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Abstract: This paper presents a novel bidirectional DC–DC converter, equipped with a three-winding
coupled inductor, that can be applied to high-voltage, bidirectional DC–DC energy conversion and
meet battery charging and discharging requirements. The architecture consists of a semi-Z-source
converter and a forward–flyback converter featuring a three-winding coupled inductor with an iron
core. This proposed topology retains the current continuity characteristics of the low-voltage side,
all switches possess the zero-voltage switching feature, and the switches on the low-voltage side
in the step-down mode have a synchronous rectification function. A 500-W bidirectional converter
is implemented to examine the practicality and feasibility of the proposed topology. The relatively
streamlined design of the converter can greatly reduce production costs. In the step-up and step-down
modes, the maximum energy conversion efficiencies are 95.74% and 96.13%, respectively.

Keywords: bidirectional DC–DC converter; synchronous rectification; three-winding coupled inductor;
zero voltage switching

1. Introduction

Since the Industrial Revolution, fossil fuels have been used extensively. The environ-
ment has been substantially altered on a global scale through the greenhouse effect, as
indicated by global warming, increases in the emission of particulate matter smaller than
2.5 µm, and other phenomena. Thus, environmental issues have received growing attention
in recent years. Relevant efforts include using renewable energy sources such as solar
power, wind power, and hydropower as alternatives to petroleum [1]. Natural hazards can
hinder the reliable generation of power from renewable energy sources. Energy storage
systems generally seek to ensure the stability of power output. When a surplus of energy is
available, the excess energy can be placed in the energy storage system and released when
necessary [2].

Figure 1 presents a block diagram of a renewable energy supply system. Power is
provided to the microgrid through this system and the energy storage system to maintain a
stable power supply [3,4].

With rapid advances in systems for power generation from renewable energy sources,
in order to reduce the cost and volume, in recent years, many bidirectional converters with
step-up/step-down function have presented. The bidirectional direct current (DC)–DC
converter has also been widely employed in various industrial applications, including
hybrid vehicles [5], auxiliary power supplies, and battery charging–discharging for unin-
terruptible power systems (UPS). Moreover, vehicles have become indispensable tools for
transportation in modern life. In view of the increasing attention paid to plug-in hybrid
electric vehicles (PHEVs) [6], the advantages of which include low pollution and low energy
consumption, a bidirectional DC–DC converter with a three-winding coupled inductor is
presented in this paper, as shown in Figure 2. This converter can be applied to PHEVs’
energy storage systems as well as to renewable energy supply systems. Excess energy is
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kept in the energy storage system for use when the system is under peak load. Specifically,
at such times, the stored energy is supplied to the grid for voltage stabilization.
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Conventional non-isolated converters include boost converters, buck converters, and
single-ended primary-inductor converters. Conventional isolated converters include fly-
back converters, forward converters, and push–pull converters. Isolated converters are
more widely used because they better ensure safety [7–9], provide galvanic isolation, and
improve noise immunity. The conventional boost converter has a simple structure and
is low in cost. It can easily increase the output voltage and is suitable for use in condi-
tions involving low voltage gain. Such converters are typically employed in power factor
correction circuits [10–12] and on the primary side of maximum power point tracking in
photovoltaic power generation systems [13–15]. In [16–18], such converters are mainly
used in electric vehicles, light-emitting diodes (LEDs), and high-intensity discharge lamps.
They are also applied to the low–high conversion of DC voltages (e.g., 48 to 380 V) in
computer and communications applications. The advantages of such converters include
the activation of the power switch, the small number of parts, and the low cost. They are
typically used in isolated power supplies, chargers for mobile devices, and medium and
low output power applications [19].

