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Abstract: In the present study, UV-light-driven advanced oxidation processes (AOPs) have been
employed for the degradation of 4-tert-Butylphenol (4-t-BP) in water under continuous flow condi-
tions. The effects of varying space time (10, 20, 40, 60 and 120 min) and oxidant dosage (88.3 mg/L,
176.6 mg/L and 264 mg/L) were examined. 4-t-BP degradation efficiency in the UV-induced AOPs
followed the order of UV/H2O2 (264.9 mg/L) ≈ UV/Fe2+/H2O2 > UV/Fe3+/H2O2 > UV/H2O2

(176.6 mg/L) > UV/H2O2 (88.3 mg/L) > UV/Fe-TiO2 > UV/TiO2 > UV, while UV/Fe3+/H2O2 was
the most efficient process in terms of Total Organic Carbon (TOC) removal (at the space time of
60 min) among those tested. The combination of UV with 88.3 mg/L H2O2 enhanced pollutant
removal from 51.29% to 93.34% after 10 min of irradiation. The presence of H2O2 contributed to the
highest 4-t-BP and TOC removal values. Interestingly, the increase in space time from 20 to 60 min
resulted in surpassing of the activity of the Fe-TiO2 over commercial TiO2, although it had an almost
negligible positive impact on the performance of the UV/H2O2 system as well as H2O2 concentration.
The results obtained showed that more than 80% of 4-t-BP could be successfully degraded by both
heterogeneous and homogeneous AOPs after 60 min.

Keywords: UV-based advanced oxidation processes; continuous flow; 4-tert-Butylphenol; degradation

1. Introduction

The contamination of water with various chemical compounds found in various
types of water bodies [1–3] at low concentrations [4] has attracted increasing attention.
These compounds have been termed as emerging pollutants (EPs) and include persistent
organic compounds such as pharmaceuticals, personal care products (PCPs), and endocrine
disruptive compounds (EDCs) with a high potential of bioaccumulation [5].

Among these pollutants, EDCs constitute a family of organic compounds that affect
natural hormones [6]. Their widespread use has led to their release and accumulation
in the aquatic environment [7,8]. For example, 4-tert-Butylphenol (4-t-BP), a representa-
tive of EDCs [9–12], has been detected in wastewater effluents and surface waters [6,13].
4-t-BP is an alkylphenol used for the production of phenolic, polycarbonate, and epoxy
resins [6]. Though detected at low concentrations in the environment, its ability to bind
to the estrogen receptor [14] could result in serious damages for aquatic ecosystems and
living organisms [15,16]. Due to its estrogenic activity [10], 4-t-BP has been included by the
European Commission in the list of chemicals of very high concern since 2019 [17]. Thus,
its toxicity [18,19] and persistence [20,21] impose the elimination of 4-t-BP in water.

Relatively few studies have been conducted to remove 4-t-BP from the aqueous
environment; biodegradation and photochemical treatments have been applied mostly.
However, biodegradation is not effective since long treatment times are necessary for
the complete decomposition of 4-t-BP [22–24]. For instance, the presence of Spirodela
polyrrhiza duckweed in environmental water samples led to 4-t-BP removals up to 56% in
a 3-day cycle at 28 ◦C [25].
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AOPs are attractive alternatives due to their low cost and environmentally friendly
nature. The oxidation efficiency of these processes relies on the generation of highly
reactive species such as hydroxyl radicals that have the capacity to degrade and min-
eralize recalcitrant organic pollutants [26–28]. Among them, UV/H2O2, photo-Fenton,
photo-Fenton-like, and heterogeneous photocatalytic processes are gaining increasing
popularity [12,13,29,30]. For instance, 4-t-BP at the concentration of 0.1 mM in water was
almost completely removed within 50 min by UV/H2O2 [12]. Xiao et al. [31] studied the
treatment of 4-t-BP under visible light heterogeneous photocatalysis, and achieved a 95%
TOC reduction after 120 min.

