problem on the arc surface, and the simulation results prove the necessity
and feasibility of the algorithm.

Keywords: T-S fuzzy quaternion-value neural network; generalized predictive control; data-driven
method; mecanum-wheeled mobile robot

1. Introduction

Nowadays, mobile robots appear in many industrial applications, such as logistics [1],
the chemical industry [2,3], shopping malls [4], and other fields. Compared with four-wheel
car-like mobile robots, FMOMR , due to their high mobility and flexibility, have been widely
used in soccer robots, nursing robots, mobile manipulators, etc. [5,6]. However, in practical
applications, FMOMR would inevitably be affected by time-delays, nonlinear frictions, and
unknown external disturbances, resulting in great performance degeneration in trajectory
tracking. Therefore, there are great challenges to realize accurate trajectory tracking for
FMOMR [7,8].

Usually, there are at least two methods to perform the modeling work, such as black
box modeling and non-black box modeling. The latter requires a clear physical model or
at least structure parameters. In [9–11], researchers created the model for FMOMR from
the point of kinematics. However, the kinematics model is not accurate enough for the
existence of uncertainty. Black box modeling methods can make up for the shortcomings
of mechanism modeling, and they are suitable for nonlinear system modeling, such as
neural network [12,13], even though some important information can be wasted or ignored.
For example, there is plenty of empirical knowledge, and rule-based information cannot be
utilized by neural networks for their structure characteristic. In addition, the tool of fuzzy
logic has come in vogue for solving the problem of uncertainty and nonlinearity [14,15].
Generally, the fuzzy logic system does not obtain the ability to learn, but behaves well by
combining with the neural networks, such as the fuzzy differential neural network [16],
the fuzzy wavelet neural network [17], and the fuzzy recurrent wavelet neural network [18].
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However, the huge computation and memory demands prevent the aforementioned fuzzy
neural networks from being implemented in practical systems.

In addition, in many practical applications, the ability to move along the spherical or
arc surface is required, which requires taking the dynamics of FMOMR in 3D space into ac-
count. Under these circumstances, the aforementioned learning-based methods are usually
simplified to multiple multi-input–single-output (MISO) systems when they are used to
approximate a multi-input–multi-output (MIMO) system, which would miss the spatially
structured relations among those 3D pose coordinates [19]. Recently, the quaternion neural
network has been regarded as an effective method to identify 3D or four-dimensional (4D)
systems [20,21]. The core idea of the quaternion neural network is to use quaternion to
represent 3D or 4D input information, so as to capture the inherent structured information
through Hamilton product [19]. In the meantime, a quaternion weight linking two quater-
nion units only has four degrees of freedom, whereas the corresponding weight parameter
of standard BP neural network is 4× 4 = 16, i.e., a fourfold memory saving is achieved by
using a quaternion neural network [22]. Because of these benefits, the quaternion neural
network plays an important role in the field of speech recognition [23], color image com-
pression [20], wind forecasting, etc. [24]. However, it still has the common shortcoming of
the neural network, which does not have the ability to deal with uncertain information and
cannot make effective use of empirical knowledge. Therefore, we consider a tailored fuzzy
quaternion neural network to represent the dynamics of FMOMR with structured spatial
information preserved. On the other hand, we can obtain a set of T-S fuzzy models through
TSFQVNN. Then, because the consequent of the T-S fuzzy model is very similar to the
CARIMA model, we can convert them into the CARIMA model. Finally, for the CARIMA
model, a 3D trajectory tracking controller is designed by using multivariable generalized
predictive control.

Compared to the existing works, the proposed approach has several advantages.
(1) Those existing trajectory tracking control schemes for FMOMR in [7,8,25] could only
realize trajectory tracking in a two-dimensional plane. This strategy realizes the trajectory
tracking of FMOMR on the arc surface. (2) The proposed system identification method not
only has the advantages of the fuzzy logic system and neural network, but also gives full
play to the benefits of quaternion representation. In this way, the algorithm can identify
3D or 4D systems with better performance, and the number of weight updates is less than
that of [12–18]. (3) The universal approximation of TSFQVNN is proven by the Stone–
Weierstrass theorem, and its stability is analyzed by the Lyapunov theory. (4) Different
from the existing fuzzy generalized predictive controller [26,27], the proposed CARIMA-
based controller preserves the correlation between multi-dimensional pose coordinates.
Simulation results show that the designed controller can obtain higher 3D trajectory track-
ing accuracy.

The rest of the paper is organized as follows. Section 2 presents a formulation of the prob-
lem. Section 3 introduces TSFQVNN. Section 4 presents the TSFQVNN-GPC. In Section 5,
simulations for FMOMR 3D trajectory tracking based on TSFQVNN-GPC, are provided to
show the effectiveness of the proposed method. Finally, Section 6 draws a conclusion.