In [20], a high conversion ratio is achieved by using a capacitor charged in parallel
and discharged in series with a coupled inductor [21]. Although the main switches in
this converter are operated under zero voltage switching (ZVS), which increases system
efficiency, the auxiliary switch still performs hard switching, and the voltage diversity of
the converter is extremely limited. Hard switching of the converter limits the switching
frequency, and the inclusion of a coupled inductor complicates the design. In [22], gallium
nitride (GAN) switches are applied to the same topology, which is operated at 1 MHz,
to greatly reduce circuit size and increase energy conversion efficiency. However, such
circuits are expensive; moreover, the high-frequency switching results in an excessively high
switching loss. Although a ZVS feature is present under a 30% load, when the converter is
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operated under the full load, the hard switch feature of the power switches causes a large
switching loss.

The non-isolated bidirectional DC–DC converters in [23–27] have neither a common
ground nor an isolation ground between the low- and high-voltage sides, reducing safety
and industrial applicability. In [28], two inductors are used on the low-voltage side to
reduce the high current flow through the inductors and switches. However, many magnetic
components cause circuit volume and cost increase and high copper wire loss. In [29], the
topology is developed by integrating a three-winding coupled inductor, three switched
capacitors, and a flyback converter. Specifically, the topology comprises a set of interleaved
flyback converters on the low-voltage side and, on the high-voltage side, two converters
similar to half-bridge converters. It can be used to limit cross-leakage in energy recovery
and improve energy conversion efficiency. The shortcomings of this topology are the
relatively complex circuit operation and the required addition of an energy recovery circuit.
Moreover, the basis of this topology, the flyback converter increases ripple currents [30].
In [31], an isolated bidirectional DC–DC converter with two integrated non-dissipative
inductor–capacitor–diode (LCD) snubbers is presented. This topology combines the in-
ductance circuit in energy recovery [32–34] with a transformer to enhance power density.
The topology improves the energy recovery of leakage inductance on conventional fly-
back converters. Moreover, the bidirectional power flow increases the practicality of this
topology [35–38]. Although it is simple to control, the input current is discontinuous,
and the inclusion of the recovery circuit adds to the overall circuit complexity. In addi-
tion, because the power must flow through two series of diodes to the output port in the
conduction mode, power consumption is doubled and the energy conversion efficiency
is compromised.

In addition to two-port bidirectional converters, many three-port bidirectional con-
verters have also been proposed in recent years [39–41], which have a wider range of
applications. In [39], the bidirectional converter achieves high step-up and high step-down
but it only provides 250 W. In [40], the topology only uses two switches that greatly reduce
the cost of converter. However, power is too small to PV system. Furthermore, it only
provides unidirectional energy transmission. In [41], the snubber replaces extra active
switches but the converter still has five switches.

In order to improve the above shortcomings, this paper proposes a high efficiency and
high step-up/step-down isolated bidirectional DC/DC converter, which has the following
advantages: (1) it has high energy conversion efficiency, (2) it is safe to use and has
relatively low circuit costs, (3) all power switches can achieve ZVS, (4) an inductance circuit
is employed to facilitate energy recovery, and (5) the low-voltage side has the synchronous
rectification function in step-down mode.

2. Circuit Architecture and Operational Principles

The proposed isolated bidirectional DC–DC converter is shown in Figure 3. The
components are defined as follows. VL and VH are the low-side and high-side power ports,
respectively. The four switches are designated as S1–S4. DS1–DS4 and CS1–CS4 represent the
body diodes and parasitic capacitances of the switches, respectively. The other components
are three capacitators, designated as C1–C3, and a three-winding coupled inductor. The
coupled inductor is composed of leakage inductances Llk1, Llk2, and Llk3; magnetizing
inductance Lm1; and turns ratio N. The operational principles of the proposed converter in
the step-up and step-down modes are analyzed. The corresponding components, voltage
polarity, and current direction of the converter are presented in Figure 3. All magnetic
components are operated in CCM. To simplify the analysis of the operational principle,
several assumptions are made as follows:

(1) Switches and their parasitic diodes are ideal and the parasitic capacitance is considered.
(2) The capacitance values C1, C2, and C3 are infinite.
(3) The leakage inductance values Llk1 and Llk2 are substantially much lower than the

magnetizing inductance Lm1.
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(4) N1 is equal to N2 but less than N3, and the ratios of N1/N3 and N2/N3 are defined
as N.
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A. Step-Up Mode
In the step-up mode, the signals of switches S1 and S2 are Vgs1 and Vgs2, respectively.