Although a substantial amount of research has demonstrated the effectiveness of UV-
induced AOPs in the removal of traditional hazardous compounds and many of emerging
concern in water, most studies have been conducted in batch systems. The experimental
comparison of low power 280 nm UV-photolysis, UV/H2O2 and UV/TiO2 towards the
degradation of 1H-benzotriazole demonstrated the superior performance of the UV/TiO2
system in terms of degradation and mineralization [32]. Peternel et al. [33] reported
about 2.5 higher mineralization efficiency for the photo-Fenton process compared with
the UV/TiO2 system for the organic reactive dye degradation in aqueous solution under
254 nm irradiation. Similarly, Martinez-Costa et al. [34] compared the performance of
photo-Fenton processes and UV/H2O2 for the removal of the antibiotics sulfamethoxazole
(SMX) and trimethoprim (TMP) in aqueous solution. It was found that UV/H2O2 was
beneficial towards the mineralization of organic pollutant than photo-Fenton processes.
Despite their promising results, lab scale batch experiments have the disadvantage of low
efficiency for treating high volumes of polluted water [35]. In contrast, continuous flow
systems appear to overcome such obstacles [36,37]. Silva et al. [38] studied photocatalytic
degradation of SMX under simulated solar light in ultrapure water and environmental
water matrices (fresh, estuarine and STP effluent). The results showed a sharp decrease in
the irradiation time required for the removal of SMX under continuous flow conditions
as compared with batch. Shojaeimehr et al. [39] assessed the photocatalytic degradation
of diclofenac using porous carbon nitride (mp-CN) immobilized onto stainless steel (SS)
plates and determined the optimum operating conditions, including catalyst loading,
irradiation source and initial pollutant concentration. They concluded that the combi-
nation of continuous flow mode with the immobilized photocatalyst particles could be
a promising alternative for treating contaminated water. Senthilnathan and Philip and
Vishnuganth et al. [40] have also reported the effective light-driven pesticide removal using
heterogeneous catalysts, N-doped TiO2 and granular activated carbon-supported titanium
dioxide (GAC-TiO2), respectively.

In the present study, the efficiency of UV-light-driven AOPs (UV/H2O2, UV/Fe2+/H2O2
and UV/Fe3+/H2O2, UV/TiO2 and UV/Fe-TiO2) in terms of 4-t-BP degradation and total
organic carbon removal was comparatively investigated under continuous flow conditions.
To the best of our knowledge, this is the first study concerning the use of light-driven AOPs
in continuous flow for the treatment of 4-t-BP in water by means of homogeneous and
heterogeneous processes.

2. Materials and Methods
2.1. Chemicals and Materials

4-t-BP (99%), TiO2-P25 (21 nm particle size, ≥99.5%), FeCl2 (98%), FeSO4·7H2O
(≥99.0%), Fe(NO3)3·9H2O (≥98.0%) and methanol (MeOH) of HPLC grade were obtained
from Sigma Aldrich. H2O2 (37.6% w/w) was obtained from Skat-Reactiv Company (Almaty,
Kazakhstan). Fe-doped TiO2 powders (Fe-TiO2) were synthesized by the wet impregnation
method with a 4% Fe:TiO2 molar ratio [21]. Ultrapure water (resistivity 18.2 mΩ cm,
Millipore) was used to prepare all solutions.
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2.2. Experimental Procedures

A 1000 mL stock solution was prepared by dissolving 30 mg of 4-t-BP in ultrapure
water. Depending on the system, H2O2, iron, TiO2 or Fe-TiO2 were added directly to the
4-t-BP solution before being exposed to UV light. The solution was kept under constant
stirring using a digital ceramic top hotplate stirrer (Mettler Toledo). In UV/H2O2 processes,
three different concentrations of H2O2 (88.3 mg/L, 176.6 mg/L and 264.9 mg/L) were used,
while 5 mg/L of iron (Fe2+ or Fe3+) was added in photo-Fenton and photo-Fenton-like
processes. In UV/TiO2 and UV/Fe-TiO2 processes, 200 mg/L of catalyst was tested.