2. Problem Description

In this paper, we consider the situation that the FMOMR could move on a circular
arc or a spherical surface, which makes the FMOMR kinematic model a 4-input-3-output
system. The input and output data come from a four rotate speed input for mecanum
wheels and position output of the robot body along the x, y, and z axes among the world
coordinate system. Figure 1 describes a scene in which FMOMR move on the internal
surface of a cylindrical cavity. The robot mainly consists of a mobile robot body, mecanum
wheels, and continuum manipulator. There are various functional devices equipped in the
mobile robot body, and the four mecanum wheels can move in any direction on the surface.
The continuum manipulator installed on the front of the robot body can achieve inspection
operation in a spatially complex environment. At the same time, many uncertainties in
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FMOMR lead to a complex and imprecise modeling process. This makes it impossible
to guarantee that an effective motion controller can be used for FMOMR with different
structural designs. Therefore, the ”data-based“ method can be used to control the motion
of the mobile robot.

Mecanum Wheel

Continuum 

Manipulator

Mobile Robot Body

Arc Surface

X

YZ

X

YZ

Figure 1. FMOMR in a cylindrical cavity.

First, to compensate for the lack of self-learning ability of the T-S fuzzy logic system,
many researchers use the fuzzy neural network for system identification. Figure 2 de-
scribes the structure of the T-S fuzzy neural network (TSFNN). For the FMOMR system,
the implementation of TSFNN requires the 4-input-3-output system to be divided into
three 4-input-1-output systems. Finally, three T-S fuzzy models with 4-input-1-output
can be obtained. The characteristics of T-S fuzzy model afterparts are helpful to build the
CARIMA model, and then design the GPC controller based on the CARIMA model to
realize FMOMR 3D trajectory tracking control.
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Figure 2. T-S fuzzy neural network.

Three T-S fuzzy models with 4-input-1-output can be obtained from TSFNN above.

Rr
j : i f u is µj , Then yr

j (k + 1) = (pr
0j)

T + (pr
ij)

TUr ,

j = 1, · · · , N, r = 1, 2, 3,
(1)
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where Ur = [yr(k), yr(k− 1), . . . , yr(k− na + 1), u(k− 1), . . . , u(k− nb)] is the input and
output variable. µj = [A1j, . . . , Ana j, B1j, . . . , Bnb j] denotes the jth membership function.
(pr

ij)
T = [ar

1j, . . . , ar
na j, br

1j, . . . , br
nb j]

T represents the jth consequent parameter. It can be
regarded as the parameter of the jth linear submodel of the rth T-S fuzzy model.

Then the CARIMA model is obtained by weighted summation of the T-S fuzzy model
above, and finally, the 3D trajectory tracking controller is designed by GPC.

3. T-S Fuzzy Quaternion-Value Neural Network Identification

In this part, TSFQVNN and its learning algorithm are introduced, and it is proven that
the fuzzy neural network model can approximate any nonlinear system with any accuracy.
In addition, the stability analysis is achieved by the method of Lyapunov stability analysis.

3.1. T-S Fuzzy Quaternion-Value Neural Network

First of all, a network structure is supposed to be introduced of the TSFQVNN. It
has four layers, and each input and output is a quaternion neuron in Figure 3, for the
sake of simplicity. Therefore, the network structure looks more concise than the TSFNN
structure, and the four-layer structure of TSFQVNN is identified with the TSFNN layers
structure. In the antecedent network, we do not need to divide the MIMO system into
subsystems according to its dimension of input variable, but adopt the quaternion method.
Furthermore, the output of the consequent network can benefit from the quaternion as well.
In this way, the traditional TSFNN with quaternion-value can handle with the trajectory
tracking problem in 3D space well from the degree of structured information representation
and memory saving. The detailed descriptions of the four layers are as follows.

Antecedent Network

Consequent Network

.

.

.

.

.

.

.

.

. .
.
.

Layer1 Layer2 Layer3 Layer4

Figure 3. T-S fuzzy quaternion-value neural network.

• Layer 1: The first layer is defined by N input variable ui:

ui(k) = uRe
i + iuIm(i)

i + juIm(j)
i + kuIm(k)

i ,

k = 1, . . . , n, i = 1, . . . , m,
(2)

where m and n are the dimension of input vector and order of the system, respectively.
• Layer 2: The second layer fuzzifies the data from the first layer and gets the membership

function µij(j = 1, . . . , N). N denotes the fuzzy partition number of ui. Then, we
use the Gaussian function as the split-activation function because the split-activation
function can avoid a large number of singularities in the process of solving [22].
We have
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µij(ui) = exp

[
−((ui(k))− (cij)

2)

(σ2
ij)

]
, (3)

where the initial values c0
ij and σ0

ij of cij and σij are calculated from the fuzzy c-means
(FCM) methods [28]. The formula is as follows:

c0
ij = (c0

ij)
Re + i(c0

ij)
Im(i) + j(c0

ij)
Im(j) + k(c0

ij)
Im(k), (4)

