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Abstract: Sensor acquired signal has been a fundamental measure in rotary machinery condition
monitoring (CM) to enhance system reliability and stability. Inappropriate sensor mounting can lead
to loss of fault-related information and generate false alarms in industrial systems. To ensure reliable
system operation, in this paper we investigate a system’s multiple degrees-of-freedom (DOF) using
the finite element method (FEM) to find the optimum sensor mounting position. An appropriate
sensor position is obtained by the highest degree of deformation in FEM modal analysis. The
effectiveness of the proper sensor mounting position was compared with two other sensor mounting
points, which were selected arbitrarily. To validate the effectiveness of this method we considered a
gear-actuator test bench, where the sensors were mounted in the same place as the FEM simulation.
Vibration data were acquired through these sensors for different health states of the system and
failure patterns were recognized using an artificial neural network (ANN) model. An ANN model
shows that the optimum sensor mounting point found in FEM has the highest accuracy, compared
to other mounting points. A hybrid CM framework, combining the physics-based and data-driven
approaches, provides robust fault detection and identification analysis of the gear-actuator system.

Keywords: condition monitoring; ANN; finite element method; deep learning; gear pump

1. Introduction

Prognostics and health management (PHM) for engineering systems has become a
primary element to ensure safety and reliable operation. A robust PHM framework can
improve reliability and eliminate the risk of catastrophic failures in a system. There are
two major steps in PHM: fault diagnosis and fault prognosis. Finding an anomaly in a
system’s operation, or irregular behavior that is not the expected normal behavior, is treated
as fault diagnosis. Fault prognosis largely depends on the remaining useful life (RUL)
estimation of the component, based on its historical fault diagnosis data. Therefore, it is
understandable that fault detection and identification (FDI) is the fundamental and most
important task in a PHM framework [1]. Nowadays, the following three approaches to
PHM are widely adopted: (a) Data-driven (b) Physics-based, and (c) Hybrid, combining
(a) and (b). The major advantage of a data-driven PHM framework is that it does not
require a prior mathematical model of the system to assess its health state [2]. Various
data acquisition (DAQ) systems, data analysis tools, modeling using artificial intelligence
techniques, etc., have made data-driven technologies popular among researchers. On the
other hand, a physical model is the core of a physics-based PHM where the system material
and structural properties are taken into consideration [3]. Data quality is an essential
component of a data-driven PHM framework, since the state of health is determined based
on this. It is also quite important in the physics-based approach to describe and validate
the mathematical model [2,3]. Depending on the necessity of FDI nature, different sensors
can be placed in different components of a system. Some commonly used sensor data for
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FDI are temperature, current, voltage, impedance, vibration, torque, speed, magnetism,
etc. In the case of rotary machinery, the most frequently used data are the vibrational data,
which are acquired using accelerometer sensors.

A vibration signal can capture the fault characteristics at the incipient stage of a failure,
and it can be easily mounted on a system to acquire a large amount of data [4]. Ease in
data acquisition and modeling using different statistical and machine learning approaches
have given the advantage to vibration signal monitoring for system condition monitoring.
Several signal processing and model-based FDI models have been established using the
vibration data acquired from sensors. However, there are very limited studies on the proper
sensor positioning for accurate data acquisition. The authors of this paper took a keen
interest in this fact, and a study was conducted on proper sensor positioning by combining
a physics-based FEM simulation and data-driven FDI modeling. In literature, sensor
positioning for system reliability enhancement has been studied to some extent. Krysnader
et al. developed a sensor placement algorithm based on the structural information in a
model [5]. Sarrate et al. proposed a strategy based on diagnosability maximization for
optimally locating sensors in distribution networks [6]. Sztyber et al. proposed a graph-
based method by incorporating faults into a model [7]. Finite element analysis or finite
element modeling (FEM) has been studied in different electromechanical systems for fault
detection and diagnosis. Most of these studies are based on a simulated fault characteristic
and do not include results from an experimental prototype. Some FEM studies include
the validation of experimental prototypes [8,9]. For example, Ahmed et al. used an FEM
based calibration approach for piezoelectric impedance measurements with two empirical
case studies [10]. Li et al. studied the induction motor’s broken rotor bar fault diagnosis
using time-stepping coupled FEM analysis [11]. Vaseghi et al. used FEM analysis for
fault diagnosis and parameter identification in permanent magnet motors [12]. However,
experimental research combining FEM and data-driven approaches has been very limited
in the literature.

