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Abstract: The elasticity of white blood cells (WBCs) provides valuable insight into the condition of
the cells themselves, the presence of some diseases, as well as immune system activity. In this work,
we describe a novel process of refined control of WBCs’ elasticity through a combined use of gold
nanoparticles (AuNPs) and the microelectrode array device. The capture and controlled deformation
of gold nanoparticles enriched white blood cells in vitro are demonstrated and quantified. Gold
nanoparticles enhance the effect of electrically induced deformation and make the DEP-related
processes more controllable.
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1. Introduction

Cells are subjected to a variety of mechanical forces in vivo, and the way they deform
in response to mechanical, electrical, and biochemical stimuli relies on a combination
of passive and active processes [1]. Red blood cells significantly deform as they travel
throughout the body’s capillary networks, which are at times smaller than the cells’ resting
size. Diseases such as malaria and sickle cell anemia are associated with disruption of the
cell membrane elasticity, leading to capillary blockages and a loss of oxygenation [2]. The
deformability of cells has even been linked to cancer, where highly metastatic cells have
been shown to be soft and deformable, allowing them to migrate through tissue into the
blood stream [3–5].

In white blood cells (WBC), quantification of a cell’s elastic modulus via deformability
measurements could provide insights into the physiological state of the cell. HL60 cells can
differentiate into monocytes, granulocytes, or macrophages, and mechanical deformation
alone can distinguish which pathway the HL60 cell will take [6]. Neutrophil activation
leads to reduced deformability, which has been demonstrated by morpho-rheological
(MORE) analysis [7]. Monocytes from individuals afflicted by Respiratory Tract Infection
(RTI) or Acute Lung Injury (ALI) both increased in size with staphylococcus stimulation,
but only viral RTI monocytes displayed any measurable increase in deformation. These
results indicate that size and deformation studies may be able to identify the presence of
viral, bacterial, or other inflammatory diseases through lymphocyte mechanical analysis,
implying a need for fast, reliable methods to measure mechanical properties.
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A number of methods currently exist to deform and measure the elasticity of cells.
Direct methods such as AFM and parallel plate rheometry [3,8,9] involve physically de-
forming a cell by applying force with a contact probe and measuring probe deflection.
Optical tweezers and optical stretchers utilize laser light to deform cells and measure
elastic modulus [5,10–12]. Optical deformation has even been used to demonstrate the
identification of noncancerous, cancerous, and metastatic cells in a mixed population [13].

Dielectrophoresis (DEP) is a method of manipulating particles suspended in a fluid
medium, whereby a particle placed in a non-uniform electric field experiences a force
through its dielectric response. The amplitude of the DEP forces experienced by the cells is
modulated by the dielectric properties of the cell and surrounding media and is expressed
by the Clausius–Mossotti (CM) factor, which will vary from -1 for a strongly repellent
force, to +1 for a strongly attractive force [14]. Under certain conditions, a cell may become
trapped and deformed by DEP, a phenomenon hereby referred to as electrodeformation.

A number of studies have utilized electrodeformation to controllably deform cells to
measure mechanical characteristics. Electrodeformation of red blood cells (RBCs) have
been performed with various devices utilizing DEP [15–17] and references therein, as
well as more sophisticated trap and release microarrays for high-throughput imaging and
characterization [18]. The majority of such studies have involved red blood cells [19] due
to their readily available nature and easily observable electrodeformation behavior that
follows the analytical prediction from the model to be discussed hereafter. We wish to
emphasize that the overall review of the electrodeformation of RBCs is beyond the scope of
this manuscript.

In contrast with RBCs and despite a number of promising initial studies, a fast, reliable,
highly parallelized, and scalable method for the controlled deformation and observation of
white blood cells (WBCs) is yet to be realized. In the current work, a microelectrode array
was designed to accommodate several cells at once for rapid, parallel capture, deformation,
and imaging (Figures 1 and 2 here) of WBCs. An additional specific contribution of this
report is the use of gold nanoparticles (AuNP) introduced to the cells to enhance the effect
of electrodeformation.
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Figure 1. (a) 3D numerical simulation of electrodes and cell (electrode height not to scale) showing
electrical potential lines in a representative medium. (b) Optical microscope image of ITO electrodes
on glass, with electrodes labeled (X, Y1, Y2, Y3). (c) Closeup of a fraction of electrode array at the
region of highest field strength. Cells are attracted to this region by DEP forces and fixed at electrode
tips, where they are subsequently deformed.
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2. Materials and Methods
2.1. Dielectrophoretic Electrodes on a Chip