Moreover, Vgs3 and Vgs4, the signals of switches S3 and S4, are in the OFF state. The key
waveforms in the step-up mode are shown in Figure 4. An operating cycle can be divided
into five modes, as shown in Figure 5a–e.
Mode 1 (t0–t1)

At the beginning of this mode, when time t = t0, all switch signals are in the OFF state.
The leakage inductance Llk2 extracts the energy from the parasitic capacitance CS1 of switch
S1 to achieve ZVS, and the parasitic capacitance CS2 of switch S2 stores energy until S2
is turned OFF. The energy stored in Llk3 is recycled to C3 through DS4. When the current
Llk3 drops to zero, the mode ends. The equivalent circuit diagram of mode 1 is presented
in Figure 5a.
Mode 2 (t1–t2)

At the beginning of this mode, when t = t1, switch S1 is turned ON and switch S2 is
turned OFF, so switch signals Vgs1 and Vgs2 are in the ON and OFF states, respectively. The
low-voltage side VL supplies energy to the magnetizing inductance Lm1. The energy stored
in leakage inductance Llk1 is transmitted to the high-voltage side VH and capacitor C3 via
the coupled inductor and the body diode DS3 of switch S3. When the capacitors C1 and C2
resonate with the leakage inductance LlK2, mode 2 ends as switch S1 is turned OFF. The
equivalent circuit diagram of mode 2 is presented in Figure 5b.
Mode 3 (t2–t3)

At the beginning of this mode, when time t = t2, all switch signals are in the OFF
state. The leakage inductance Llk1 extracts the energy from the parasitic capacitance CS2 of
switch S2 to achieve ZVS. The parasitic capacitance CS1 of switch S1 stores energy until
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S1 is turned OFF. On the high-voltage side, the energy stored in Llk3 and capacitor C3 are
released to VH through DS3. When the current of iLlk3 is zero, mode 3 ends. The equivalent
circuit diagram of this mode is presented in Figure 5c.
Mode 4 (t–t4)

In mode 4, which begins when t = t3, the switch signal Vgs2 is in the ON state, whereas
the switch signal Vgs1 is in the OFF state. Magnetizing inductance Lm1 and capacitor C2
release energy to capacitor C3 through the coupled inductor and through body diode DS4
of switch S4. The leakage inductance Llk1 releases energy to capacitor C1 through switch
S2 until the current voltage in S2 is zero, at which point mode 4 ends. The equivalent circuit
diagram of this mode is presented in Figure 5d.
Mode 5 (t4–t5)

In this mode, which starts when t = t4, the switch signals are the same as those in
the previous mode in this time interval. The energy of LlK1 decreases gradually, and the
leakage inductance LlK2 releases energy through switch S2. On the high-voltage side, the
previous operating mode is maintained. When switch S2 is turned OFF, this mode ends. Its
equivalent circuit diagram is presented in Figure 5e.
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B. Step-Down Mode
In the step-down mode, the operating signal is a complementary signal comprising

two sets of signals: Vgs1–Vgs3 and Vgs2–Vgs4. The key waveforms of the proposed topology
in the step-down mode are shown in Figure 6. An operating cycle is divided into seven
operating modes, as shown in Figure 7a–g.
Mode 1 (t0–t1)

This mode begins when t = t0. All switch signals are in the OFF state. The leakage
inductance Llk3 draws from the electric charges from parasitic capacitor CS3 of switch S3
to achieve ZVS. Moreover, the leakage inductance Llk3 charges the parasitic capacitance
CS4 of switch S4 until S4 is turned OFF. Capacitor C2 transfers energy to capacitor C1
and leakage inductance Llk2. The energy of the magnetizing inductance Lm1 is released to
the low-voltage side VL through the body diode DS1 of switch S1, and mode 1 ends. The
equivalent circuit diagram of mode 1 is shown in Figure 7a.
Mode 2 (t1–t2)

