2 M processes

Article

An Enabling Open-Source Technology for Development and
Prototyping of Production Systems by Applying
Digital Twinning

Robert Kazala !, Stawomir Luécifiski 2-*(%, Pawel Straczyfiski ! and Albena Taneva

check for
updates

Citation: Kazata, R.; Lusciniski, S.;
Straczynski, P.; Taneva, A. An
Enabling Open-Source Technology
for Development and Prototyping of
Production Systems by Applying
Digital Twinning. Processes 2022, 10,
21. https://doi.org/10.3390/
pr10010021

Academic Editor: José Barbosa

Received: 24 November 2021
Accepted: 20 December 2021
Published: 23 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3

1 Department of Electrical Devices and Automation, Faculty of Electrical Engineering, Automatics and

Computer Science, Kielce University of Technology, 25-314 Kielce, Poland; rkazala@tu.kielce.pl (R.K.);
p-straczynski@tu.kielce.pl (P.S.)

Department of Production Engineering, Faculty of Management and Computer Modelling,

Kielce University of Technology, 25-314 Kielce, Poland

Control Systems Department, Technical University of Sofia, Branch Plovdiv, 4000 Plovdiv, Bulgaria;
altaneva@tu-plovdiv.bg

* Correspondence: slawomir.luscinski@tu.kielce.pl

Abstract: This article presents the most valuable and applicable open-source tools and communication
technologies that may be employed to create models of production processes by applying the concept
of Digital Twins. In recent years, many open-source technologies, including tools and protocols, have
been developed to create virtual models of production systems. The authors present the evolution
and role of the Digital Twin concept as one of the key technologies for implementing the Industry
4.0 paradigm in automation and control. Based on the presented structured review of valuable
open-source software dedicated to various phases and tasks that should be realised while creating
the whole Digital Twin system, it was demonstrated that the available solutions cover all aspects.
However, the dispersion, specialisation, and lack of integration cause this software to usually not
be the first choice to implement DT. Therefore, to successfully create full-fledged models of Digital
Twins by proceeding with proposed open-source solutions, it is necessary to make additional efforts
due to integration requirements.

Keywords: Industry 4.0; Digital Twin; simulation modelling

1. Introduction

Digital transformation of manufacturing processes and production management is ex-
periencing the influence of the development of flexible manufacturing systems by applying
advanced information and communication technologies (ICT) in production automation [1].
These innovations shape a new paradigm of production systems, which is known as the
Industry 4.0 (ger. Industrie 4.0) framework. Industry 4.0 (I4.0) is a collective term for the
technology and concept of a value chain organisation, which includes four key elements [2]:
Smart Factories, Cyber-Physical Systems (CPS), Internet of Things (IoT), and Internet of
Services (I10S). The production organisation following the 4.0 framework can be considered
as the information-driven flow of the workpieces machine-by-machine in a workshop
floor, supported by real-time communication between machines and the manufacturing
execution system (MES). The term cyber-physical systems (CPS) has been defined as “the
systems in which natural and human-made systems (physical space) are tightly integrated
with computation, communication and control systems (cyberspace)” [2]. By integrating
the computational (cyber) world and physical world, CPS can bring autonomous control,
self-awareness, and self-management capabilities to industrial machines. Integration can
be considered as a four-stage evolutionary process [3], presented in Figure 1. There are no
information systems involved in shop-floor processes at the first stage. At the second stage,
industry evolutionary systems developed manufacturing planning and control systems [4]:

Processes 2022, 10, 21. https:/ /doi.org/10.3390/pr10010021

https://www.mdpi.com/journal /processes

https://doi.org/10.3390/pr10010021
https://doi.org/10.3390/pr10010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7385-6668
https://doi.org/10.3390/pr10010021
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10010021?type=check_update&version=2

Processes 2022, 10, 21

2 of 21

Reorder point (ROP) systems;

Materials requirement planning (MRP) systems, due to production integration;
Manufacturing resource planning (MRP-II) systems, due to quality improvement;
MRP-II with manufacturing execution systems (MES), due to time-based competition;
Enterprise resource planning systems (ERP) with MES, due to global competition;
Extended ERP (ERP II) with MES (internet).

Virtual space
and physical
space begin to
further interact
and converge

=

Virtual space
appears and
enhances

|
|
I
Virtual !
space !
i
i
I
|
i
|
|
|
|

Everything depends
on physical space

Physical
space

The 1st stage The 2nd stage The 3rd stage The 4th stage

Figure 1. Convergence of shop floor. Source: [4].

The transition from the second to third stage started in the 2000s with the introduction
of computer-integrated manufacturing (CIM) systems due to a digitalisation of machine
tools (CNC) and product development (CAD/CAE/CAM). Currently, the industry is at the
third stage: emerging IoT solutions and Big Data analysis introduce increasing interaction
between virtual and physical spaces. The transition to the fourth stage is driven by the
development of Digital Twins (DT), based on intensive two-way interaction due to growing
possibilities for cyber-physical and information systems.

Designing modern equipment and industrial processes supporting digital conver-
gence of a shop floor requires the development of virtual models necessary to check the
correctness of assumptions and optimise the assumed parameters. Therefore, the Digital
Twin is considered one of the essential concepts supporting the implementation of the
abovementioned convergence.

Creating a Digital Twin requires specialised software tools to develop a virtual process
model, simulation, optimisation, and visualisation. Commercial software packages like
Emulate3D, iTwin, Forge, Seebo Digital twin are primarily employed to develop and
implement Digital Twins in the industry. However, in the case of complex models using 3D
graphics, modelling dynamic processes, allowing communication with the environment,
and visualising process variables, these tools must be highly developed, making them
very expensive for users. An alternative approach that reduces the costs of creating such
systems can be done by applying software available under open-source licenses. Using
open source in the development process has many advantages, including increased time to
market, reduced cost of ownership, and improved software quality. Moreover, the value of
open-source software is grounded in some fundamental, inherent properties, recognised in
the software industry as applicable in the areas of [5]:

e Seeking different perspectives to make better software. Open source is about collabo-
rative knowledge development that allows the global context of users and developers;

e Finding the balance between policy and autonomy. It requires introducing new policies
to encourage employees to use, contribute to, and release open-source software in
software companies;

Processes 2022, 10, 21

30f21

e Securing every link in the supply chain. Community-driven process of development
brings the risk of security vulnerabilities, but in return gives an uncentralised, flexible
reaction to arising issues supported by initiatives of software companies like GitHub,
Google, IBM, and others;

e Over-communication to support collaborative culture. Using open-source solutions ex-
poses multi-channel communication inside and outside of the company and decreases
the uncertainty.

However, the issue is finding and choosing the best programs and libraries that will
be functional equivalents of commercial solutions and will allow for practical work.

The second chapter presents the evolving Digital Twin concept in the literature and in
practice. Digital Twin’s development and implementation aspects with applying selected
open-source software tools are presented in the third chapter. The fourth chapter presents
libraries for 3D visualisation of Digital Twins. The fifth chapter is on communication
methods used in industrial automation systems applied to Digital Twin modelling. Control
systems modelling presented in the sixth chapter is crucial for Digital Twinning usability
and applicability. Finally, the seventh chapter summarises the authors” point of view
on the applicability of open-source software and perspectives of Digital Twin concept
implementation.