The experiments on the degradation of 4-t-BP were carried out in a 300 mL photoreac-
tor equipped with a 10W UV lamp (Figure 1). The reactor was cylindrical with an external
diameter of 50.8 mm and a length of 90 mm. Inlet flow rates ranged from 2.5 to 30 mL/min
with the help of a peristaltic pump (Ismatec REGLO pump; IDEX Corporation, Lake Forrest,
IL, USA). Ambient conditions of temperature and pressure were used, and approximately
neutral pH conditions (6.7–7.1). Then, 15 mL aliquots of the treated solution were taken at
different space times (10; 20; 40; 60 and 120 min) and filtered by means of 0.22 µm nylon
filters. Each experiment was carried out in duplicates.
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Figure 1. Experimental setup for the continuous flow photodegradation of 4-t-BP.

2.3. Analytical Methods

The concentration of 4-t-BP was determined using an Agilent 1290 Infinity II high
performance liquid chromatography (HPLC) unit equipped with a UV detector. The SB-C8
analytical column (2.1 × 100 mm, 1.8 µm) was operated at 25 ◦C. In a typical run, a sample
of 1 µL was injected and the detection wavelength of 4-t-BP was set at 283 nm. A mixture
of 50% MeOH and 50% ultrapure water was used as the mobile phase to elute the analytes
at a flow rate of 0.4 mL/min.

TOC removal was determined by measuring the TOC in liquid samples by means of
Multi N/C 3100, Analytic Jena AG Corporation (Jena, Germany). The pH of solutions was
monitored using a Multi 9310 IDS meter.

3. Results and Discussion
3.1. UV-Photolysis

In order to gain insights into the performance of various UV-activated processes in
continuous flow mode, a series of experiments in the absence of any catalyst and oxidant
was performed by varying the space time (10, 20 40, 60 and 120 min). The degradation
of 4-t-BP steadily increased from 51.3 to 89.3% with the increase in space time from 10
to 120 min (Figure 2A). On the other hand, TOC removal did not significantly increase
with increasing the space time above 20 min and the values observed were considerably
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lower than the corresponding values for 4-t-BP degradation (Figure 2B). The increase in
space time promotes both the formation of more reactive species and the contact between
produced reactive species and pollutants, which, in turn, leads to higher degradation effi-
ciencies. However, the TOC removal is not promoted to the same extent, as UV-photolysis
alone cannot completely mineralize organic carbon [41–43]. For example, Wu et al. [13]
achieved 60% 4-t-BP degradation after 300 min of 254 nm UV irradiation and observed the
generation of several by-products, including 4-tert-butylcatechol, 4-tert-Butylphenol and
1-tert-butyl-2-methoxy-4-methylbenzene as an impurity. The results indicated that major
degradation products of 4-t-BP were 4-tert-butylcatechol and 4-tert-Butylphenol dimer.
Such intermediates were also detected in the UV (254 nm)/H2O2 system and prolongation
of the process time to 16 h resulted in only 29% of TOC removal, confirming the persistent
nature of generated by-products to mineralization.
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Figure 2. 4-t-BP degradation (A) and TOC removal (B) as a function of space time in
the UV-photolysis.

3.2. UV/H2O2

Subsequently, the UV/H2O2 process’ efficiency was examined by varying the initial
concentration of hydrogen peroxide (88.3 mg/L, 176.6 mg/L and 264 mg/L) and space
time values (10, 20 40, 60 and 120 min). The results obtained are shown in Figure 3 and
agree with previous studies [12,21]. The UV/H2O2 process proceeds via direct photolysis
and the formation of ·OH radicals that decompose most organic compounds without
discrimination. Specifically, 93.34% of 4-t-BP degradation was observed after 10 min. This
is due to the formation of sufficient amounts of hydroxyl radicals via the decomposition of
H2O2 [44,45].