σ0
ij = (σ0

ij)
Re + i(σ0

ij)
Im(i) + j(σ0

ij)
Im(j) + k(σ0

ij)
Im(k). (5)

The following is the real part for example, and the rest can be obtained in this way:

(c0
ij)

Re =
∑N

k=1(µ
Re
ij (k))

$uRe
i (k)

∑N
k=1(µ

Re
ij (k))

$
, (6)

(σ0
ij)

Re =

√√√√∑N
k=1 µRe

ij (k)(u
Re
i (k)− (c0

ij)
Re(k))2

∑N
k=1 µRe

ij (k)
, (7)

where $ε(1, ∞) is a weighted exponent.
• Layer 3: Each node in the antecedent network represents a fuzzy rule. The fuzzy

method of single point fuzzy set is adopted for the input value, namely

αj =
m

∏
i=1

µRe
ij + i

m

∏
i=1

µ
Im(i)
ij + j

m

∏
i=1

µ
Im(j)
ij + k

m

∏
i=1

µ
Im(k)
ij . (8)

yj = yRe
j + iyIm(i)

j + jyIm(j)
j + kyIm(k)

j , (9)

where yRe
j = pRe

0j + pRe
1j uRe

1 + . . . + pRe
mju

Re
m .

• Layer 4: The fourth layer is the output layer and contains three functions, f1, f2, f3.
The function f1 sums the fitness of the fuzzy antecedent, and then the function f2 and
f3 can calculate the output of the system. We have

f1 =
N

∑
j=1

αRe
j + i

N

∑
j=1

α
Im(i)
j + j

N

∑
j=1

α
Im(j)
j + k

N

∑
j=1

α
Im(k)
j , (10)

f2 =
N

∑
j=1

αjyj, (11)

f3 =
f Re
2

f Re
1

+ i
f Im(i)
2

f Im(i)
1

+ j
f Im(j)
2

f Im(j)
1

+ k
f Im(k)
2

f Im(k)
1

. (12)

Consequently the system forecast output is

ŷ=
∑N

j=1(αj)
Re(yj)

Re

∑N
j=1(αj)Re

+i
∑N

j=1(αj)
Im(i)(yj)

Im(i)

∑N
j=1(αj)Im(i)

+j
∑N

j=1(αj)
Im(j)(yj)

Im(j)

∑N
j=1(αj)Im(j)

+k
∑N

j=1(αj)
Im(k)(yj)

Im(k)

∑N
j=1(αj)Im(k)

.

(13)

The T-S fuzzy model composed of N rules can be obtained from TSFQVNN above. We have

Rj : i f u is µj , Then yj(k + 1) = (p0j)
T + (pij)

TU ,

j = 1, · · · , N,
(14)
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where U = [y(k), y(k− 1), . . . , y(k− na + 1), u(k− 1), . . . , u(k− nb)] is the input and output
variable. µj = [A1j, . . . , Ana j, B1j, . . . , Bnb j] is the jth membership function.
(pij)

T = [a1j, . . . , ana j, b1j, . . . , bnb j]
T is the jth consequent parameter. It can be regarded

as the parameter of the jth linear submodel.

Remark 1. For 3D and 4D systems, TSFNN needs to update the weight three or four times, while
TSFQVNN only needs to update the weight once. This makes TSFQVNN identification faster and
less computational.

3.2. The Learning Algorithm

The rules for TSFQVNN learning is defined. Take the error cost function as

E =
1
2

M

∑
l=1
| yl − ŷl |2, (15)

where yi is reference output, ŷi represents forecast output, M denotes the number of output

neurons, and |x| de f
=
√

x2
1 + x2

2 + x2
3 + x2

4 for a quaternion x= x1+ix2+jx3+kx4.
For a sufficiently small learning constant ε > 0, and the thresholds are supposed to be

updated according to the following equations:

∆p0j
de f
= −ε

 ∂E
∂(p0j)Re + i

∂E

∂pIm(i)
0j

+ j
∂E

∂pIm(j)
0j

+ k
∂E

∂pIm(k)
0j

, (16)

∆pij
de f
= −ε

 ∂E
∂pRe

ij
+ i

∂E

∂pIm(i)
ij

+ j
∂E

∂pIm(j)
ij

+ k
∂E

∂pIm(k)
ij

, (17)

where ∆ denotes the correction of a parameter, ε is the learning rate, and because of the
complicated relationship between its size, speed and accuracy of network convergence, it
is necessary to adjust the learning rate through multiple tests.