2. Digital Twin Concept

The idea of digital representation of physical objects for manipulation and simulation
has been present in the industry since the 1970s when electronics chip circuit design was
supported with CAD systems developed in manufacturing companies. In the 1980s, along
with the personal computer revolution, software for electronic design automation (EDA)
was independently developed to support engineering through an interactive design and
simulation of integrated circuits and printed board circuits (PCB). Concurrently, software
tools” evolution in mechanical engineering from computer-aided design (CAD) through
computer-aided engineering (CAE) to computer-aided manufacturing (CAM) took place [4].
The concept of digital mirroring of existing physical assets was coined by Grieves in 2002
at the University of Michigan [6-8] for the formation of the product lifecycle management
(PLM) and consists of three elements:

1. Physical product in real space;
2. Virtual product in a virtual space and set of virtual subsystems;
3. The connection of data and information that tie the two spaces together.

This conceptual model was initially named the Mirrored Spaces Model (Grieves, 2005),
then later was referred to as the Information Mirroring Model (Grieves, 2006). Digital
Twin was coined for the model by Vickers of NASA and was used to better its description
(2011) [6-10]. Explicit definition of a Digital Twin was introduced by NASA as follows: “A
Digital twin is an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle
or system that uses the best available physical models, sensor updates, fleet history, etc., to
mirror the life of its flying twin” [11].

The Physical Twin (the physical system itself), the lifecycle of the product, and the
Digital Twin are closely interconnected (Figure 2).

According to Grevier and Vickers, the Digital Twin (DT) is “a set of virtual in-
formation constructs that fully describes a potential or actual physical manufactured
product from the micro atomic level to the macro geometrical level”. Therefore, DT
should supply any information that reflects that obtained from inspecting a physically
manufactured product [7].

The Digital Twin implementation model [7,12], as shown in Figure 3, reflects the com-
plexity of the design process that should be iterative and simultaneous at the
same time.

Processes 2022, 10, 21

40f21

K\“? Data
4
Information ey

Physical twin Digital twin

Figure 2. Digital Twin: physical and virtual products. Adopted from [8].

Manufacturability

Machines \ Processes
\/ \\\ /
¥ / NY

Supportability

A
<_"'/ T Maintenance

Virtual Twin
Design
Controler signal

Monttoring signal Material variation
&b

Performability Modularity

Structures

& Materials

Figure 3. Digital Twin implementation model. Adopted from [7,12].

There will be different types of Digital Twins depending on the phase of the system’s

lifecycle [7,8]:

Digital Twin Prototype (DTP)—the design version with all its variants. DTPs should
exist for all manufactured products;

The Digital Twin Instance (DTI) —the Digital Twin of each individually produced
artefact. DTIs exist only for products where it is crucial to have information about that
product throughout its life. DTs are operated on in a Digital Twin Environment (DTE);
Digital Twin Aggregates (DTAs) —the aggregation or composite of all the DTIs.

The scope and meaning of the term Digital Twin evolved from the original concept,

limited to air vehicles, through generic “product” to be extended on the virtual counterpart
of production resources. According to Gartner, since 2016, Digital Twin technology has
been one of the 10 Strategic Technology Trends (four times in a row). During 2016-2019
we observed DT’s evolving definition and usability characteristics from the business and
technological perspective presented by Gartner (Table 1.)

Processes 2022, 10, 21 5o0f 21

Table 1. Digital Twins as strategic technology trend from 2016-2019, by Gartner Inc.

Year Description of Digital Twins
A dynamic software model of a physical thing or system that relies on sensor data to understand its state, respond to
2016 changes, improve operations, and add value. Digital Twins include a combination of metadata (for example,
[13] classification, composition, and structure), condition or state (for example, location and temperature), event data (for
example, time series), and analytics (for example, algorithms and rules).
A Digital Twin refers to the digital representation of a real-world entity or system. Digital Twins of assets have the
potential to improve enterprise decision-making significantly. These Digital Twins are linked to their real-world
2017 counterparts and are used to understand the state of the thing or system, respond to changes, improve operations, and
[14] add value. Organisations will implement Digital Twins simply at first, then evolve them over time, improving their
ability to collect and visualise the correct data, apply the right analytics and rules, and respond effectively to
business objectives.
Digital Twins can rely on the IoT, which can improve enterprise decision-making by providing information on
2018 maintenance and reliability, insight into how a product can perform more effectively, and data about new products and
[15,16] increased efficiency. However, the emerging trend of creating a Digital Twin of an organisation (DTO) moves DT

beyond IoT. A DTO relies on operational (or other) data to monitor and control its business model’s operationalisation,

including automatical reaction to changing conditions.

Source: own elaboration.

3. Development of the Digital Twin Models
3.1. Open-Source Software Selections Approach

Searching for solutions enabling the creation of Digital Twin models using open-source
software requires a review of available programs and programming libraries—including
evaluation of applicability for the implementation of various functions required at the stage
of creating and using the constructed models.

The presentation of open-source software enabling Digital Twinning is structured into
three phases of the development process:

1. Modelling;
2. Visualising;
3. Interconnecting.

As the concept of a Digital Twin is very general, the analytical part of the work initially
focuses on modelling objects” behaviour without considering the model’s visual repre-
sentation. The analysis considers the compliance criterion of the analysed software with
technologies used in the industry. It applies to standards for creating 3D models of objects,
considering real-time requirements and compatibility with industrial communication stan-
dards. Then the visualisation methods that allow mirroring the actual appearance of objects
with the use of 3D graphics are presented. Subsequently, the focus is on communication
methods that interconnect the constructed models and real or simulated control systems.
The tools for modelling PLC-based control systems and the creation of SCADA industrial
processes visualisation are also presented. The final part shows examples of industrial
equipment models built based on the described technologies.

3.2. Structure of Digital Twin

The Digital Twin concept covers various areas of life. However, the most significant
emphasis is on introducing it into production systems. This is related to the complexity
of such systems, their high cost, the necessity of training the operators, and minimising
production costs. This results in the need to test such systems at the design stage to
eliminate errors. Removing them from the finished installation could generate high costs
and extend the project implementation time. It is also possible to train operators in advance
on a virtual model, simulate emergencies, and minimise production costs by testing various
control algorithms and management methods.

Depending on the needs, when creating a system with Digital Twin elements it is
necessary to define the structure of such a system and select the elements to be simulated.

Processes 2022, 10, 21

6 of 21

In addition, it is also essential to define the accuracy of the representation of the subsystems
of the real devices. An exemplary structure of such a system is shown in Figure 4.

- - - - /"
| Production system model |
| Electric Mechanical
subsystems subsystems |
| ~. = | Real
| ’ Models interconnections ‘ production system
| Electronic Local
subsystems controllers | A
e ————EP
A
\ \
Communication
k I
—————— —_——— —
| Control system model | 4
| BEC Motion controller | Real
: | control system
| SCADA Web interface I
L - - - - _ 2

Figure 4. Structure of the Digital Twin system. Source: own elaboration.

3.3. Physical Modelling

In the classic modelling approach based on the adopted physical model, a mathemati-
cal description of individual elements of the object is created. As a result, a model is built in
the form of a system of differential equations which is then solved using numerical methods.
Another approach is to create a block diagram based on equations that describe the signal
flow between the input and output of the modelled system. Finally, the created block
diagram is simulated using tools like MATLAB-Simulink, Scilab-Xcos. The disadvantage of
this approach is that the connection structure of the block diagram does not correspond
to the physical connections in the modelled system and there is a need to determine new
equations whenever the structure of the system changes.