Deep learning (DL) algorithms have been quite popular among researchers, due to
their ability to learn patterns from big data [13]. To establish a robust FDI model, the
complete lifecycle data of a system is necessary, which is understandably a massive amount
of data [14]. Traditional machine learning algorithms fail to provide high accuracy in
the presence of big data. Several DL-based artificial intelligence (AI) techniques have
been reported in the literature [14,15]. For example, attention-based neural networks and
artificial neural networks (ANN) for electric motors [16,17], optimized self-organizing
maps for bearing [18], convolutional neural nets for gearboxes [19], generative adversarial
networks for rotary machinery [20], etc. Among them, ANN has been quite effective in
machinery FDI since it can easily learn the fault patterns without any rigorous mathematical
computations. Implementing ANN is also less time-consuming, compared to many other
DL algorithms.

In this study, we incorporated FEM analysis with an ANN model to enable maximum
accuracy in machinery FDI. Instead of only a physics-of-failure model, or only a sensor
acquired data-driven model, we focused on the system dynamics in diverse operating
conditions through the combination of both approaches. Given the current rise in demand,
machines operate in a wide range of diverse applications making it a problematic task
to design separate models for separate operating conditions. Relying on a hybrid PHM
approach, combining the physical model parameters as well as sensor acquired data, can
effectively detect and prominently isolate faults in a system [21]. To facilitate this, we
needed to select a set of sensor and sensor mounting options to ensure the data quality
and demonstrate system behavior. Improper sensor positioning and weak sensor data
can lead to an erroneous health-state approximation. This is where a physics-based mesh
analysis of the system was performed, using the finite element method (FEM). Based on
the modal analysis and frequency components of random vibration found through fast
Fourier transform (FFT) and power spectral density (PSD), an appropriate mounting point
with the highest deformation was selected.
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To validate the effectiveness of the proposed sensor positioning method, we considered
a gear-actuator test rig setup. Gear pumps are energy conversion parts of hydraulic systems
and have been widely used in aviation, construction machinery, and other industries. The
gear pump converts the mechanical energy of the primary motion into liquid hydraulic
energy and then transfers it to the entire hydraulic system. If the gear pump fails, the
hydraulic system loses its function, often causing the entire system to shut down. Therefore,
monitoring the health state of the gear pump is necessary. The sensor mounting approach
presented in this paper enables the early FDI of gear-actuator setup in the industrial
environment. The rest of the paper is structured as follows: Section 2 presents the proposed
FDI method, Section 3 elaborates the theoretical review, Section 4 describes the method and
experiments, and Section 5 provides the result analysis.

2. Proposed Method

A hybrid fault diagnosis framework, combining physics-based and data-driven ap-
proaches, is investigated. A physical mesh model is created using the FEM technique
and based on random vibration deformation, and a suitable sensor mounting position is
selected. Later, vibration signal fault features obtained from the FEM simulated position
are modeled using a fully connected artificial neural network (ANN). This paper aims
to improve accuracy in fault detection of gear pumps using sensor acquired vibration
signals. A concise framework of the proposed method is shown in Figure 1. To have
better understanding about the study’s contribution, the proposed method is explained in
individual sections below.
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(1) FEM Analysis for Sensor Positioning

To determine a suitable sensor mounting location, a structural analysis of the exper-
imental test bench was performed using the finite element method (FEM). In this FEM
analysis, multi degrees-of-freedom (multi-DOF) dynamics of the experimental test rig were
considered to perform the numerical analysis. FEM considers a multi-DOF system as
a combination of some single-DOF systems by particular space discretization, which is
constructed through the mesh layout of the experimental test rig.

(2) Selection of Weighty Features

Rotary machinery vibration signals are necessarily random in nature and hold variable
fault characteristics in different health states. Analyzing the sensor acquired time series
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data is not sufficient to conclude the state of health (SOH) of the system. Therefore, a range
of statistical and rotary machinery features were extracted from the time domain, and
frequency domain of the sensor acquired vibration signals.