The interval begins when t = t1. Switch signals Vgs1 and Vgs3 are in the ON state,
whereas switch signals Vgs2 and Vgs4 are in the OFF state. Llk3 is magnetized by C3 through
S3; causing current iS3 to increase linearly. Part of the energy stored in C3 is transmitted to
the magnetizing inductance Lm1 by the transformer. Lm1 and capacitor C1 release energy to
the low-voltage side VL and capacitor C2, and mode 2 ends. The equivalent circuit diagram
of is shown as Figure 7b.
Mode 3 (t2–t3)

At the beginning of this mode, when t = t2, switch signals Vgs1 and Vgs3 are in
the ON state, whereas switch signals Vgs2 and Vgs4 are in the OFF state. Moreover, the
current direction of iS3 is reversed. The high-voltage side VH transfers energy to Llk3
and C3. Capacitor C2 provides energy to capacitor C1. At the same time, the magnetizing
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inductance Lm1 releases energy to the low-voltage side VL. When all switch signals are in
the OFF state, mode 3 ends. The equivalent circuit diagram is shown in Figure 7c.
Mode 4 (t3–t4)

This mode begins when t = t3. All switch signals are in the OFF state. The high-voltage
side VH charges the parasitic capacitance CS3 of switch S3 until it is turned OFF, and the
leakage inductance Llk3 extracts energy from the parasitic capacitance CS4 of switch S4
to achieve ZVS. The magnetizing inductance Lm1 begins storing energy and the leakage
inductance Llk1 releases energy to the low-voltage side VL. The leakage inductance Llk2
stores energy through the capacitors C2, C1, and the body diode DS1 of switch S1, and
mode 4 ends. The equivalent circuit diagram is shown in Figure 7d.
Mode 5 (t4–t5)

In this mode, switch signals Vgs1 and Vgs3 are in the OFF state and switch signals Vgs2
and Vgs4 are in the ON state. The leakage inductance Llk3 releases energy to capacitor C3
until the current iLlk3 is zero. The leakage inductance Llk1 releases energy to the magnetizing
inductance Lm1. Capacitor C1 releases energy to capacitor C2 and to the low-voltage side
VL, at which point mode 5 ends. The equivalent circuit diagram of mode 5 is shown
in Figure 7e.
Mode 6 (t5–t6)

This mode begins when t = t5. Switch signals Vgs1 and Vgs3 are in the OFF state and
switch signals Vgs2 and Vgs4 are in the ON state. The leakage inductance Llk3 is magnetized
through S4; therefore, the current iS4 increases linearly. Part of the energy stored in capacitor
C3 is transferred to the magnetizing inductance Lm1 through the transformer. Capacitor
C1 continues to supply energy to Lm1 and to the low-voltage side VL. When the current of
switch S2 drops to zero, mode 6 ends. The equivalent circuit diagram is shown in Figure 7f.
Mode 7 (t6–t7)

At the beginning of this mode, when t = t6, switch signals Vgs1 and Vgs3 are in the
OFF state, whereas switch signals Vgs2 and Vgs4 are in the ON state. The transformer
continuously transmits the energy of the magnetizing inductance Lm1 to capacitor C3,
which stores it. Capacitor C2 is in an energy storage state through switch S2. Capacitor C1
releases energy to the low-voltage side VL, at which point mode 7 ends. The equivalent
circuit diagram is shown in Figure 7g.
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5 in the step-up mode. 

B. Step-Down Mode 

In the step-down mode, the operating signal is a complementary signal comprising 

two sets of signals: Vgs1–Vgs3 and Vgs2–Vgs4. The key waveforms of the proposed topology in 

the step-down mode are shown in Figure 6. An operating cycle is divided into seven op-

erating modes, as shown in Figure 7a–g. 
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Figure 6. Key waveforms of the proposed topology in the step-down mode.
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Figure 7. Equivalent circuit diagrams of (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5,
(f) mode 6, and (g) mode 7 in the step-down mode.