Physical modelling is another way to model systems. It has many advantages, the
main one being the elimination of the stage of manual creation of the mathematical model
of the system. This approach is used in specialised packages to simulate electronic circuits.
In this type of system, the physical model of the system is created from the basic elements.
Then, a mathematical model is automatically created for the created model, which is solved
using numerical methods. Specialisation in one specific field, e.g., electronics appear
to be the disadvantage of these programs in the open-source world. When designing
systems following the Digital Twin concept, the usefulness of such programs is limited.
Physical modelling of this type of system requires the use of universal software enabling
interdisciplinary modelling. The Modelica modelling language [17] was developed to solve
this problem. It allows an object-oriented description of the physical structure of the built
model and all connections between its elements. Based on the description, mathematical
equations describing the system are created automatically. This language is gradually
becoming more and more popular among specialists creating complex system models.

The sample model showing the Electric Arc Furnace created using Modelica language
is presented in Figure 5.

Processes 2022, 10, 21

7 of 21

(a)

(b)

Regulator Naped elektrocy

Napoed clektrocy

3] Regulator

4 Regulator Naped slektrocy

L1
-0
ul
L A
VRS
Lp2?
==
]
1=lp A
[T
Lo3
-0
i &)
. . P
I feedback1 l/ feedback '/ !
T-10 i
InealGear’? | springDampor

A=Ky
DAL

speedSenzor
IeAuoguon sod

Figure 5. Electric arc furnace model created using Modelica language: (a) high current circuit,
(b) electrode control system. Source: [18].

3.4. Modelling of Multibody Mechanical Systems

Real mechanical systems consist of rigid or flexible bodies that perform translational
and rotational movements. This kind of system is called a multibody system. Although
the mechanical part is most often simulated when creating industrial object models within
Digital Twins, this issue will be presented separately.

The kinematics of motion and their dynamics are often considered separately during
modelling mechanical systems. In simpler models created, for example, for didactics, it
is often enough to build a kinematic model showing the operation of the device without
taking into account accelerations and forces. However, if the model is to be used for testing
control systems, this approximation is often insufficient and dynamic phenomena must
be considered.

Processes 2022, 10, 21

8 of 21

Since creating models based on algebraic and differential equations takes a long time
and is very complicated for complex models, physical modelling methods will be presented
in the following section. Creating simulation models that include kinematics, dynamics,
and collisions between objects should initially determine whether 3D graphics will be used
to show the system’s operation or if only the values of the variables generated in the system
are essential. Furthermore, it is crucial to define whether simulation software performs the
visualisation or if an external library for 3D graphics will be employed.

Modelling of multibody systems can be realised using two groups of software:

e multibody simulation software;
e physical simulation libraries.

The advantage of universal multibody simulation software is using specialised text
files or graphical representation to create a layout description. Models can be simulated
through the use of classic programs or by using specialised simulation environments such
as OpenModelica. Difficulties arise when there is a need to use external libraries for 3D
visualisation. Additional work is needed to combine the developed multibody model with
the 3D model developed for 3D visualisation. Examples of multibody simulation software
are presented in Table 2.

Table 2. Multibody simulation software.

Name Description
Modelica.Mechanics.MultiBody Part of Modelica Standard Library [16].
MBDyn General-purpose multibody dynamics analysis software [19].

FreeDyn is a free simulation software designed for solving
FreeDyn scientific and industrial problems in multibody dynamics
with systems consisting of flexible bodies [20].

Source: own elaboration.

An example of a multibody mechanical systems model created in Modelica language
is presented in Figure 6. An example model of an industrial robot is part of the Modelica
Standard Library. In part (a), a general diagram shows the connections between the control
systems of individual axes and the mechanical arm system; part (b) shows the model of the
mechanical arm system created with the multibody library.

Another approach to modelling mechanical systems is to use physics engine libraries
that simulate collision detection and soft and rigid body dynamics, which were developed
mainly for the needs of games or physical simulations.

Applying libraries for physical simulations in modelling requires using library-native
programming language to define the model in a text file format. Then, running the simula-
tion requires creating a program and calling the function to load the model and simulate
it. The advantage of libraries for physical simulations is the possibility of easy integration
with external libraries for 3D visualisation. The most popular libraries are presented in
Table 3.

Processes 2022, 10, 21 9 of 21

(a) (b)

pathPlanning
I\

YL axi

6 axes

axisé

[e— axisé

axis5 2
mechanics

axis4

axis3 ¢

axis2

sng|oJjuod

axisl

Figure 6. Sample model of industrial robot created using Modelica language and multibody library
(a) high-level diagram, (b) model of a robot arm. Source: Modelica Standard Library.

Table 3. Physics engine libraries.

Name Description
Bullet Bullet physics engine simulates collision detection and soft and rigid body dynamics.
The library was developed for games and visual effects in movies [21].
ODE Open Dynamics Engine is a library for simulating rigid body dynamics [22].
The NVIDIA software development kit PhysX SDK-a scalable multi-platform
PhysX - .
physics solution [23].
DART Dynamic Animation and Robotics Toolkit [24].
Simbody Multibody Physics API [25].

Source: own elaboration.

3.5. Model Exchange and Co-Simulation

The Functional Mockup Interface (FMI) is an independent tool standard for exchanging
dynamic models and co-simulation [26]. It is a free standard that defines a container and
an interface to exchange dynamic models using a combination of XML files, binaries, and C
code zipped into a single file [27]. FMI is the preferred model exchange and co-simulation
format by nearly all modern simulation tools.

4. Digital Twin’s 3D Visualisation
An essential element of modern Digital Twins is 3D visualisation. Analysing the
available solutions, they can be grouped into two sets:
1. Libraries for 3D visualisation;
2. Applications for 3D visualisation and simulation.
Libraries for 3D visualisation are a universal solution that allows building models

of any complexity using classic programming languages. However, in the case of using
these libraries in order to build a Digital Twin model, it is necessary to integrate them

Processes 2022, 10, 21 10 of 21

with libraries for physics modelling and communication. Examples of libraries for 3D
visualisation are presented in Table 4.

Table 4. Libraries for 3D visualisation.

Name Description

Coin3D is a free and open-source library compatible with the Open Inventor API [28]. Coin3D is a C++
object-oriented 3D graphics API that provides developers with several standard graphics rendering
constructs, such as scene graphs. Coin3D can be used for geo-modelling, CAD, medical visualisation,
robotics, and presentation.

Coin3D

The OpenSceneGraph is an open-source, high-performance 3D graphics toolkit used by application
developers in visual simulation, games, virtual reality, scientific visualisation, and modelling [29]. Written
entirely in Standard C++ and OpenGL, it runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris,

HP-Ux, AIX and FreeBSD operating systems. The OpenSceneGraph is now well established as the
world-leading scene graph technology, used widely in the vis-sim, space, scientific, oil-gas, games, and
virtual reality industries.

OpenSceneGraph

Panda3D is an open-source, free-to-use engine for real-time 3D games, visualisations, simulations, and

Panda3D experiments [30].