The above Equations (16) and (17) can be expressed as:

∆dpij = f 2∆dp0j, ∆dp0j = εel(1− f3) f3, (18)

where el = eRe
l + ieIm(i)

l + jeIm(j)
l + keIm(k)

l = yl − ŷl denotes the error between ŷl and the
target output signal yl . We have

∆pij = uj∆p0j, (19)

∆p0j =
(

1− f Re
1

)
f Re
1 · Re

[
N

∑
j=1

(∆dp0j × ∆dpij)

]

+ i
(

1− f Im(i)
1

)
f Im(i)
1 · Im(i)

[
N

∑
j=1

(∆dp0j × ∆dpij)

]

+ j
(

1− f Im(j)
1

)
f Im(j)
1 · Im(j)

[
N

∑
j=1

(∆dp0j × ∆dpij)

]

+ k
(

1− f Im(k)
1

)
f Im(k)
1 · Im(k)

[
N

∑
j=1

(∆dp0j × ∆dpij)

]
,

(20)

where x
de f
= x1− ix2− jx3−kx4, Re[x]

de f
= x1, Im(i)[x]

de f
= x2, Im(j)[x]

de f
= x3, Im(k)[x]

de f
= x4

for a quaternion x = x1 + ix2 + jx3 + kx4.
Therefore, by the Formulas (18)–(20), ∆p0j and ∆pij can be simply expressed as follows,

respectively. We have
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∆p0j = (1− f1) f1 · εel

N

∑
j=1

(1− f3) f3 × ∆dpij = εel f4, (21)

∆pij = ujel f4 = εel f5. (22)

In addition, the center cij and width σij of membership function are further modified .
The gradient descent algorithm is applied to the modification of parameters, namely:

∆cij
de f
= −ε

 ∂E
∂cRe

ij
+ i

∂E

∂cIm(i)
ij

+ j
∂E

∂cIm(j)
ij

+ k
∂E

∂cIm(k)
ij

, (23)

∆σij
de f
= −ε

 ∂E
∂σRe

ij
+ i

∂E

∂σ
Im(i)
ij

+ j
∂E

∂σ
Im(j)
ij

+ k
∂E

∂σ
Im(k)
ij

, (24)

where j denotes the jth rule. i represents the ith input vector.

Remark 2. Compared with the gradient descent method used in TSFNN weight updating, the Hamil-
ton product used in TSFQVNN’s gradient descent method can capture these internal latent relations
within the features of a quaternion and restore the spatial relations within 3D coordinates.

3.3. Proof of Global Approximation

Due to the application of fuzzy neural network in modeling work, it is necessary to
prove its global approximation property.

Formula (13) can be treated as the set of fuzzy systems, named Y, and then Stone–
Weierstrass theorem [29] is used to prove the global approximation ability of the model.
First, it is proved that y satisfies the three conditions given in the Stone–Weierstrass theorem.

Lemma 1. (Y, d∞) is an algebra.

Proof. Assume f11, f22εY, which are described in detail as follows:

f11(u) = d1 + id2 + jd3 + kd4 (25)

f22(u) = t1 + it2 + jt3 + kt4 (26)

where d1 =
∑

N1
j=1(α

1
j )

Re(y1
j )

Re

∑
N1
j=1(α

1
j )

Re
, d2 =

∑
N1
j=1(α

1
j )

Im(i)(y1
j )

Im(i)

∑
N1
j=1(α

1
j )

Im(i)
, d3 =

∑
N1
j=1(α

1
j )

Im(j)(y1
j )

Im(j)

∑
N1
j=1(α

1
j )

Im(j)
,

d4 =
∑

N2
j=1(α

2
j )

Im(k)(y2
j )

Im(k)

∑
N2
j=1(α

2
j )

Im(k)
. t1 =

∑
N2
j=1(α

2
j )

Re(y2
j )

Re

∑
N2
j=1(α

2
j )

Re
, t2 =

∑
N2
j=1(α

2
j )

Im(i)(y2
j )

Im(i)

∑
N2
j=1(α

2
j )

Im(i)
,

t3 =
∑

N2
j=1(α

2
j )

Im(j)(y2
j )

Im(j)

∑
N2
j=1(α

2
j )

Im(j)
, t4 =

∑
N2
j=1(α

2
j )

Im(k)(y2
j )

Im(k)

∑
N2
j=1(α

2
j )

Im(k)
.

Thereupon:

f11(u)× f22(u) = (d1t1 − d2t2 − d3t3 − d4t4) + i(d2t1 + d1t2 + d3t4 − d4t3)

+ j(d3t1 + d1t3 + d4t2 − d2t4) + k(d4t1 + d1t4 + d2t3 − d3t2).
(27)

Because µ1
ij(ui) and µ2

ij(ui) are of Gaussian type, their product α1
j and α2

j are also of
Gaussian type. Therefore, the form of Equation (27) is completely equivalent to that of
Equation (13). It can be seen that

f11(u)× f22(u)εY. (28)
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Furthermore, we can also get q f11(u)εY and f11(u) + f22(u)εY. So far, Lemma 1
is proven.

Lemma 2. (Y, d∞) can separate points on U.