Moreover, to select the most suitable features, we used three different criteria to ensure
the elimination of redundant features and the selection of crucial features. The presence of
less important features increases the computational time, and can sometimes lead to an
erroneous approximation of the system’s health state. This study proposed a two-stage
analysis to select the best features. In the first stage, redundant features were eliminated,
based on the similarity among features. Most similar or highly correlated features were
excluded from consideration. Correlation analysis was performed by computing the
Pearson correlation coefficient [22], which can be mathematically expressed using (1):

ρ =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)
√

∑n
i=1(yi − y)

(1)

For the second stage of feature selection, a sensitivity index σ was computed using
two different approaches, ANOVA and KW test score [23]:

σ =
Fscore + KWscore

2
(2)

where:
Fscore = The ratio of the variance calculated among the means to the variance within

the features, which is computed using the analysis of variance (ANOVA) test.
KWscore = Measures the stochastic dominance of each to one another.

(3) Pattern Recognition and Validation

The last stage was the classification of selected features using a deep neural network
(DNN). There were two main reasons for selecting a neural network (NN) model for
fault pattern recognition. Firstly, it is capable of handling big data. Secondly, it provides
very high accuracy in future predictions. We used an artificial neural network (ANN)
architecture to model the health states of the gear-actuator system. ANN is simple and
does not include rigorous mathematical computations, unlike other NN models. From
Step 1, two more additional sensor positions were selected to compare the effectiveness of
the most suitable sensor. Steps 2 and 3 were repeated for the data acquired from all three
sensors’ positions. To validate the model performance, several matrices were computed
from the training and testing performance of the models.

3. Theoretical Overview
3.1. Finite Element Method (FEM)

Finite element analysis (FEA) is a computer simulation technique used in engineering
analysis. A numerical technique called the finite element method (FEM) is used, and, for
its application, an object or system (system) must be expressed as a model similar to the
real thing, as a plurality of individualized and interconnected finite elements. Equivalence
equations are applied to each element, resulting in simultaneous equations in the overall
system. An approximation can be obtained by solving an equation using linear algebra or
nonlinear numerical analysis methods. As the method of obtaining an approximation is
used, the accuracy of the FEA result can be improved through mesh refinement. A common
use of FEA is in determining stresses and displacements in mechanical objects or systems.
However, it can also be used for heat transfer, fluid mechanics, and electromagnetics. Modal
analysis determines the dynamic properties (damping, natural frequency, and vibration
mode) of a mechanical object or system. In time-position space, the system is independent
of external forces, as well as dynamic responses. Systems with multiple degrees of freedom
(multi-DOFs) can be specified and described by a group of combined systems of single-
degree-of-freedom (single DOF). In that case, each scalar component, such as mass, stiffness,
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and damping, is transformed into a matrix of mass, stiffness, and damping. The equation
of motion describing a system with n degrees of freedom is expressed as [18]:

Mu′′ (t) + Cu′(t) + Ku(t) = f (t) (3)

where M, C, and K are matrices of mass, damping, and stiffness, respectively. u(t) and
f (t) are vectors that describe the change in displacement and force as a function of time,
respectively. In addition, since the value of u′(t) in (3) is always positive, we can intu-
itively see that this system is stable. However, using the Lyapunov stability theorem can
mathematically prove the stability. Lyapunov function candidate is set using the following:

u′(t) =
1
2

Mu2(t) +
∫

Ku(t) (4)

u(t) = Mu′′ u′ + Ku′′ u′ = u′(Mu′′ + Ku′′ ) (5)

As mentioned earlier, since u′(t) > 0, the Lyapunov function candidate is always
negative except for u′(t) 6= 0, and if u′(t) = 0 equally, u(t) 6= 0. In the end, it can be seen
that this system is a stable system because the time derivative of the Lyapunov function
candidate is always negative under the condition that u(t) 6= 0, u′(t) 6= 0.