Cross-browser JavaScript library and application programming interface (API) applied for creating and
Three.js displaying animated 3D computer graphics in a web browser [31]. Three.js uses Web Graphics Library
(WebGL). The source code is hosted in a repository on GitHub.

Real-time 3D engine using a JavaScript library for displaying 3D graphics in a web browser via HTML5. The

Babylon js source code is available on GitHub and distributed under the Apache License 2.0 [32].

The first and only open-source library available on GitHub for accessing, creating, visualising, analysing,

iModeljs and integrating the data associated with infra-structure Digital Twins [33].

Source: own elaboration.

Sample visualisation built with the OpenSceneGraph library is presented in Figure 7.

Figure 7. Model shows an industrial device created by SRI of electronic educational resources using
the OpenSceneGraph library. Source: [34].

Processes 2022, 10, 21

11 of 21

Three-dimensional visualisation applications are more convenient in creating Digital
Twins models, as they are an integrated solution that combines visualisation capabilities
with physical engines. They also often have functionalities that allow for the interactive
creation of models. However, the main problem with their use is the lack of built-in standard
communication protocols. This forces the independent creation of modules, extending the
capabilities of these libraries with communication and data exchange mechanisms. Table 5
describes the most appropriate software for visualisation and simulation.

Table 5. Applications for 3D visualisation and simulation.

Name Description
A free and open-source 3D robot simulator used in industry, education, and research [35]. The simulator can be used
Webots to create complex models of mechanical systems that are simulated using an integrated ODE physical library.
Control algorithms can be programmed in C, C++, Python, Java, or MATLAB.
Gazebo offers the ability to accurately and efficiently simulate populations of robots in complex indoor and outdoor
Gazebo environments [36]. It uses a physics engine, high-quality graphics, and convenient programmatic and

graphical interfaces.

FreeCAD with extensions allows for simulating the physics of the modelled object [37]. The advantage of FreeCAD
FreeCAD is the support for file formats used by CAD applications such as IGES and STEP. The disadvantage is the increased

amount of work required to build a simulation model.

Source: own elaboration.

Gazebo is a simulation platform often used in robotics competitions; one of the more
interesting events from the point of view of Digital Twins creators is the Agile Robotics
for Industrial Automation Competition (ARIAC) [38]. The objective of the competition
is to test the agility of industrial robot systems to enable industrial robots on the shop
floors to be more productive, more autonomous, and more responsive to the needs of shop
floor workers. A sample screen from the model created for the competition is presented in
Figure 8.

Figure 8. Sample screen from the model created for the competition ARIAC by team River Lab.
Source: [38].

5. Communication Methods

Modern industrial systems usually consist of multiple devices exchanging different
types of data. Therefore, most modern control systems use open industrial communication
protocols. However, it should be noted that being open does not always mean free and
with public access. In the case of industrial protocols, it is usually a requirement to pay

Processes 2022, 10, 21

12 of 21

license fees and buy program implementations. In recent years, this situation has begun to
change by spreading the idea of the Internet of Things and Industry 4.0 innovations. This
accelerates the spread, also in industrial applications, of open, public, and multi-platform
communication protocols [39,40]. An essential feature of these protocols is their complete
openness and existence of software implementations distributed on an open-source basis.
The most used open standards, for which open-source implementations are available, are
presented in Table 6.

Table 6. Industrial communication standards used in automation systems.

Name

Description

Modbus

Modbus Protocol (developed by Modicon in 1979) is a de facto standard, open, and the most widely used
network protocol in the industrial, multi-vendor environment to establish client-server communication
between intelligent devices. It is widely recognised and supported by most commercially available PLC

controllers and visualisation systems [41]. There are also many open-source variations of this protocol [42].

OPC classic

The OPC acronym stands for object linking and embedding for process control. OPC classic specification
(1996) is based on Microsoft Windows technology based on Microsoft’s OLE (now ActiveX), component object
model (COM) and distributed component object model (DCOM) technologies. OPC consists of a standard set

of interfaces, properties, and methods for process control and manufacturing automation to enable
communication among control devices, regardless of the controlling software. “OPC’s purpose is to compel
the automation industry suppliers to push all device drivers toward a standard form” [43]. OPC requires only
one server to integrate sizeable industrial control systems using different communication protocols. In creating
systems using this communication standard, the limitation is using the Microsoft Windows operating system.

There is also a relatively small number of open-source libraries. They usually implement only OPC Data
Access specifications (including values, time, and quality information) for data exchange. Examples of such

libraries are LightOPC, OpenOPC, and PyOPC [44].

OPCUA

Open Platform Communications (OPC) Unified Architecture (UA), ver. 1.0 was released in 2006. Itis a
platform-independent service-oriented architecture that integrates all the functionality of the individual OPC
Classic specifications into one extensible framework. OPC UA is developed and maintained by OPC
Foundation (est. 1996) [45]. It is based on universal, platform-independent communications standards
(TCP/IP, HTTP, SOAP) and can work with different operating systems. The most interesting open-source
implementation of OPC UA is the open62541 library written in C [46]. It provides all the necessary tools to
implement dedicated OPC UA clients and servers using C or C++ languages. The library is
platform-independent and licensed under the Mozilla Public License v2.0, so it can also be used in projects that
are not open-source.

MQTT

MQTT is a lightweight data transmission protocol based on the publish-subscribe principle [47]. The
advantage of this protocol is the simplicity and mechanism used for data exchange, allowing for lower
network overhead. However, the central part of the communication system requires a special application
called a message broker, which can be compared to a server. The most popular brokers are Mosquitto,
RabbitMQ, HiveMQ, and Erlang MQTT.

DDSI-RTPS™

Real-time Publish Subscribe Protocol Data Distribution Service (DDS) Interoperability Wire Protocol
standardised by OMG® (Object Management Group) [48]. The IEC approved the Real-Time Publish Subscribe
(RTPS) protocol as part of the Real-Time Industrial Ethernet Suite IEC-PAS-62030. RTPS is the interoperability
protocol for DDS implementations. OpenDDS is an open-source C++ implementation of the OMG DDS [49].

POWERLINK

Ethernet Powerlink is a real-time protocol for standard ethernet. It is an open protocol managed by the
Ethernet POWERLINK Standardization Group (EPSG). The technology is free of any patents. Released under
the BSD license in 2008, the open-source version, openPOWERLINK, is available free of charge [50].

Source: own elaboration.

6. Control System Modelling

Creating complete Digital Twin models, in addition to the physical and visual parts,
requires the reconstruction of a simplified or complete structure of the control system. The
complexity of this task depends on the type of control system and the requirements to
reproduce the signals in the communication interface.

When designing control systems for which it is required to develop the equivalent of
a Digital Twin, it is imperative to properly select the structure and ensure the possibility of
exchanging data with a Digital Twin. In a physical system, there are often many signals

Processes 2022, 10, 21

13 of 21

transmitted at high frequency; sometimes, there is an additional requirement related to
the need to meet the requirements of real-time work. Developing full models of such
real-time systems requires high computing power to meet computational complexity. For
high-speed systems, computer simulations do not ensure synchronic data processing. Thus,
specialised hardware accelerators using signal processors or FPGA matrices are usually
employed. Creating such accurate models in Digital Twin systems is usually unnecessary,
and simplified models with a high-level data exchange interface operating at relatively low
frequencies are often sufficient.