Proof. Construct a f to prove the above conditions, that is, given the number of fuzzy
sets defined on U and R, the Gauss membership function parameters, the rules number,
and the rules expression, so that the f (in the form of the Formula (13)) obtained has the
following characteristics:

(1) For any given u0, u10εU, when u0 6= u10, there is f (u0) 6= f (u10).
Set u0 = (u0

1, . . . , u0
m), u10 = (u10

1, . . . , u10
m). If u0

i 6= u10
i , two fuzzy sets (A1

i , µ1
Ai
)

and (A2
i , µ2

Ai
) are defined in the ith subspace of U, and their corresponding membership

functions are: µ1
Ai
(ui) = exp

(
− ((ui)−(u0

i ))
2

2

)
, µ2

Ai
(ui) = exp

(
− ((ui)−(u10

i ))
2

2

)
.

If u0 = u10, there are A1
i = A2

i and µ1
Ai

= µ2
Ai

. Two fuzzy sets (B1
i , µ1

B) and (B2
i , µ2

B)
are defined on the output domain R, and their corresponding membership functions are
as follows:

µ
j
B(ui) = exp

(
−
(y− yj)

2

2

)
, (29)

where j = 1, 2, yj .
Then we get the function f with the form shown in formula (30), and its expression is

as follows:
µ1

Ai
(u0) = 1 + i + j + k, (30)

µ1
Ai
(u10) = exp

(
−
(u10 − u0

i )
2

2

)
. (31)

The same can be get µ2
Ai
(u0) and µ2

Ai
(u10). Then:

f (u0) = y1 + Q(y2)
Re + R(y2)

Im(i) + S(y2)
Im(j) + T(y2)

Im(k), (32)

f (u10) = Q(y1)
Re + R(y1)

Im(i) + S(y1)
Im(j) + T(y1)

Im(k) + y2, (33)

Suppose f (u0) = f (u10). Then we have

f (u0) = f (u10)⇒ (1−Q)((y1)
Re − (y2)

Re) + (1− R)((y1)
Im(i) − (y2)

Im(i))

+ (1− S)((y1)
Im(j) − (y2)

Im(j)) + (1− T)((y1)
Im(k) − (y2)

Im(k)) = 0.
(34)

Then, we can take y1 = 2 + 2i + 2j + 2k, y2 = 1 + i + j + k, and there must be

(1−Q)((y1)
Re − (y2)

Re) + (1− R)((y1)
Im(i) − (y2)

Im(i))

+ (1− S)((y1)
Im(j) − (y2)

Im(j)) + (1− T)((y1)
Im(k) − (y2)

Im(k)) 6= 0,

which contradicts the hypothesis, and f (u0) = f (u10) is proven.
Lemma 2 proves the end.

Lemma 3. All points on (Y, d∞) are not zero.

Proof. Observing formula (13) carefully, just select yj > 0, j = 1, 2, . . . , N. Any correspond-
ing f εY can be used as the required f .

This lemma has been proven.

Theorem 1. The TSFQVNN shown in Figure 2 is a global approximator.
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Proof. Y is a continuous and real function from Formula (25). It is easy to deduce the
global approximation ability through the lemmas mentioned above.

3.4. Stability Analysis

The direct method of Lyapunov stability analysis is a universal and effective method
to analyze the stability and convergence. There are two ways to derive it; one is the
convergence of the weight vector, and the other is the convergence of the output error.
The latter method is used here.

In order to obtain the stability conditions of the learning algorithm, the Lyapunov
function is selected as follows:

V(k) =
1
2

ēl(k)el(k) =
1
2
[yl(k)− ŷl(k)][yl(k)− ŷl(k)], (35)

where yl(k) is the lth reference output, ŷl(k) denotes the lth forecasted output.
The difference of Lyapunov function from k step to k + 1 step is

∆V(k) = V(k + 1)−V(k) =
1
2
[ēl(k + 1)el(k + 1)− ēl(k)el(k)]. (36)

We assume that the reference output y(k) is constant; then

el(k) = yl(k)− ŷl(k) = yl(k)−
∑N

j=1[αj ∑N
j=1(p0j(k) + pij(k)ui)]

∑N
j=1 αj

. (37)

From Equation (1) minus Equation (2), we have

∆el(k) = el(k + 1)− el(k) = −ε
∑N

j=1[αj ∑N
j=1(el f4 + el f5ui)]

∑N
j=1 αj

. (38)

Consequently, we have

∆V(k) =
1
2
[ēl(k + 1)el(k + 1)− ēl(k)el(k)] =

1
2
[(ēl(k)− ∆ēl(k))(el(k) + ∆el(k))− ēl(k)el(k)]

= −
εēl(k)el(k)∑N

j=1[αj ∑N
j=1( f4 + f5ui)]

∑N
j=1 αj

·
[

1−
ε ∑N

j=1[αj ∑N
j=1( f4 + f5ui)]

2 ∑N
j=1 αj

]
.