H2O2 + hv→ 2 · OH (1)

·OH + 4-t-BP→ degradation products (2)

As depicted in Figure 3A, degradation efficiency was not considerably affected by
H2O2 concentration and space time. The concentration of 176.6 mg/L of H2O2 seemed
to be the most beneficial one in terms of 4-t-BP degradation. Excessive doses of H2O2
beyond a certain value may have an inhibitory effect [46,47] through the initiation of
propagation reactions that form perhydroxyl radicals (HO2·), which are much less reactive
than hydroxyl ones [48]. The detailed mechanism [49,50] is as follows (Equations (3)–(6)):

·OH + H2O2 → HO2· + H2O (3)

HO2· + H2O2 → ·OH + H2O + O2 (4)

HO2· + HO2
− → ·OH + HO− + O2 (5)

·OH + HO2· → H2O + O2 (6)
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Similar observations were made through TOC removal measurements. As a result,
the values of [H2O2]o = 176.6 mg/L and space time = 60 min were selected as the desired
conditions for further experiments.
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Figure 3. 4-t-BP degradation (A) and TOC removal (B) as a function of space time in the UV/H2O2.

The maximum TOC removal corresponding to 48.8% was achieved by applying
[H2O2]o = 264.9 mg/L and space time = 120 min. The increase in TOC removal in the
UV/H2O2 system in comparison to UV-photolysis could be associated with the generation
of both aromatic (4-tert-butylcatechol, 4-tert-Butylphenol and 1-tert-butyl-2-methoxy-4-
methylbenzene and hydroquinone) and non-aromatic products ((E)-2-Nonen-1-ol, trans-2-
Decenol and (E)-2-Dodecen-1-al), where the latter are the result of a benzene ring fracturing
process [13].

3.3. UV/Fe 2+/H2O2 and UV/Fe 3+/H2O2

The effect of the presence of Fe3+ and Fe2+ ions on 4-t-BP degradation was also
evaluated. The initial concentration of iron ions used was 5 mg/L. The reaction between
iron and H2O2 under UV light promotes the formation of OH [51] to effectively oxidize
pollutants through Equations (7)–(14):

Fe2+ + H2O2 → Fe3+ + · OH + OH− (7)

Fe3+ + H2O2 → Fe2+ + HO2 · + H+ (8)

· OH + H2O2 → HO2 · + H2O (9)

Fe2+ + · OH→ Fe3+ + OH− (10)

Fe3+ + HO2 ·→ Fe2+ + O2 + H+ (11)

· OH + · OH→ H2O2 (12)

4-t-BP + · OH→ Intermediates (13)

Intermediates + · OH→ CO2 + H2O (14)

Figure 4A shows a similar oxidation performance for Fe2+/UV/H2O2 towards 4-t-BP
degradation as in UV/H2O2 after 60 min of irradiation. The efficiency of Fe3+/UV/H2O2
was slightly lower. In contrast, an enhanced TOC removal (Figure 4B) was observed
for the Fe3+/UV/H2O2 process, indicating a favorable Fe3+ contribution to the catalytic
decomposition of H2O2 [52]. This can be attributed to a synergistic effect between Fe3+,
UV and H2O2. TOC removal efficiencies followed the following order: Fe3+/UV/H2O2 >
Fe2+/UV/H2O2 > UV/H2O2.
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at optimal conditions (conditions: space time = 60 min, 5 mg/L of catalyst, [H2O2] = 176.6 mg/L).

3.4. UV/TiO2 and UV/Fe-TiO2

The photocatalytic behavior of undoped TiO2 and Fe-doped TiO2 was examined for
4-t-BP degradation (Figure 5). The photocatalytic activity of Fe-TiO2 relies on the dopant
concentration [53–59]. Fe-TiO2 at a mass ratio of 4% was selected as based on previously
reported results [60,61].
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As shown in Figure 5, 4-t-BP and TOC removals were apparently increased with
an increasing space time from 10 min to 60 min for both TiO2 and Fe-TiO2, indicating
substantial impact of space time on the performance of the systems. However, increasing
space time from 60 min to 120 min resulted in apparently lower 4-t-BP degradation and
TOC removal. Compared to pure TiO2, the incorporation of iron particles slightly induced
the degradation of 4-t-BP, degrading 87% after 60 min instead of 82%. This can be attributed
to the retardation of the electron-hole pairs recombination [62]. It is noteworthy to mention
that at lower space time (10 and 20 min), the performance of TiO2 exceeded Fe-TiO2,
reaching 44.48% and 67% of 4-t-BP degradation in comparison to 33.41% and 55.79%,
respectively. Comparatively, further increases in space time to 40 min and 60 min resulted
in surpassed catalytic activity of Fe-TiO2 over TiO2.