3. Steady-State Analysis

Regarding the analysis of the circuit operated in CCM mode, in the step-up mode, the
switching period is TS. Switch signal Vgs1 is turned ON for time D1TS and turned OFF for
time (1 − D1)TS. In the step-down mode, the switching period is TS, switch signals Vgs1
and Vgs3 are turned ON for time D3TS and turned OFF for time (1 − D3)TS. The following
assumptions must be made:

(1) All components are ideal. The internal resistance and parasitic effects are ignored.
(2) The capacitance of all capacitors is infinite, making the capacitor voltage constant.
(3) The leakage inductance of the transformer is ignored.
(4) The circuit operating modes with short durations are ignored.
(5) For easier calculation, the ideal transformer is represented as N = N1/N3 = N2/N3,

where N is the transformer turns ratio.

3.1. Step-Up Mode
3.1.1. Voltage Gain Analysis

Derived from Figure 3, VH is the sum of the voltage induced by VL through the turns
ratio N and through VC3. It can be expressed as

VH = NVL + VC3 (1)
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To determine the relationship between VH and VL, the relationships of VC1, VC2, and
VC3 with VL must be identified.

During D1TS, switch signal Vgs1 is turned ON. According to Kirchhoff’s voltage law
(KVL), voltage VLm1 can be expressed as

VLm1 = VL = VC1 − VC2 = Lm1
∆iLm1,on

D1Ts
(2)

During (1 − D1)TS, switch signal Vgs1 is turned OFF. According to KVL, voltage VLm1
can be obtained as follows:

VLm1 = VC1 =
VC3

N
= Lm1

∆iLm1,o f f

(1 − D1)TS
(3)

On the basis of the volt–second balance of inductance, the amount of change in current
during a switching period must be zero in the steady state. This premise is expressed as

∆iLm1,on = ∆iLm1,o f f (4)

Substituting Equations (2) and (3) into Equation (4), voltages VC1, VC2, and VC3 can
be respectively obtained as follows:

VC1 =
D1

1 − D1
VL (5)

VC2 =
2D1 − 1
1 − D1

VL (6)

VC3 = D1VH (7)

Finally, substituting Equation (7) into Equation (1), the voltage gain in step-up mode
Gstep-up can be derived as

Gstep−up =
VH
VL

=
N

1 − D1
(8)

With reference to Equation (8), the relationships among the voltage gain in step-up
mode Gstep-up, the duty ratio D1, and the turns ratio N are visualized (Figure 8).
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Figure 8. Voltage gain of the proposed topology in the step-up mode.

3.1.2. Voltage Stress Analysis of Components

According to the equivalent circuit diagram for the D1TS period, the voltage across S1
is the sum of VL and VC1, and the voltage stress on S3 is VH. The voltage stress on S1 and
S3 can be respectively expressed as

VS1,stress = VL + VC1 =
1

1 − D1
VL =

1
N

VH (9)
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and
VS3,stress = VH =

N
1 − D1

VL (10)

On the basis of the equivalent circuit diagram for the (1 − D1)TS period, the voltage
stress on S2 is the sum of VL and VC1, and the voltage stress on S4 is VH. The voltage across
S2 and S4 can be respectively determined as

VS2,stress = VL + VC1 =
1

1 − D1
VL =

1
N

VH (11)

and
VS4,stress = VH =

N
1 − D1

VL (12)

3.1.3. Design of the Magnetic Components

The magnetic components of the proposed topology are designed in CCM mode. The
maximum current of Lm1 can be expressed as

iLm1,max = iLm1,avg +
∆iLm1

2
(13)

and the minimum current of Lm1 is given by

iLm1,min = iLm1,avg −
∆iLm1

2
(14)

The current ∆iLm1 and iLm1,avg can be respectively determined as

∆iLm1 =
VLm1

Lm1
D1TS =

(1 − D1)D1

Lm1 fsN
VH (15)

and
iLm1,avg = iL =

N
1 − D1

iH (16)