In general, if the system does not have an external force (i.e., f (t) = 0) and the
damping is negligible (i.e., C = 0), Equation (3) can be modified and written as (6):

Mu′′ (t) + Ku(t) = 0 (6)

In simple harmonic vibration, the position has the same relationship as in Equation (6).

u(t) = {∅i} cos(ωt) (7)

where ∅i is the amplitude vector and ω is the frequency of each degree of freedom i. The
velocity is calculated as in (6), and the acceleration is calculated as in (7) [24,25].

u′(t) = −ω{∅i} sin(ωt) (8)

u′′(t) = −ω2{∅i} cos(ωt) (9)

If the velocity (refer to (8)) and acceleration (refer to (9)) are calculated by substituting
in (7), we can arrive at the eigenvalue problem as shown in (10), which is:(

−Mω2 + K
)
{∅i} = 0 (10)

In (9), since the amplitude ∅i 6= 0, we can find the solution to the equation.

det
∣∣∣−Mω2 + K

∣∣∣ = 0 (11)

In (11), we need to solve the eigenvalue problem and determine the nth order charac-
teristic polynomial. The eigenvalue ωi is equal to (11) and represents natural frequencies.
Each eigenvalue ωi is related to the amplitude ∅i representing the vibration mode. For
any geometry, Ωi = Ω1 × Ω2 × · · · Ωn. Equations (10) and (11) are obtained for the
subdomain using the finite element methodology [26]. It is important to note that the mass
and stiffness properties are fundamental factors in determining the natural frequency val-
ues. In this study, the mass parameters of the gear-actuator system were determined from
the material properties, and the stiffness (dependence on elastic behavior) was obtained
through sensitivity analysis using the experimental vibration data. Random vibration
analysis was done through the PSD values obtained from the acquired vibration signals.
Thus, based on the maximum mode deformation, a proper mounting position was selected.
A concise FEM technique is shown in Figure 2.
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3.2. Pattern Recognition

Deep learning (DL) algorithms have proven quite effective for machinery FDI. Sensor
acquired big data facilitates fault-related information in different system health states and
allows deep learning algorithms to learn fault patterns efficiently. The nature and quality of
the data govern the effectiveness of deep learning algorithms. A major step of DL modeling
is data preprocessing, which starts with feature selection. Based on the need for individual
tasks, there are numerous methods to select necessary features for a DL model [27]. Since
our pattern recognition model is problem-specific, we chose our criteria to select the most
important features. A set of features with the highest score was determined. Section 2
provides a detailed explanation of the feature selection and sensitivity score computation
in paragraph 2.

Despite the selection of significant features, the gear pump vibration dataset was
large due to the complete lifecycle data. Each feature is represented as a tensor in the DL
algorithm and exhibits a matrix with some features and a number of timesteps [27,28].
Having many dimensions in the feature space surges the volume of the entire sample space.
This is computationally expensive and time-consuming. In the case of DL modeling, a large
number of dimensions also creates other problems. Too many dimensions make the feature
space sparser and sparser [29,30].

The DL algorithm quickly finds a “local” solution in a sparse dimension instead of
a “global” generalization. This causes the DL algorithm to miss out on much training
data, and, in the case of testing data, it fails to predict accurately. This phenomenon is
known as “overfitting” in machine learning algorithms. To overcome this issue, we used
several techniques in our dataset for dimensionality reduction. These were principal com-
ponent analysis (PCA), linear discriminate analysis (LDA), t-stochastic neighbor embedding
(TSNE), and random trees ensemble (RTE). It is difficult to judgethe effectiveness of these
algorithms simply by visualization. Therefore, in this study, we compared the model’s
output for each dimension reduction algorithm. When the feature space was reduced to a
dimension, an artificial neural network (ANN) was used to model different health states
of the gear pump. Figure 3 shows that the ANN architecture used for this study was nec-
essarily a feed-forward neural network with fully connected layers and backpropagation.
Hypothetical computation of each layer is done by (12) for the 1st layer [31,32]. In the case
of multiple layers, the activation computation is given as (13). Here, xi is the ith input
variable or selected features for gear pump diagnosis. We expected the ANN model to
predict the gear pump’s heath state based on the input variables xi. Therefore, a hypothesis
function is introduced as hθ , that maps the input variables with different health states. θi
are model parameters or weights of ANN model which are selected in such a way that
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hθ(x) is close to y for the specific training examples. As the hypothesis function tries to
map the prediction to the training set, this type of learning is called supervised learning.