3.5. Comparison of UV-Induced Processes

In order to compare the performance of UV-based processes, 4-t-BP degradation and
TOC removal were plotted at the space time of 60 min. As observed in Figure 6A, the
highest 4-t-BP degradation was achieved in the presence of H2O2 with the values ranging
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from 99.45% to 100% and followed the order of UV/H2O2 (264.9 mg/L) ≈ UV/Fe2+/H2O2
> UV/Fe3+/H2O2 > UV/H2O2 (176.6 mg/L) > UV/H2O2 (88.3 mg/L) > UV/Fe-TiO2 >
UV/TiO2 > UV only. Since the addition of H2O2 yield in a formation of higher amounts
of hydroxyl radicals, the observed enhancement was expected. On the other hand, H2O2
concentration increase in UV/H2O2 system had an almost negligible effect on the degra-
dation. As for the heterogeneous AOPs, the removal efficiency of 4-t-BP was 81.8% and
86.5% with TiO2 and Fe-TiO2 in the concentration of 200 mg/L, which indicates slight
increased degradation of 4-t-BP than that of UV treatment only. It is worth mentioning that
combination of continuous flow and UV/Fe-TiO2 process contributed to the improvement
of photo-oxidation reaction, while in a similar study [21] under batch-operated mode, the
removal of 4-t-BP was higher by means of commercial TiO2 than that of Fe-TiO2.
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Although 4-t-BP was largely degraded by almost all applied H2O2 concentrations after
60 min, the TOC removal varied from 20.05 to 41.66%. UV treatment alone did not provide
significant levels of TOC removal, while removals around 50% were achieved within 60 min
in the presence of heterogeneous photocatalysts (Fe-TiO2 or TiO2). Despite the low amount
of Fe3+ added, its combination with H2O2 and UV led to the highest TOC removal (65%).
The rank of TOC removal efficiency followed the order of UV/Fe3+/H2O2 > UV/TiO2 >
UV/Fe-TiO2 > UV/Fe2+/H2O2 > UV/H2O2 (176.6 mg/L) > UV/H2O2 (264.9 mg/L) > UV
only > UV/H2O2 (88.3 mg/L).

4. Conclusions

In the present work, various continuous-flow UV-mediated AOPs were used for the
degradation of 4-t-BP and TOC removal in water. The results showed that 93.34% 4-t-BP
degradation could be achieved at relatively low space time of 10 min in the UV/H2O2
system with oxidant concentration of 88.3 mg/L. The presence of H2O2 contributes to the
highest degradation efficiencies, making homogeneous AOPs (UV/H2O2, UV/Fe2+/H2O2
and UV/Fe3+/H2O2) attractive for the removal of 4-t-BP.

Generally, flow rate had a positive effect on degradation efficiency, where optimal
time to achieve the highest removal for most of the studied processes was found to be
60 min. As a result, the degradation performance improvement of UV, UV/TiO2 and
UV/Fe-TiO2 was observed with the increase in space time. Moreover, the photocatalytic
activity for TOC removal ability was also evaluated. Higher TOC removal efficiencies were
observed in the catalyst-assisted systems. Approximately 65% of TOC abatement in less
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than 60 min was achieved under UV/Fe3+/H2O2 treatment at an optimized concentration
of H2O2 (176.6 mg/L), probably because of the achieved synergistic effect between oxidant,
catalyst, UV exposure and flow system. Overall, the findings propose attractive applica-
tions of continuous flow treatment systems for efficient water remediation contaminated
with 4-t-BP.
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