Because the magnetic components are designed in CCM mode, current iLm1,min must
be greater than zero. When the magnetic components are operated in boundary conduction
mode (BCM), current iLm1,min is equal to zero. Substituting Equations (15) and (16) into
Equation (14), current iLm1,min can be expressed as

iLm1,min = 0 =
N

1 − D1
iH − (1 − D1)D1

2Lm1 fsN
VH (17)

On the basis of Equation (17), the formula for the operation of Lm1 in BCM mode is
expressed as

Lm1,BCM =
(1 − D1)

2D1

2 fsN2
VH

iH,BCM
(18)

The design parameters of the magnetic components in the step-up mode are presented
as follows. The turns ratio N is 5, the switching frequency fs is 50 kHz, the voltage of the
high-voltage side VH is 400 V, and the current of the high-voltage side iH is 0.375 A.

Substituting these parameters into Equation (18), the curve of Lm1 operated in BCM
mode is plotted (Figure 9). When the value of Lm1 is greater than the curve in BCM mode,
Lm1 is operated in CCM mode; otherwise, Lm1 is operated in DCM mode.
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Figure 9. Curve of Lm1,BCM in the step-up mode.

3.2. Step-Down Mode
3.2.1. Voltage Gain Analysis

To derive the relationship between VL and VH, the respective relationships of VC1,
VC2, and VC3 with VL must also be derived.

Switch signals Vgs1 and Vgs3 are turned ON during D3TS. According to KVL, voltage
VLm1 can be expressed as

VLm1 = VL = VC1 − VC2 = Lm1
∆iLm1,on

D3TS
(19)

During (1 − D3)TS, switch signal Vgs3 is turned OFF. According to KVL, the voltage
VLm1 can be obtained as

VLm1 =
VC3

N
= Lm1

∆im1,o f f

(1 − D6)TS
(20)

According to the volt–second balance of inductance, the amount of change in the cur-
rent during a switching period must be zero in the steady state. This premise is expressed as

∆iLm1,on = ∆iLm1,o f f (21)

Substituting Equations (19) and (20) into Equation (21), the voltages of C1, C2, and C3
can be respectively obtained:

VC1 =
D3

1 − D3
VL (22)

VC2 =
2D3 − 1
1 − D1

VL (23)

VC3 = D3VH (24)

Finally, substituting Equation (24) into Equation (1), the voltage gain in the step-up
mode Gstep-down can be derived as

Gstep−down =
VH
VL

=
1 − D3

N
(25)

On the basis of Equation (25), the relationships among the voltage gain in the step-
down mode Gstep-down, the duty ratio D3, and the turns ratio N are visualized (Figure 10).
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Figure 10. Voltage gain of the proposed topology in the step-down mode.

3.2.2. Voltage Stress Analysis of Components

On the basis of the equivalent circuit during D3TS, the voltage stress on S1 is the
sum of VL and VC1, and the voltage across S3 is VH. The voltage across S1 and S3 can be
respectively obtained as

VS1,stress = VL + VC1 =
1

1 − D3
VL =

1
N

VH (26)

and
VS3,stress = VH =

N
1 − D3

VL (27)

According to the equivalent circuit diagram for the (1 − D3)TS period, the voltage
across S2 is the sum of VL and VC1, and the voltage across S4 is VH. The voltages across S2,
and S4 can be expressed as

VS2,stress = VL + VC1 =
1

1 − D3
VL =

1
N

VH (28)

and
VS4,stress = VH =

N
1 − D3

VL (29)

3.2.3. Design of the Magnetic Components

The maximum current of Lm1 is given by

iLm1,max = iLm1,avg +
∆iLm1

2
(30)

and the minimum current of Lm1 is given by

iLm1,min = iLm1,avg −
∆iLm1

2
(31)

Currents ∆iLm1 and iLm1,avg can be determined as

∆iLm1 =
VLm1

Lm1
D3TS =

D3

Lm1 fs
VL (32)

and
iLm1,avg = iL (33)
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When the magnetic components are operated in BCM mode, current iLm1,min is equal
to zero. Substituting Equations (32) and (33) into Equation (31), current iL1,min can be
obtained as

iLm1,min = 0 = iL −
D3

Lm1 fs
VL (34)

As
iLm1,BCM =

D3

fs

VL
iL,BCM

(35)

The design parameters of the magnetic components in the step-up mode are presented
as follows. The switching frequency fs is 50 kHz, the low-voltage side VL is 36 V, and the
current of the low-voltage side iL is 4.167 A.