In the case of modelling the control system, it is helpful to distinguish between the
master control subsystem and the subsystem related to low-level control, as shown in
Figure 7. The master control model can fully reflect the actual layout and should contain
the same communication interfaces as the existing system. Then, a low-level control model
can be a simplified model that reflects only the necessary functions for the master control
model. Figure 9 shows a diagram of the relationship between the existing control system
and its simplified model.

Actual process or its model

Communication interface

Control system Control system model

1 1

1 |

1 1

1 |

|

: Master control |

Master control : model |
: :

1 1

1 1

|

Low-level : o |
I of low-level control !

: |

1 1

1 |

|

Figure 9. The existing control system and its simplifying model. Source: own elaboration.

Creating a control model requires deciding the accuracy of reproducing the control
algorithm and selecting a software solution to implement the algorithm. Depending on the
decisions made, the software can be implemented as:

e amodel using classical programming languages;
e amodel developed using UML or SysML diagrams;
e amodel developed in a simulation environment;

e program in a language compliant with IEC 61131;

e program following IEC 61499.

Processes 2022, 10, 21

14 of 21

Analysing currently available software available under an open-source license proves
that it is possible to create models of control systems using each of these solutions. Spe-
cialised tools that can be used to implement the control system model are presented in
Table 7.

Table 7. Control system modelling tools.

Name Description
Sirius Tool for creating domain-specific modelling workbenches.
UML Designer Graphical tooling to edit and visualise UML models based on Sirius.
Acceleo Acceleo is a template-based technology, including authoring tools to create custom code generators.
CodeDesigner Simple UML design and C, C++, Python code generation tool.
BOUML BOUML is a free UML 2 toolbox including a modeller allowing to specify and generate code in C++, Java, 1dl,
Php, Python, and MySQL.
Papyrus Papyrus is an open-source UML 2 and SysML tool based on Eclipse with Java or C++ code generators.
Papyrus-RT is an industrial-grade, complete modelling environment to develop complex, software-intensive,
Papyrus-RT real-time, embedded, cyber-physical systems with a code generator that translates the UML-RT model into
C++ code.
. Free and open-source, Scilab+Xcos is a cross-platform numerical computational package and a high-level,
Scilab+Xcos . ; .
numerically oriented programming language.
OpenModelica An open-source Modelica-based modelling and simulation environment.
Beremiz Beremiz is an integrated development environment for machine automation. It is open-source software
conforming to IEC-61131 standards.
4Diac Open-source software for distributed industrial process measurement and control systems based on the IEC

61499 standard.

Source: own elaboration.

6.1. Modelling Using Classical Programming Languages

Modelling the control system using classic programming languages such as C, C++,
Java, Python, JavaScript, etc., is a very flexible solution and practically free of restrictions
in mapping the control algorithm. However, the disadvantage of this solution may be a
tremendous amount of work resulting from the need to reproduce the control algorithm,
which is often implemented using graphic languages following IEC 61131. On the other
hand, many libraries allow data exchange in communication interfaces using Modbus
TCP, OPC, OPC UA, Powerlink, and other protocols. In addition, in new control systems
solutions, data exchange methods used in the Internet of Things solutions, such as MQTT,
DDS/RTPS, ZeroMQ, etc., may gain popularity.

6.2. Modelling with UML or SysML Diagrams

If the control algorithm is described using state or sequential diagrams, it is possi-
ble to use tools that save the algorithm in UML or SysML diagrams [51-53]. For this
type of method, choosing a tool that allows generating object code in one of the classic
programming languages is necessary. Some difficulty may come from the integration of
the generated code with communication libraries. An example of a simple program that
allows graphically creating state diagrams and generating code in C, C++, and Python
is CodeDesigner. This program is no longer actively developed, making it not the best
solution for new projects. The actively developed software is the Eclipse IDE environment
maintained by the Eclipse Foundation, which creates diagrams and generates code [54].
However, it requires a much more significant amount of work to master its functions. Some
interesting tools for this kind of modelling are presented in Table 8.

Processes 2022, 10, 21 15 of 21

Table 8. Control system modelling tools.

Name Description
Sirius Tool for creating domain-specific modelling workbenches.
UML Designer Graphical tooling to edit and visualise UML models based on Sirius.
Acceleo Acceleo is a template-based technology, including authoring tools to create custom code generators.
CodeDesigner Simple UML design and C, C++, Python code-generation tool.
BOUML BOUML is a free UML 2 toolbox including a modeller allowing to specify and generate code in C++, Java, Idl,
Php, Python and MySQL.
Papyrus Papyrus is an open-source UML 2 and SysML tool based on Eclipse with Java or C++ code generators.
Papyrus-RT is an industrial-grade, complete modelling environment to develop complex, software-intensive,
Papyrus-RT real-time, embedded, cyber-physical systems with a code generator that translates the UML-RT model into
C++ code.
Source: own elaboration.
6.3. Modelling in a Simulation Environment
An alternative to the presented solutions is to use simulation environments. They
allow for creating a control system model using simplified programming languages or
for creating a graphical representation of the control system in the form of a flowchart,
considering dynamic elements such as the PID regulator. Table 9 presents the most popular
programs of this type.
Table 9. Simulation tools.
Name Description
ScilabXcos Free and open-source, cross-platform numerical computational package and a high-level, numerically oriented
programming language.
OpenModelica An open-source Modelica-based modelling and simulation environment.
Beremiz Beremiz is an integrated development environment for machine automation. Open-source software
conforming to IEC-61131 standards.
ADiac Open-source software for distributed industrial process measurement and control systems based on the IEC

61499 standard

Source: own elaboration.

Scilab with the Xcos extension [55] is an open-source software for numerical computa-
tion. Xcos is a graphical editor to design hybrid dynamical system models. The built-in
dynamic programming language allows the program to control algorithms effectively;
the built-in case statement makes it easy to create programs that implement sequential
control algorithms. In addition, it is possible to use libraries offering such communication
methods as Modbus, DDE, and OPC for data exchange. It is also possible to build a con-
trol algorithm model in a graphical form in the Xcos module. However, connecting the
model with the outside world will be problematic because the built-in libraries do not have
communication functions.

A more effective alternative to the Scilab package is the OpenModelica environment,
open-source software in the area of cyber-physical systems [17]. OpenModelica supports
creating models of control algorithms in text form using the Modelica language or the
built-in graphic editor. The control algorithm can be developed with a flowchart by
applying the Modelica.Blocks library or in the form of a sequential diagram using the
Modelica.StateGraph library (Figure 10).

Processes 2022, 10, 21 16 of 21
makeProduct
sl start level2 < 0.001
Os - Os
T1 ”Psuspe... resume 2
w
o
Q a
L o e— 5
A
o
[%3]
s2 T5 emptyTanks T6
i - 0s Os
shut levell + level2 < 0....

Figure 10. Control system model in the OpenModelica environment with applying the Model-
ica.StateGraph library.

As an external library, Modelica DeviceDrivers is available under the BSD license to
exchange data with the environment. This solution allows the keyboard, joystick, gamepad,
and 3Dconnexion Spacemouse to interact with the model. It also allows data exchange
using the shared memory mechanism or communication protocols UDP, TCP/IP, LCM,
MQTT. All communication mechanisms can be implemented in the graphical environment.
In addition, any simulation model built in an Open Modelica environment can be run
independently of the environment and controlled using the OPC UA protocol.