(39)

Because V(k) is positive definite, it can be seen from Lyapunov stability theorem that
to make the learning process convergent and stable, ∆V(k) must be positive-definite, that
is, ∆V(k) > 0. That is to say, the learning rate ε must meet the following requirements:

0 < ε <
2 ∑N

j=1 αj

∑N
j=1[αj ∑N

j=1( f4 + f5ui)]
. (40)

4. Fuzzy Predictive Control Algorithm

The multi-step T-S fuzzy model can be obtained from Formula (14) in section III:

y(k + 1) =
na

∑
t=1

at(k)y(k− t + 1) +
nb

∑
t=1

bt(k)u(k− t + 1) + p(k), (41)

where, at(k) =
∑N

j=1 αjajt

∑N
j=1 αj

, bt(k) =
∑N

j=1 αjbjt

∑N
j=1 αj

, p(k) =
∑N

j=1 αj p0j

∑N
j=1 αj

, and each of these elements is

a quaternion.
The CARIMA model can be used to obtain
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A(z−1)y(k) = B(z−1)u(k− 1) + p, (42)

where A(z−1) and B(z−1) are as follows:{
A(z−1) = 1 + a1z−1 + · · ·+ ana z−na ,
B(z−1) = b0 + b1z−1 + · · ·+ bnb z−nb .

Then the control variable of Nu is searched to minimize the error.
According to Section III, the CARIMA model of MIMO system can be obtained, and its

objective function can be expressed as

J =
Np

∑
j=1
‖y(k + j)− w(k + j)‖2 +

Nu

∑
j=1
‖∆u(k + j− 1)‖2

λ, (43)

where y(k + j) represents the output after j step, and w(k + j) denotes the desired tra-
jectory. Np and Nu are the prediction time domain and the control time domain, respec-
tively. After Nu step, u will not change; λ is the control weighted matrix n× n, namely
λ = diag(λ1, λ2, . . . , λn).

Introducing the polynomial equation of diophantine matrix: I = Ej(z−1)A(z−1)∆(z−1)+

z−jFj(z−1), Ej(z−1)B(z−1) = Gj(z−1) + z−j Hj(z−1), where j = 1, . . . , Np,
Ej(z−1) = E0 + E1z−1 + . . . + Ej−1z−(j−1),

Fj(z−1) = Fj
0 + Fj

1z−1 + . . . + Fj
na z−(na),

Gj(z−1) = G0 + G1z−1 + . . . + Gj−1z−(j−1),

Hj(z−1) = H j
0 + H j

1z−1 + . . . + H j
nb−1z−(nb−1).

(44)

Multiplying both sides of Equation (44) by Ej(z−1), we use the diophantine equation
to get

y(k + j) = Gj∆u(k + j− 1) + Hj∆u(k− 1) + Fjy(k). (45)

The reference track w(k + j), as shown in the following formula:

w(k + j) = δy(k) + (1− δ)yr, (46)

where δ is the softening coefficient, from 0 to 1.
The target function can be written as

J = ‖y− w‖2 + ‖∆u‖2
λ. (47)

Next, the optimal solution is solved. First, assuming that function h(τ) satisfies:

• limτ→0+ h(τ) = +∞.
• h(τ) > 0, ∀τ > 0.
• h(τ1) ≥ h(τ2), ∀τ1 ≤ τ2.

where τi(u) ≥ 0, i = 1, . . . , m.
Taking h(τ) as the penalty term to construct the interior point penalty function

Pζ(u) = J(u) + ζ−1
m

∑
i=1

h(τi(u)). (48)

The optimization problems are as follows:

lim
uεRn

Pζk (u) = J(u) + ζ−1
k

m

∑
i=1

h(τi(u)), (49)
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where ζ−1
k satisfies ζ−1

1 > · · · > ζ−1
k > · · · > 0.

It can be seen that the influence of penalty term is gradually decreasing and tends to 0.
J(u), h(τi(u)) and Pζk (u) is supposed to convex function, and then the Newton step

size of problem (49) is
dk = −[∇2Pζk (uk)]

−1∇Pζk (uk). (50)

The penalty items is ζ−1 ∑m
i=1

1
τi(u)

. Making ∂P
∂u = 0, we can get

GTGu + f GT −ωGT + λu− ζ−1
m

∑
i=1

1
(τi(u))2 = 0, (51)

where f = H∆u(k− 1) + Fy, ζ−1 = [1, 0.1, 0.01, . . .]
Then we get the control law for the multi-variable GPC:

u = (GTG + Iλ)−1(D + ζGT − f GT), (52)

where D = −ζ−1 ∑m
i=1

1
(τi(u))2 .