hθ(x) = θ0 + θ1x (12)

hθ(x) = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn (13)
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These are hypothetical equations, and during training, each of these equations is
governed by some activation function. In our model, we used rectified linear unit (ReLU)
for the hidden layers and Softmax for the output layer. In ANN, a backpropagation
algorithm is used to reduce the loss of the model, which is the difference between actual
and predicted values. The loss function is mathematically shown in (14), which is also
referred to as squared error function. The convergence of the loss function is determined by
the computation of a gradient. The value m is referred to as the number of input variables
or features. Gradient descent algorithm for multiple layers is shown in (15). Through this
equation, θi, θj is simultaneously updated for every j = 0, 1, 2, 3 . . . . . . n.

J(θ0, θ1) =
1

2m

m

∑
i=1

(hθ

(
x(i)
)
− y(i))

2
(14)

θj := θj − α
1
m

m

∑
i=1

(hθ

(
x(i)
)
− y(i))x(i)j (15)

Based on the number of hidden layers, at each layer, the weight computation is done
by following (16). Where a(j)

i = activation of unit i in layer j using the function g(.), and
Θ(j) is the linear combination of features presented beforehand.

a(j)
i = g

(
Θ(j)

)
= g

(
θ
(j−1)
i0 x0 + θ

(j−1)
i1 x1 + θ

(j−1)
i2 x2 + · · ·+ θ

(j−1)
in xn

)
(16)

Depending on the convergence time, computational cost, and prediction accuracy,
model parameters, such as the number of hidden layers, activation function etc. were
selected.
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4. Experiment and Data Description
4.1. Test Rig Setup

The configuration of the experimental test bench is shown in Figure 4. The main
components of the test rig were a hydraulic tank containing hydraulic oil, a gear pump to
control hydraulic energy, a motor for driving the gear pump, a relief valve for generating
hydraulic pressure by controlling the flow rate, a flow meter for measuring the flow rate,
and a hydraulic meter for measuring the hydraulic pressure. Three different accelerometers
were mounted at three different locations for measuring vibration signals. Vibration sensors
were named Sensor A, Sensor B, and Sensor C, based on the FEM analysis results where A
is the most appropriate position. All the accelerometer sensors were of a piezo electronic
type and bought from the same manufacturer to reduce the discrepancy in sensitivity. Since
vibration signals are random in nature and changes are abrupt in the presence of a fault or
anomaly, we selected a 25.6 kHz sampling rate to acquire the vibration data. This allowed
us to capture the frequency behavior for the gear pump for up to 12.8 kHz frequency band,
as per the Nyquist theorem.
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A data acquisition chassis, NI-cDAQ 9178, was used with the NI-9234 vibration
module to acquire vibration data. An NI-9246 current module was also used to acquire the
pressure and flow rate signals as a 0–20 mA current output. The mechanical properties of
the materials for the analysis are shown in Table 1.

Table 1. Mechanical properties of the material.

Type Plate Bracket

Density 2700 kg/m3 2830 kg/m3

Young’s Modulus 68.9 GPa 71.7 GPa
Poisson’s Ratio 0.33 0.33
Shear Modulus 25.9 GPa 27.0 GPa
Yield Strength 275 MPa 490 MPa

When the motor is turned on, the gear pump is driven, and the gear pump draws
hydraulic oil from the hydraulic tank and then compresses and discharges it. The discharged
flow rate passes through the flow meter and the hydraulic system generates high pressure at
the relief valve and returns the hydraulic oil to the hydraulic tank. During this process, the
data acquired from each sensor is transmitted and stored to the computer through DAQ.
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In the case of accelerated life tests, 1.0 g of SiO2 was added to the hydraulic fuel every
day to create disturbances in gear pump flow. Based on the flow rate and pressure reading,
three different health states were selected from the gear pump manufacturer’s provided
datasheet. A healthy state (H) was considered to be when the gear pump’s pressure and the
flow rate were 80–100%. When the pressure dropped to 40–79% and the flow rate dropped
to 50–79%, that state was labeled as Fault-1 (F1). At the severe failure stage, pressure
dropped down to 0–39% and flow rate to 0–49%. This condition of operation was labeled
as Fault-2 state (F2).