6.4. Programming in a Language Compliant with IEC 61131

The core assets of highly automated production systems control codes for PLC and
industrial robots. The Digital Twin concept can be applied to developing and maintaining
these codes to deliver “pre-implementation” validation control projects and production
management ideas. For example, suppose the control algorithm is available as a PLC
program in one of the languages compliant with IEC 61131. Then, it is expandable to use
solutions that allow for modelling the control system in languages compliant with the
standard. In that case, it is possible to use an integrated development environment for
machine automation Beremiz [56]. It implements open standards and is independent of
the targeted device, and turns any processor into a PLC. An example of a PLC program
developed with a graphical programming language, the sequential function chart (SFC) is
shown in Figure 11.

Processes 2022, 10, 21 17 of 21

Start

=t NOT Reset == Reset

Count_'— N Cnt:=Cnt +1; ResetCounter Ii N Cnt : = ResetCounterValue;

N OUT :=Cnt; N OUT :=Cnt;

ism

Figure 11. Sample PLC program implemented with SFC graphic language in Bremiz environment.

w—ten ReSEL

w—pes NOT Reset

Programs for PLC can be run using MatIEC software, an open-source compiler for the
programming languages defined in the IEC 61131-3 standard. For data exchange, Modbus
and OPC UA protocols are supported. It is also possible to create user interfaces that allow
set variable values and visualise program states using the SVGHMI module. This module
uses graphics in SVG format, which can be created and edited, for example, in the Inkscape
environment [57].

6.5. Programming under IEC 61499

The last of these methods of creating a control system model uses software compatible
with the IEC 61499 standard. The open-source representation of such software is the
Eclipse 4diac™ package [58]. The 4diac environment enables programming distributed
control systems using the methodology compliant with the IEC 61499 standard. The
program is developed as a block diagram that implements a control algorithm assigned
to different execution units. Block logic can be programmed using state diagrams or one
of the languages included in the IEC 61131 standard. The general structure of the block is
shown in Figure 12.

Execution Control Chart

_Initial State
|
- - 7y —% EC Transition
Execution =
Control Chart
EIZ[V1>5]

FB Type Name

1 | Statel Algl | EOM |
EC State Algorithm Output
Event

e

Algorithms.
(IEC 81131-3)

IR

EIZ[V1=5]

EC Transition Condition

+ ¥ an
Internal variables

heState2—| Alg2

| Alg3 | EOZ
EC ... Execution Control

Figure 12. Block structure according to IEC 61499.

For simulation, the 4diac FORTE runtime can be used as an execution unit, enabling
the control algorithm to be run on a PC. In addition, the runtime allows for maintaining

Processes 2022, 10, 21

18 of 21

data exchange using various communication protocols like OPC UA, OPC DA, Modbus,
MQTT, TCP, HTTP, ROS, Arrowhead, and openPOWERLINK.

7. Discussion

Digital Twinning is a significant and challenging strategic technological trend in the
digital transformation of production systems. The design and operation of such systems
are considered more effective when the idea of virtual mirroring, including modelling and
concurrent simulation, are applied to the production environment. The concept of Digital
Twin Shop floor (DTS) [3] can be representative for applying the Digital Twin concept to
provide an effective way of achieving the physical-virtual convergence for the shop floor
(Figure 13). The Digital Twin Shop floor consist of four components from [3]:

1. Physical Shop floor (PS)-organised physical assets and materials;

2. Virtual Shop floor (VS)-a multidimensional digital model of PS;

3. Shop-floor Service System (SSS)—enterprise information system (EIS), configured to
meet the specific demands of PS and VS;

4. Shop-floor Digital Twin Data (SDTD)—collects and stores data, aggregated data, fused
data, algorithms, procedures, and product documentation.

Shop-floor Service System

Iterative
@,é Optmization

4 %
Driving

Iterative s 1

Shop-floor
Digital Twin Data

lterative '
Physical Shop-floor Optmization Virtual Shop-floor

Figure 13. A conceptual model of DTS. Adapted from [3].

Virtual shop floor evolves following physical shop-floor development, provides con-
trol orders for the physical shop floor, and optimises shop-floor service system strategies.

While PS and SSS are evolving with time, continuous interactions based on dynamic
and real-time associations mapping and data/information/knowledge exchange make
them consistent with each other and can be optimised iteratively. In addition, shop-floor
Digital Twin data play a central role in integrating data flows through the Digital Twin shop
floor in a heterogeneous environment of communications and data format standards. The
STDT may be used for enterprise-wide purposes not limited to shop-floor management,
such as supply chain management, applying the Logistics 4.0 concept. Implementation of
the Digital Twin infrastructure presented above makes possible online process optimisation,
as it is possible to study different strategies without having to stop and re-arm the produc-
tion line. It also increases the possibilities of educating staff related to a given process by
implementing various strategies and simulating emergencies in a simulated environment
that behaves like a real system [4]. In [59], an example of implementing DT is presented to
add manufacturing agility and resilience in the case of the additive manufacturing process

Processes 2022, 10, 21

19 of 21

through various models integration representing different approaches to predict, meet, and
control key performance indices (KPI) of the manufacturing process.

A specific barrier to developing such systems is the current practice of using specialised
commercial tools to create a virtual model and connect it to a real system using commu-
nication technologies. This approach is burdened with relatively high costs associated
with the use of usually expensive commercial tools. Moreover, during the development
process, some proprietary software solutions are used, which brings some difficulties in
maintenance and apparent risks in case of dropping off updates by the supplier.

Currently, there is a vivid, emerging trend towards increasing the utilisation of open-
source software in many industrial applications. There are many areas in which these
solutions have become equivalent to commercial solutions, and in many cases, this type of
software is more powerful and effective. The expected results are not limited to technical
issues but also influence organisational culture and business models.

Based on the presented structured review of valuable software dedicated to various
phases and tasks that should be realised while creating the whole Digital Twin system, it was
demonstrated that the available open-source solutions cover all its aspects. Nevertheless,
there are no available integrated open-source solutions that provide all the necessary
functionalities accessible in a single suite for creating virtual models consistent with the
concept of Digital Twins. To successfully create full-fledged models of Digital Twins
and proceed with proposed open-source solutions, it is necessary to make additional
efforts due to integration requirements. Therefore, it is advisable to increase the degree of
integration of these tools, which will reduce the time needed to learn about these tools and
the mechanisms that allow for their integration. As a result, the time required to develop
Digital Twin models should also decrease. In return, the variety of available open-source
tools makes it possible to create models that reflect all existing system elements.

As part of further work, we plan to undertake further activities related to constructing
a uniform platform allowing for the creation of Digital Twin models, using open communi-
cation protocols for data exchange between all system elements. We also plan to develop
modelling environments with specialised functions and libraries of elements facilitating
the creation of such models.

8. Conclusions

The concept and the main goal of the article wase to present the most valuable and
applicable open-source tools and communication technologies that may be employed to
create models of production processes by applying the concept of Digital Twins. Whenever
we mention commercial software, it is about the obvious general characteristics of it:
ownership and cost of acquiring. However, the advantages of open-source solutions are
not limited to financial and technical issues but also influence organisational culture and
business models. Open-source software enables collaborative knowledge development,
including the global context of users and developers, to support the quality and reliability of
applications. Moreover, using open standards in automatics and communication preserve
interoperability and durability. The maturity level of available open-source tools applicable
for creating the building blocks of Digital Twins is sufficient for the effective implementation
of complex applications. However, in terms of integrating these components, an increased
workload is necessary compared to commercial solutions due to the heterogeneous nature
of the development environment. It requires more flexible and innovative developers, not
limited to industrial-specific knowledge silos based on the technology supplier ecosystem.
Nevertheless, with some efforts to develop a more integrated solution, it is possible to
effectively create Digital Twin models using open-source software.