Let us take the first row of (GTG + Iλ)−1 and call it PT = [P1, . . . , PNp ]. Then, the
generalized predictive control law can be written as follows:

∆u(k) = PT(D + ωGT − f GT), (53)

u(k + 1) = u(k) + ∆u(k). (54)

5. Simulation Results

In this section, the system identification of the FMOMR and the 3D trajectory tracking
control simulation results are discussed in detail. Figure 4 shows the control flow of the
algorithm proposed in paper. Firstly, the training data pairs y(t) and u(t) of FMOMR
are sent to the TSFQVNN for training the network. Both y(t) and u(t) are consisted of
quaternion value data. Then, the T-S fuzzy model is constructed by the TSFQVNN. Thirdly,
the weighted sum of the T-S fuzzy model is used to get the CARIMA model. Finally,
the GPC is designed and the objective function is optimized respectively.

TSFQVNN

CARIMA GPC

u(k)

1z-
y(k-1)

u(k-1)

u(k-nb)

e(k)

output

T-S Fuzzy

Model

Interior Point 

Method

, , ,uN N l a

1z-

1z-

1z-

y(k-na)

y(k)

Figure 4. The control flow diagram.

5.1. System Identification

First, this paper adopts the Lorenz chaotic time series proposed by Edward Lorenz [30],
and Chen’s chaotic time series proposed by Chen [31]. Chaotic time series have non-
periodicity and randomness, which can effectively verify the feasibility and test the perfor-
mance of TSFQVNN.

The Lorenz equation is given below [30]:

dx(t)
dt

= φ1[y(t)− x(t)],
dy(t)

dt
= x(t)[ϕ1 − z(t)]− y(t),

dz(t)
dt

= x(t)y(t)− ψ1z(t). (55)
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Chen’s equation is given below [31]:

dx(t)
dt

= φ2[y(t)− x(t)],
dy(t)

dt
= x(t)[ψ2 − φ2 − z(t)] + ψ2y(t),

dz(t)
dt

= x(t)y(t)− ϕ2z(t), (56)

where φ1, ϕ1, ψ1, φ2, ϕ2, ψ2 are the dimensionless parameters, and their typical values are
used where φ1 = 10, ϕ1 = 28, ψ1 = 8/3, φ2 = 35, ϕ2 = 3, ψ2 = 28.

All the three coordinates are selected, and 3000 samples are obtained. Samples from
No. 1 to No. 1840 are selected as the training data and data from No. 1841 to No. 2840 is
chosen as the test set. The TSQVNN model predicts at the same time the three chaotic
outputs x(t + 1), y(t + 1), and z(t + 1) using one quaternion’s input that contains x(t), y(t),
and z(t).

The T-S fuzzy logic system (TSFLS) model and TSFNN model are used for com-
paring the difference of output with TSFQVNN model. The root mean square error
(RMSE), the symmetric mean absolute percentage error (SMAPE), and the normalized
RMSE (NRMSE) are applied for evaluating the prediction model performance [32]. From
the results of Tables 1 and 2, it can be concluded that the proposed TSFQVNN performs
better under those evaluation functions. In addition, in TSFQVNN, when the number of
input/output is reduced to 1/1, only one weight update is needed. In other strategies,
the number of input/output is 3/3. When it is converted to three 3/1 systems, three weight
updates are needed, which requires more calculation.

Table 1. Comparison of performance on Lorenz series prediction

Series Method RMSE SMAPE NRMSE

Lorenz

TSFLS ave. 0.1308 0.0143 2.6706× 10−4

−x(t+1)

std. 2.9804× 10−4 4.9069× 10−5 1.2154× 10−6

TSFNN ave. 0.7136 0.0465 0.0079
std. 0.0707 0.0046 7.8721× 10−4

TSFQVNN ave. 0.0632 0.0037 7.6470× 10−5

std. 7.0648× 10−4 7.6684× 10−5 8.3994× 10−8

Lorenz

TSFLS ave. 0.2796 0.0330 0.0010

−y(t+1)

std. 0.0081 9.8812× 10−4 6.1224× 10−5

TSFNN ave. 0.9233 0.0543 0.0112
std. 0.0915 0.0054 0.0011

TSFQVNN ave. 0.1008 0.0064 1.6670× 10−4

std. 0.0022 1.9541× 10−4 3.6935× 10−7

Lorenz

TSFLS ave. 0.4901 0.0140 0.0033

−z(t+1)

std. 0.0081 0.0021 0.0018

TSFNN ave. 0.4959 0.0083 0.0031
std. 0.0492 8.2122× 10−4 3.1080× 10−4

TSFQVNN ave. 0.1119 0.0016 1.7078× 10−4

std. 0.0022 1.6465× 10−4 1.9180× 10−5

Figure 5 is the prediction curve and error curve of the Lorenz series and Chen’s series
generated by TSFLS, TSFNN, and TSFQVNN. The smaller error in the curve proves that
the TSFQVNN can obtain 3D and 4D system information better than other methods.
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Figure 5. Prediction curves and error curves produced by the TSFLS, TSFNN, and TSFQVNN for
Lorenz-x(t + 1), y(t + 1), and z(t + 1) and Chen’s-x(t + 1), y(t + 1), and z(t + 1), respectively.