Substituting the parameters into Equation (35), the curve of Lm1 operated in BCM
mode is plotted (Figure 11). When the value of Lm1 is greater than the curve in BCM mode,
Lm1 is operated in CCM mode; otherwise, it is operated in DCM mode.
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4. Experimental Results

Key waveforms in the step-up and step-down modes were measured. The prototype of
the proposed bidirectional isolated DC–DC converter is shown in Figure 12. The electrical
specifications and component parameters are listed in Table 1, and the voltage stress on
each component is considered. Figure 13 shows the control scheme, dsPIC30F4011 is used
to generate the PWM signals to control the converter by gate driver circuit. To verify the
feasibility of the proposed topology, the measured waveforms are examined.
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Table 1. Electrical specifications and component parameters of the proposed converter.

Parameter Specification Parameter Specification

High-side voltage VH 400 V Switching frequency fs 50 kHz
Low-side voltage VL 36 V Magnetizing inductance Lm1 47 µH
High-side power PH 500 W Leakage inductance Llk1 4 µH
Low-side power PL 500 W Leakage inductance Llk2 4 µH

Power switches S1 and S2 IRFP4568PbF Capacitor C1 100 µF
Power switches S3 and S4 IXFH26N50Q Capacitor C2 100 µF

Turns ration N 5 Capacitor C3 100 µF
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Figure 13. The control scheme of the proposed converter.

Figure 14 presents the measured waveforms in the step-up mode under the full 500 W
load. As shown in Figure 14a–c, respectively, Dstep−up is approximately 0.6, the voltage
stress of switches S1 and S2 is 80 V, and the voltage stress of switches S3 and S4 is 400 V.
Moreover, switches S1 and S2 have the ZVS feature in the step-up mode. In Figure 14d, the
voltage stress of C1, C2, and C3 is 54, 18, and 240 V, respectively.

The waveforms measured in the step-down mode under the full load are displayed in
Figure 15. As presented in Figure 15a–c, Dstep−down is approximately 0.6, the voltage
stress of switches S1 and S2 is 80 V, and the voltage stress of switches S3 and S4 is 400 V. In
this mode, switches S3 and S4 clearly have the ZVS feature, and switches S1 and S2 possess
the synchronous rectification function. In Figure 15d, the voltage stress of C1, C2, and C3 is
54, 18, and 240 V, respectively.

Figure 16a,b shows the measured waveforms of the proposed topology operated under
load variation in step-up mode and step-down mode, respectively, while the output load
is step changed between half load and full load. It can be seen that the output voltage
(VH/VL) is very stable and is not greatly affected by load changes.

Figure 17 shows the energy conversion efficiency of the proposed topology in the
step-up mode. The highest energy conversion efficiency is 95.74% at 150 W, and the lowest
is 92.76% at 500 W. The curve of the energy conversion efficiency of the proposed topology
in step-down mode is plotted in Figure 18. The highest energy conversion efficiency is
96.13% at 200 W, and the lowest is 93.67% at 500 W.
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Figure 14. Experimental results of the proposed topology, operated in the step-up mode under the
full load (500 W): (a) Vgs1, Vgs2, ilk1, and ilk2; (b) Vds and ids of S1 and S2; (c) Vds and ids of S3 and S4;
and (d) VC1, VC2, VC3, and VH.

The performance of the proposed converter is examined, and its advantages and
disadvantages are determined. Table 2 presents a comparison of the proposed converter
with other bidirectional converters in [26,28,30] in terms of component numbers, ripple
currents, electrical specifications, and other parameters.