4.2. Sensor Positioning

Initially, three different locations were arbitrarily selected for triaxial (X-Y-Z) vibration
data acquisition. The gear-actuator test rig mesh was analyzed using the output value of
the modal analysis and the ASD data obtained through the random vibration FFT and
PSD. Modal analysis was used to calculate the mode frequency and mode shape of the
gear-actuator system, and random vibration analysis was applied to obtain the vibration
characteristics under the load added by the input ASD data.

The FEM simulation results of the mode extraction and random vibration deformation
are shown in Figure 5. The test rig mesh was divided into 395,400 nodes and 87,763
elements by applying a tetrahedral element and a hexahedral element. The frame, electric
box, gear pump, and relief valve were attached in a bonded spherical contact condition,
and the bottom of the frame was fixed with fixed constraints.

Sampling frequency for the random vibration signals was set to be Fs = 25.6 kHz.
As per the Nyquist-Shannon theorem, effective observable mode frequency would be
Fs/2 = 12.8 kHz. The modal analysis of the gear pump was performed until the mode up
to 12.8 kHz was extracted to reflect all ASD data, and, at this time, a total of 154 modes
were extracted, as shown in Table 2, and the 1st, 2nd, and 3rd modes were extracted. The
shape of the mode is shown in Figure 5. It can be seen that the maximum displacement
in the 1st mode occurred at the top of the relief valve, the maximum displacement in the
2nd mode occurred at the gear pump, and the maximum displacement in the 3rd mode
occurred at the top of the electric box. Through this, it can be observed that the position of
the maximum displacement changed according to the frequency.

The maximum equivalent stress and occurrence location, according to the gear pump
analysis, are shown in Figure 5. The maximum equivalent stress was 41.9 MPa in the
bracket in the vertical direction, 6.5 MPa in the aluminum structure in the transverse
direction, and 0.9 MPa in the bracket in the longitudinal direction.

Therefore, the optimal position of the sensor was selected as the top of the relief
valve, and data was collected by attaching two more sensors 5 cm and 10 cm away from
the optimal position. The sensor mounted at the optimal position was labeled as Sensor
A. The other two sensors were labeled as Sensor B and Sensor C. All three sensors kept
collecting the vibration signals simultaneously during the entire lifecycle of the gear pump.
A single data acquisition model was programmed using the LabVIEW software to maintain
congruence among the sensors; for example, sampling rate, excitation current, starting and
stopping time, sensitivity, etc., were set equal for all the sensors.
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Table 2. Mode extraction.

Mode
(X)

Frequency
(Hz)

Modal Mass
(%)

Mode
(Y)

Frequency
(Hz)

Modal Mass
(%)

Mode
(Z)

Frequency
(Hz)

Modal Mass
(%)

1 578.829 45.78 1 578.829 9.32 1 578.829 11.43
2 732.294 2.09 2 732.294 68.40 2 732.294 4.37
3 761.892 30.06 3 761.892 8.01 3 761.892 21.48
4 1156.5 4.32 4 1156.5 7.69 4 1156.5 2.72
5 1338.29 8.06 5 1338.29 0.37 5 1338.29 0.11
6 2064.31 1.60 6 2064.31 0.15 6 2064.31 8.83
7 2133.15 1.88 7 2133.15 0.01 7 2133.15 1.42
8 2584.81 1.10 8 2584.81 0.00 * 8 2584.81 0.42
9 2646.56 0.07 9 2646.56 0.10 9 2646.56 0.14
10 2942.73 0.00 * 10 2942.73 2.05 10 2942.73 1.05
11 3134.17 0.02 11 3134.17 0.03 11 3134.17 3.38
12 3295.8 0.01 12 3295.8 1.01 12 3295.8 0.12
13 3597.87 0.12 13 3597.87 0.16 13 3597.87 6.96
14 3843.53 0.42 14 3843.53 0.17 14 3843.53 18.63
15 4053.49 0.88 15 4053.49 0.00 * 15 4053.49 5.73
16 4379.57 0.24 16 4379.57 0.01 16 4379.57 0.60
17 4638.19 0.13 17 4638.19 0.03 17 4638.19 1.92
18 4861.53 0.26 18 4861.53 0.01 18 4861.53 0.48
19 4975.44 0.17 19 4975.44 0.05 19 4975.44 1.29
20 5746.16 0.10 20 5746.16 0.00 * 20 5746.16 0.88

0.00 *: Indicates that it has a value after 4 decimal places.