Finally, it is not difficult to conclude that the TSFQVNN generates smaller averages
error and standard deviation. We tend to attribute the good performance of TSFQVNN
to the advantage of quaternion representation of multidimensional input and output data
and the effective characteristics obtained by Hamilton product. It is specially designed for
3D and 4D system identification.

We used a virtual robot experimentation platform (CoppeliaSim) software to design
an FMOMR. In addition, a narrow horizontal pipe space with three cylinders parallel to the
pipe length is simulated, and an obstacle is designed at the bottom of the pipe. The purpose
of the experiment is to let FMOMR bypass the obstacle and pass through the whole pipe.
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Table 2. Comparison of performance on Chen series prediction

Series Method RMSE SMAPE NRMSE

Chen

TSFLS ave. 0.1396 0.0064 2.4755× 10−4

−x(t + 1)

std. 0.0032 1.7751× 10−4 1.1356× 10−5

TSFNN ave. 1.0863 0.0606 0.0150
std. 0.0029 1.8568× 10−4 7.9359× 10−6

TSFQVNN ave. 0.0037 1.7592× 10−4 1.8488× 10−7

std. 0.0016 7.6684× 10−5 1.9952× 10−7

Chen

TSFLS ave. 0.1690 0.0065 3.0051× 10−4

−y(t + 1)

std. 0.0023 3.9201× 10−5 8.2060× 10−6

TSFNN ave. 1.4721 0.0711 0.0228
std. 0.0046 2.2327× 10−4 1.4459× 10−4

TSFQVNN ave. 0.0081 3.5710× 10−4 7.2862× 10−7

std. 0.0463 0.0014 1.1083× 10−8

Chen

TSFLS ave. 0.4379 0.0110 0.0020

−z(t + 1)

std. 0.0269 1.9368× 10−6 3.0995× 10−7

TSFNN ave. 0.4379 0.0065 0.0024
std. 0.0046 5.9560× 10−5 7.2265× 10−5

TSFQVNN ave. 0.2644 0.0043 0.0012
std. 0.0463 0.0028 0.0013

5.2. Trajectory Tracking in 3D Space

First, we get a set of motion data pairs of FMOMR from the FMOMR simulation model
established by CoppeliaSim software, and then use the method described in Section 3 to fit
the nonlinear system. The identification results are shown in Figure 6. As you can see from
Figure 6, the fitting performance is satisfactory. The errors of fitting for the x-axis and y-axis
are in close proximity to zero extremely. The forecasted curve of z-axis is approaching to the
reference curve as well. The comparison between forecasted and reference spatial trajectory
indicate that the system identification work has been accomplished well. Figure 7 depicts a
picture of robot simulation on the internal surface of a cylindrical cavity in case that the
FMOMR is caught into the hole. The cylindrical cavity flats on the floor and displays in the
transparent mode. The trajectory of FMOMR is shown clearly by a red solid line. Therefore,
The FMOMR simulation scene can be treated as a platform for verification of the algorithm
and multidimensional data generator at the same time.
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Figure 6. System identification of FMOMR by TSFQVNN.

The obtained T-S fuzzy model is weighted and summed to obtain the CARIMA
model, and then the generalized predictive control algorithm is used for trajectory tracking
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control. We make the control time-domain Nu set to 4, the prediction time-domain Np to 8,
the softening factor to 0.4, the control weighting coefficient to 1, and the target trajectory
is a 3D rectangle. Figure 8 compares the tracking performance of TSFQVNN GPC and
TSFNN GPC. The orange trajectories in Figure 8 are first substituted into the trajectory
data obtained in CoppeliaSim by substituting the angular velocities of the four mecanum
obtained after Matlab simulation, and the data is then substituted into Matlab and plotted.
We can observe that TSFQVNN GPC performs better than TSFNN GPC, and it also works
well in CoppeliaSim.

FMOMR

Trajectory of Robot

Cylindrical Cavity

(Transparent Display)

Hole

Figure 7. CoppeliaSim scene for four mecanum wheels omnidirectional mobile robot.
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(TSQVNN-GPC)VREP

Figure 8. Executed pathes of four mecanum wheels omnidirectional mobile robot.

6. Conclusions

In this paper, TSFQVNN is used to identify 3D and 4D systems. The universal
approximation of TSFQVNN and the condition of approximation error convergence are
proven. The simulation results show that TSFQVNN can be used in 3D and 4D system
identification to get a better identification effect. In addition, TSFQVNN and GPC are
combined to design a data-driven FMOMR 3D trajectory tracking controller. The simulation
results prove that the controller has higher tracking accuracy, which provides a good
premise for the research of FMOMR trajectory tracking in 3D space.
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