Author Contributions: Conceptualisation, S.L. and R.K.; methodology, S.L. and R.K,; investigations,
RXK, S.L, PS. and A.T,; writing—original draft preparation, RK. and S.L.; writing—review and
editing, S.L.; visualisation, R.K. and S.L. All authors have read and agreed to the published version of
the manuscript.

Processes 2022, 10, 21 20 of 21

Funding: This research was funded by the Kielce University of Technology.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luscinski, S.; Ivanov, V. A Simulation Study of Industry 4.0 Factories Based on the Ontology on Flexibility with Using FlexSim
Software. Manag. Prod. Eng. Rev. 2020, 11, 74-83. [CrossRef]

2. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios: A Literature Review; Working Paper; Technical
University Dortmund: Dortmund, Germany, 2015. [CrossRef]

3. Tao, F; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5,
20418-20427. [CrossRef]

4. Luscinski, S. Digital Twinning for Smart Industry. In In Proceedings of the 3rd EAI International Conference on Management of
Manufacturing Systems, Dubrovnik, Croatia, 6th-8th November 2018; 2018. [CrossRef]

5. Open Source Lessons for 2021. Available online: https://cloudblogs.microsoft.com/opensource/2021/01/14/four-open-source-
lessons/ (accessed on 20 November 2021).

6. Grieves, M. Origins of the Digital Twin Concept. Working Paper. 2016. [CrossRef]

7. Grieves, M.,; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In
Transdisciplinary Perspectives on Complex Systems. New Findings and Approaches; Kahlen, F.-]., Flumerfelt, S., Alves, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 85-114. ISBN 978-3-319-38754-3.

8. Grieves, M. Virtually Intelligent Product Systems: Digital and Physical Twins. Complex Systems Engineering: Theory and Practice;
American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019; pp. 175-200. ISBN 978-1-62410-564-7.

9. Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-Based Production Systems. Procedia Manuf.
2017, 11, 939-948. [CrossRef]

10. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A Systematic Literature Review. CIRP]. Manuf.
Sci. Technol. 2020, 29, 36-52. [CrossRef]

11. Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. DRAFT Modeling, Simulation, Information,
Technology and Processing Roadmap; National Aeronautics and Space Admnistration: Washington, DC, USA, 2010. Available online:
https:/ /www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-Al.pdf (accessed on 15 November 2021).

12. Stavropoulos, P.; Papacharalampopoulos, A.; Michail, C.K.; Chryssolouris, G. Robust Additive Manufacturing Performance
through a Control Oriented Digital Twin. Metals 2021, 11, 708. [CrossRef]

13. Gartner Identifies the Top 10 Strategic Technology Trends for 2017. Available online: https:/ /www.gartner.com/en/newsroom/
press-releases/2016-10-18-gartner-identifies-the-top-10-strategic-technology-trends-for-2017 (accessed on 15 November 2021).

14. Gartner Identifies the Top 10 Strategic Technology Trends for 2018. Available online: https://www.gartner.com/en/newsroom/
press-releases/2017-10-04-gartner-identifies-the-top-10-strategic-technology-trends-for-2018 (accessed on 15 November 2021).

15. Top 10 Strategic Technology Trends for 2019. Available online: https://www.gartner.com/en/newsroom/press-releases/2018-1
0-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019 (accessed on 15 November 2021).

16. Gartner Top 10 Strategic Technology Trends For 2019. Available online: https:/ /www.gartner.com/smarterwithgartner/gartner-
top-10-strategic-technology-trends-for-2019 (accessed on 15 November 2021).

17. The Modelica Association—Modelica Association. Available online: https://modelica.org/index.html (accessed on 17 November
2021).

18. Kazata, R. Modeling of Arc Furnace Circuit in Modelica Language. Zesz. Nauk. Politech. £odzka 2009, 118, 135-142.

19. MBDyn - MultiBody Dynamics - Homepage. Available online: https://www.mbdyn.org/ (accessed on 20 November 2021).

20. FreeDyn. Available online: http://www.freedyn.at/ (accessed on 20 November 2021).

21. Bullet Real-Time Physics Simulation | Home of Bullet and PyBullet: Physics Simulation for Games, Visual Effects, Robotics and
Reinforcement Learning. Available online: https://pybullet.org/wordpress/ (accessed on 20 November 2021).

22. Open Dynamics Engine. Available online: https:/ /www.ode.org/ (accessed on 20 November 2021).

23. PhysX SDK. Available online: https://developer.nvidia.com/physx-sdk (accessed on 20 November 2021).

24. DART: Dynamic Animation and Robotics Toolkit. Available online: https:/ /dartsim.github.io/ (accessed on 20 November 2021).

25. SimTK: Simbody: Multibody Physics API: Project Home. Available online: https://simtk.org/projects/simbody/ (accessed on
20 November 2021).

26. Blochwitz, T,; Otter, M.; Akesson, J.; Arnold, M.; Clauss, C.; Elmqvist, H.; Friedrich, M.; Junghanns, A.; Mauss,].; Neumerkel, D.;
et al. Functional Mockup Interface 2.0: The Standard for Tool Independent Exchange of Simulation Models. Available online:
https:/ /ep.liu.se/en/conference-article.aspx?series=ecp&issue=76&Article_No=17 (accessed on 3 September 2012).

27. Functional Mock-Up Interface. Available online: https://fmi-standard.org/ (accessed on 20 November 2021).

28. Coin3D. Available online: https://coin3d.github.io/ (accessed on 20 November 2021).

http://doi.org/10.24425/mper.2020.134934
http://doi.org/10.13140/RG.2.2.29269.22248
http://doi.org/10.1109/ACCESS.2017.2756069
http://doi.org/10.4108/eai.6-11-2018.2279986
https://cloudblogs.microsoft.com/opensource/2021/01/14/four-open-source-lessons/
https://cloudblogs.microsoft.com/opensource/2021/01/14/four-open-source-lessons/
http://doi.org/10.13140/RG.2.2.26367.61609
http://doi.org/10.1016/j.promfg.2017.07.198
http://doi.org/10.1016/j.cirpj.2020.02.002
https://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf
http://doi.org/10.3390/met11050708
https://www.gartner.com/en/newsroom/press-releases/2016-10-18-gartner-identifies-the-top-10-strategic-technology-trends-for-2017
https://www.gartner.com/en/newsroom/press-releases/2016-10-18-gartner-identifies-the-top-10-strategic-technology-trends-for-2017
https://www.gartner.com/en/newsroom/press-releases/2017-10-04-gartner-identifies-the-top-10-strategic-technology-trends-for-2018
https://www.gartner.com/en/newsroom/press-releases/2017-10-04-gartner-identifies-the-top-10-strategic-technology-trends-for-2018
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019
https://modelica.org/index.html
https://www.mbdyn.org/
http://www.freedyn.at/
https://pybullet.org/wordpress/
https://www.ode.org/
https://developer.nvidia.com/physx-sdk
https://dartsim.github.io/
https://simtk.org/projects/simbody/
https://ep.liu.se/en/conference-article.aspx?series=ecp&issue=76&Article_No=17
https://fmi-standard.org/
https://coin3d.github.io/

Processes 2022, 10, 21 21 of 21

29.
30.