Figures 19 and 20 compare the voltage gain of the proposed converter in the step-up
and step-down mode, respectively, with those of the bidirectional converters in [26,28,30].
Although the converter in [26] has a higher voltage gain than the proposed converter in the
step-up mode, it has neither a common ground nor an isolated ground. The voltage gains
of the converters in [28,30] are lower than that of the proposed converter. Moreover, given
that the proposed converter has a duty ratio Dstep−down of approximately 0.6, its voltage
gain exceeds those of the converters in [26,28,30] in the step-down mode.

Figure 21 compares the energy conversion efficiency of the proposed converter in
step-up mode with those of the converters in [26,28,30]. Although the energy conversion
efficiency of the converter in [26] in the step-up mode exceeds that of the proposed converter,
as mentioned, it has neither a common ground nor an isolated ground between the low-
and high-voltage sides, reducing its safety and industrial applicability. Overall, the energy
conversion efficiency and cost of the proposed converter are superior to those of the
converters in [28,30], and its power is superior to those of the converters in [26,28,30].
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Table 2. Comparison of the proposed bidirectional converter with other studies.

Converter in
[26]

Converter in
[28]

Converter in
[30]

Proposed
Converter

Gstep−up

(
VH
VL

)
2+N
1−D

2N
1−D

2ND
1−D

N
1−D

Gstep−down

(
VL
VH

)
D

2+N
D

2N
D

2N(1−D)
1−D

N

MOSFETs 4 4 4 4

Inductors 0 2 1 0

Transformers 1 1 2 1

Capacitors 2 1 4 3

Diodes 0 0 6 0

Turns ratio 1:4.5 1:1.5 1:3 1:5

The current ripple of
low voltage side Normal Normal Large Normal

Low side Voltage VL 30 V 24 V 48 V 36 V

High side Voltage VH 380 V 200 V 400 V 400 V

Switching frequency fS 50 kHz 50 kHz 40 kHz 50 kHz

Output power 300 W 200 W 400 W 500 W

Isolated No Yes Yes Yes
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Figure 21. Comparison of the energy conversion efficiency of the proposed converter in the step-up
mode with those of the converters in [26,28,30].

Figure 22 compares the energy conversion efficiency of the proposed converter in
step-down mode with those of the converters in [26,28,30]. The energy conversion effi-
ciencies of the converter in [26] operating under a light load and of the converter in [30]
operating under the full load exceed that of the proposed converter. In addition, the con-
version efficiencies of the proposed converter surpass those of the converters in [26,28,30].
Furthermore, the magnetic flux of the converter in [28] is unbalanced on the low-voltage
side, and the excessive number of magnetic components increases the circuit volume and
cost and leads to the high loss of copper wire. Although the converter in [30] has an energy
recovery feature, the conduction loss on the components is relatively high.
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5. Discussion and Conclusions

This paper presents a novel isolated bidirectional DC–DC converter for application
in PHEVs. The proposed converter consists of a three-winding coupled inductor, three
switched capacitors, and four active switches. Energy from the leakage inductance can
be effectively recycled in both the step-up and step-down modes, and all switches have
the ZVS feature. The advantages of the proposed topology are as follows: (1) it has high
energy conversion efficiency, (2) it is safe to use and has relatively low circuit costs, (3) all
power switches can achieve ZVS, (4) an inductance circuit is employed to facilitate energy
recovery, and (5) the low-voltage side has the synchronous rectification function in step-
down mode. However, the limitations of the proposed converter in this paper include:
(1) the implemented power is too low to be truly applied to the EV system; (2) the input
voltage range is too narrow, which limits the application of the converter; (3) it is not
actually considered the charging method of the battery, which will affect the life of the
battery; and (4) only the dual-port power transmission direction, which will limit the



Processes 2022, 10, 50 20 of 21

application of the converter. Therefore, the future research direction of this work is to
improve the above restrictions.
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