5. Result Analysis
5.1. Data Analysis

To get a better understanding about the sensor signal, a range of various features was
computed from all the sensor data [33]. A list of features computed from different domains
is presented in Table 3 [33,34]. The most significant features were computed through a
two-stage elimination and selection process. In the process of elimination, correlation
among the features was computed using Pearson correlation coefficient, ρ. Similar features
with ρ ≥ 0.8 were eliminated. As mentioned in Section 1, we proposed a sensitivity index
named σ, to select the most significant features. Based on the sensitivity score, σ ≥ 500
were selected for further processing. Figure 6 presents the features, based on their σ score,
and a brief description of the most significant features is presented in Table 4.

Table 3. The features computed in different dimensions.

Domains Feature Names

Time Domain

Mean, Peak-to-Peak (P2P), Root Mean Square (RMS), Root
Sum of Squares (RSSQ), Standard Deviation (STD),
Kurtosis (KUR), Skewness (SKEW), L1 Norm (L1), L2

Norm (L2), Peak to RMS (P2RMS), Crest Factor (CF),
Shape Factor (SF), Margin Factor (MF), Clearance Factor
(CLF), FM4, FM8, M6A.

Frequency Domain
Peak Frequency (PF), Total Harmonic Distortion (THD),
Spectral Skewness (SS), Spectral Kurtosis (SK), Entropy,
Root Variance Frequency (RVF), SNR.

Table 4. Mathematical representation of selected features.

Label Feature Name Mathematical Expression Label Feature Name Mathematical Expression

F1 Kurtosis N ∑N
n=1 [x(n)−x]4

[∑N
n=1 [x(n)−x]2 ]

2
F5 L2-Norm

[
∑
i
|xi |2

]1/2

F2 RMS
√

1
N

N
∑

n=1
[x(n)]2 F6 Root Variance

Frequency

√
∑N

n=1( fn− fchar)
2 x(n)

∑N
n=1 x(n)

F3 Root Sum of Squares
√

N
∑

n=1
[x(n)]2 F7 Entropy −

N
∑

n=1

x(n)
∑N

k=1 Xk
log x(n)

∑N
k=1 Xk

F4 Peak-to-RMS TPV
TRMS

F8 Mean Frequency 1
N

N
∑

k=1
fk
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Figure 6. Feature selection based on σ score.

Figures 7–9 illustrate the vibration signals acquired at different health states of the gear-
actuator system. Vibration data for a 1-s duration from all three health states (healthy, fault-
1, and fault-2) are shown in the figures. Corresponding frequency domain representation
is also shown using the fast Fourier transform (FFT) algorithm. Time and frequency
representation gave us understanding of the signals acquired from different sensors. Sensor
A acquired distinguishable signals in all three health states of the system. On the other
hand, Sensor B and Sensor C captured fault frequencies; however, these were not as strong
as those of the Sensor A signals.
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5.2. Failure Pattern Recognition

Selected features were further reduced to a lower dimension using four dimensionality
reduction techniques. Feature space after reduction using these algorithms is presented
in Figure 10. A fully connected ANN model was trained for all the dimension reduction
algorithms, and the training metrics are presented in Figure 11. As the TSNE provided
the highest accuracy and lowest loss score, this technique was adopted to further train the
other sensor data. All the ANN model parameters were kept the same for all three sensors’
acquired vibration data. The model was trained on a computer with AMD Ryzen 7 2700
octa-core CPU with 32 GB of RAM.