31.
32.

33.
34.

35.
36.
37.
38.
39.
40.

41.
42.

43.
44.

45.
46.

47.
48.

49.
50.

51.

52.

53.
54.
55.
56.
57.
58.

59.

The OpenSceneGraph Project Website. Available online: http://www.openscenegraph.org/ (accessed on 20 November 2021).
Panda3D | Open Source Framework for 3D Rendering & Games. Available online: https://www.panda3d.org/ (accessed on
20 November 2021).

Three.Js JavaScript 3D Library. Available online: https://threejs.org/ (accessed on 23 November 2021).

Babylon.Js: Powerful, Beautiful, Simple, Open-Web-Based 3D at Its Best. Available online: https://www.babylonjs.com (accessed
on 23 November 2021).

Index IModel.Js. Available online: https://www.itwinjs.org/v1/imodeljs.org (accessed on 23 November 2021).

TSOGU. Available online: http:/ /www.openscenegraph.org/index.php/gallery/use-cases/91-tsogu, %205.7.20120 (accessed on
23 November 2021).

Webots: Robot Simulator. Available online: https:/ /cyberbotics.com/ (accessed on 23 November 2021).

Gazebo. Available online: http://gazebosim.org/ (accessed on 23 November 2021).

FreeCAD: Your Own 3D Parametric Modeler. Available online: https:/ /www.freecadweb.org/ (accessed on 23 November 2021).
Agile Robotics for Industrial Automation Competition (ARIAC) | Challenge.Gov. Available online: https:/ /www.challenge.gov/
challenge/ariac-2021/ (accessed on 23 November 2021).

Kazala, R.; Taneva, A.; Petrov, M.; Penkov, S. Wireless Network for Mobile Robot Applications. IFAC-Pap. 2015, 48, 231-236.
[CrossRef]

Kazala, R.; Straczyriski, P.; Taneva, A.; Penkov, S. The Use of IoT Technologies for the Monitoring of Electrotechnological Systems.
In Proceedings of the IEEE, Kielce, Poland, 31 December 2018.

The Modbus Organization. Available online: https://modbus.org/ (accessed on 12 November 2021).

Best Open Source Modbus Projects. Available online: https://www.findbestopensource.com/tagged /modbus (accessed on
12 November 2021).

What Is OPC? Available online: https://opcfoundation.org/about/what-is-opc/ (accessed on 12 November 2021).

Kazala, R.; Straczynski, P. The Most Important Open Technologies for Design of Cost Efficient Automation Systems. IFAC-Pap.
2019, 52, 391-396. [CrossRef]

OPC Foundation. Available online: https://opcfoundation.org/ (accessed on 12 November 2021).

Open62541: An Open Source Implementation of OPC UA. Available online: https://open62541.org/ (accessed on 12 November
2021).

MQTT. The Standard for IoT Messaging. Available online: https://mqtt.org/ (accessed on 16 November 2021).

About the DDS Interoperability Wire Protocol Specification Version 2.5. Available online: https://www.omg.org/spec/DDSI-
RTPS/#documents (accessed on 16 November 2021).

OpenDDS. Available online: https://opendds.org/ (accessed on 16 November 2021).

Ethernet Powerlink. EPSG|Ethernet Powerlink. Available online: https://www.ethernet-powerlink.org/ (accessed on
16 November 2021).

Axelsson, J. Unified Modeling of Real-Time Control Systems and Their Physical Environments Using UML. In Proceedings of
the Eighth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems-ECBS 2001,
Washington, DC, USA,, 17-20 April 2001; pp. 18-25. [CrossRef]

Kohler, HJ].; Nickel, U.; Niere, J.; Ziindorf, A. Integrating UML Diagrams for Production Control Systems. In Proceedings of the
22nd International Conference on Software Engineering, ICSE '00, Limerick, Ireland, 9 June 2000; Association for Computing Machinery:
New York, NY, USA, 2000; pp. 241-249.

Thramboulidis, K.C. Using UML in Control and Automation: A Model Driven Approach. In Proceedings of the 2nd IEEE
International Conference on Industrial Informatics, Berlin, Germany, 24-26 June 2004; pp. 587-593.

Inc, E.F. The Community for Open Innovation and Collaboration | The Eclipse Foundation. Available online: https://www.
eclipse.org/ (accessed on 17 November 2021).

Home Page | Www.Scilab.Org. Available online: https://www.scilab.org/ (accessed on 17 November 2021).

Home Page of Beremiz. Available online: https://beremiz.org/ (accessed on 17 November 2021).

Draw Freely | Inkscape. Available online: https://inkscape.org/ (accessed on 17 November 2021).

Eclipse 4diac. The Open Source Environment for Distributed Industrial Automation and Control Systems. Available online:
https:/ /www.eclipse.org/4diac/ (accessed on 17 November 2021).

Papacharalampopoulos, A.; Michail, C.K,; Stavropoulos, P. Manufacturing Resilience and Agility through Processes Digital Twin:
Design and Testing Applied in the LPBF Case. Procedia CIRP 2021, 103, 164-169. [CrossRef]

http://www.openscenegraph.org/
https://www.panda3d.org/
https://threejs.org/
https://www.babylonjs.com
https://www.itwinjs.org/v1/imodeljs.org
http://www.openscenegraph.org/index.php/gallery/use-cases/91-tsogu,%205.7.20120
https://cyberbotics.com/
http://gazebosim.org/
https://www.freecadweb.org/
https://www.challenge.gov/challenge/ariac-2021/
https://www.challenge.gov/challenge/ariac-2021/
http://doi.org/10.1016/j.ifacol.2015.12.088
https://modbus.org/
https://www.findbestopensource.com/tagged/modbus
https://opcfoundation.org/about/what-is-opc/
http://doi.org/10.1016/j.ifacol.2019.12.567
https://opcfoundation.org/
https://open62541.org/
https://mqtt.org/
https://www.omg.org/spec/DDSI-RTPS/#documents
https://www.omg.org/spec/DDSI-RTPS/#documents
https://opendds.org/
https://www.ethernet-powerlink.org/
http://doi.org/10.1109/ECBS.2001.922399
https://www.eclipse.org/
https://www.eclipse.org/
https://www.scilab.org/
https://beremiz.org/
https://inkscape.org/
https://www.eclipse.org/4diac/
http://doi.org/10.1016/j.procir.2021.10.026

	Introduction
	Digital Twin Concept
	Development of the Digital Twin Models
	Open-Source Software Selections Approach
	Structure of Digital Twin
	Physical Modelling
	Modelling of Multibody Mechanical Systems
	Model Exchange and Co-Simulation

	Digital Twin’s 3D Visualisation
	Communication Methods
	Control System Modelling
	Modelling Using Classical Programming Languages
	Modelling with UML or SysML Diagrams
	Modelling in a Simulation Environment
	Programming in a Language Compliant with IEC 61131
	Programming under IEC 61499

	Discussion
	Conclusions
	References