The deep learning architecture was supported by TensorFlow-GPU installed on
NVIDIA GTX 970 with 4 GB VRAM. A list of model parameters is presented in Table 5.
During training, 70% of the data are used for training and 30% are kept for the testing. To
avoid overfitting in the model learning stage, a hyperparameter named “Dropout” was
used for the hidden layers. Dropout randomly discards the effect of some neurons during
the training stage to avoid local generalization. In our model, dropout rate was set to be
0.15. After the training was completed, the model was used to predict the test dataset. The
confusion matrix for all three-sensor data is presented in Figure 12. It can be seen that
Sensor A had the highest number of accurate predictions for all three classes. In the case
of 4500 healthy, fault-1 and fault-2 data points, Sensor A predicted 4473, 3924, and 4391
data points accurately. On the other hand, Sensor B predicted 1667, 4015, and 3275 data
points and Sensor C predicted 2309, 3714, and 2084 data points accurately for H, F1, and F2
classes, respectively.
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Table 5. Performance evaluation of different sensor data.

Sensor Position Metrics H F1 F2

Sensor A

Precision 0.95 0.97 0.93
Recall 0.99 0.87 0.98
F1-Score 0.97 0.92 0.95
Accuracy 0.95

Sensor B

Precision 0.57 0.88 0.54
Recall 0.37 0.89 0.73
F1-Score 0.45 0.89 0.62
Accuracy 0.66

Sensor C

Precision 0.50 0.82 0.48
Recall 0.51 0.83 0.46
F1-Score 0.51 0.82 0.47
Accuracy 0.60
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5.3. Validation of the Proposed Method

In a classification problem, analyzing only the accuracy score is not sufficient. To
better understand the performance of the ANN model, we computed several performance
metrics based on the predicted values and actual values. Mathematical expressions of the
metrics are shown in (17)–(20):

Precision, P =
TP

TP + FP
(17)

Recall, R =
TP

TP + FN
(18)

F1 Score, F = 2× Precision× Recall
Precision + Recall

(19)

Accuracy, A =
TP + TN

TP + TN + FP + FN
(20)

where,
TP = True positive
TN = True negative
FP = False positive
FN = False negative
Some “False” data can be classified as a “True” class in DL algorithms. For example,

an F1 feature can be classified as H, and, hence, the total true predictions of H are increased.
This does not necessarily mean that the model is performing well for the H class prediction.
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To understand the underlying numbers of each class prediction, we compared all three-
sensor data using the matrices computed (17)–(20). The comparison is shown in tabulated
form in Table 5.

6. Conclusions

We propose a hybrid fault diagnosis approach of the gear-actuator system using a
fusion of model-based and data-driven approaches. A FEM-based physical model is used to
locate the appropriate sensor location through modal analysis. FFT and PSD data of initial
random vibration were used as input to the FEM simulation and, based on the maximum
mass deformation, the most suitable mounting point for the vibration sensor was obtained.
Three different mounting positions were used for sensor positioning, including the best
location found through FEM analysis. Several features from the vibration signals were
computed and the best features were selected through a two-stage elimination-selection
process. Later, an ANN model was used to learn the pattern of different health states of
the gear-actuator system. Two more additional sensor locations were arbitrarily selected
to compare the efficacy of FEM modeling. It was found that the FEM optimized sensor
location was able to provide the maximum accuracy in the ANN FDI framework of the
gear-actuator system. This study contributes the following:

• FEM modeling provides a robust analysis for sensor positioning through a detailed
gear-actuator physical model.

• The ANN model is built on two different feature selection approaches ensuring the
effectiveness of training data.

Finally, the combination of model-based and data-driven approaches provided a thor-
ough understanding of the FDI of the gear-actuator system. At the same time, it preserved
system dynamics for multi DOF operation, as well as ensured FDI in multiple operating
conditions through deep learning modeling. This particular approach is advantageous
for two reasons. Firstly, this approach does not require prior knowledge or a complicated
mathematical model representation for the FEM analysis. Secondly, it considers multiple
health indicators (features) in various domains. The feature selection technique can be
updated, based on the system requirement and operating condition, which improves the
prediction accuracy with lower computational cost.

In the future, we look forward to extending this model to predict future patterns by
estimating the remaining useful life (RUL) of the gear-actuator system.
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