Standard microfabrication techniques were used to produce indium tin oxide metal
electrodes on a glass substrate. Indium tin oxide (ITO), 150 nm thick, was deposited by
electron beam evaporation on a borosilicate glass wafer. A lift-off process was used to
pattern electrodes on the substrate. The patterned electrodes were subjected to an annealing
process at 400 deg C in air. The high-temperature annealing of ITO while increasing
oxidation results in an ITO film that is highly transparent and conductive (Figure 1) [20–22].
Following lift off, glass wafers were diced with a dicing saw. One electrode is a simple
rectangular prism (labeled “X”), while the other one has a “saw tooth” pattern where
each tip (“Y1” etc.) captures one cell at the time. Additional details are available in
Supplementary Materials. The geometrical details of the electrodes’ lithographic pattern
were obtained using numerical modeling of the influence of various electrodes’ geometries
and dimensions with the goal of having considerable induced dipole moment at the cell,
but without strong electric field gradients that would increase a probability of cells being
damaged.

2.2. Cells

Human THP-1 and Jurkat cell lines (ATCC) were grown in RPMI 1640 medium con-
taining D-glucose, HEPES, L-glutamine, sodium bicarbonate, and sodium pyruvate (Gibco)
supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% penicillin–streptomycin
(Biosera). For cells with gold nanoparticles, cells were incubated in media with a small
volume of added AuNP colloid for 24 h [23,24]. Uptake of AuNP was verified visually and
by X-ray fluorescence (XRF) (Figure 3, here).

2.3. Gold Nanoparticles (AuNP)

Synthesis of naked AuNPs was performed following the method of Martin et al. [25].
AuNPs are generally considered biocompatible and are being investigated for their ap-
plications in medicine and research as carriers for bioactive compounds [23], as contrast
agents [26], or as radiation absorbent materials [27]. A 40 mL capacity clean borosilicate
glass vial containing 9.25 g of de-ionized water was mixed with an aqueous gold precur-
sor solution 0.1 g (~100 µL) containing 50 mM HAuCl4/HCl producing a light yellow
solution. To this light yellow solution, 0.65 g (~650 µL) of freshly prepared aqueous 50
mM NaBH4/NaOH was added rapidly while vortexing. Upon the addition of the alka-
line borohydride solution, the reaction mixture immediately turned red, signaling the
nucleation of gold nanoparticles at room temperature, and was vortexed for one minute.
The ruby red AuNP solution was then placed in a metal heating block (already at 250



Processes 2022, 10, 134 4 of 13

◦C) for three minutes to grow the AuNPs and improve the monodispersity. The vial was
then quenched for 30 s under running water to arrest the kinetic growth of NPs. These
hydroxide-stabilized naked AuNPs were then used for the WBC experiments here. More
details are in Supplementary Materials.
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Figure 3. Micro-X-ray fluorescence scans performed while cell and gold nanoparticles are under the
influence of an applied electric field. Zero voltage shows relatively evenly distributed AuNPs. As the
voltage is increased, the cell is deformed, and the concentration of AuNPs in the membrane region is
increased. The upper centered insert shows sketched deformation of the WBC (not to scale), under
the assumption that the deformation is elliptical.

2.4. Apparatus

Electrode array chips were placed on glass slides and connected to a Rigol DG4062
function generator via copper tape and coaxial cable. Cells were centrifuged at 1000 rpm for
5 min, and RPMI was aspirated. A DEP media composed of 8.5% (w/v) sucrose and 0.3%
(w/v) dextrose in distilled water was adjusted to 10 mS/m by adding a small volume of
phosphate buffered saline (PBS). Cells were resuspended in the DEP media at low density.
A small volume of cell suspension was placed on the electrodes, and AC current was
applied. For deformation experiments, frequency was fixed at 700 kHz, while voltage
was stepped from 0–20 Vpp in 1V increments. Cells were imaged on a Zeiss Observer Z1
microscope in bright field mode.

DEP forces induced by the field asymmetry pulled cells toward the electrode tips,
where the field was highest (Figure 2). Once at the tip, cells became fixed in place and began
to deform as voltage was increased (Figure 2). Voltages above 20.0 V generally caused cells
to span the electrode gap, doing permanent damage to the cell, so voltage was limited to
20.0 V for the purpose of this study. The electrically induced deformation is reversable and
repeatable for at least 10 cycles under the conditions outlined in this Report.
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2.5. Image Analysis

Images were imported to ImageJ, and cell dimensions were manually measured, frame
by frame. An elliptical selector was used to best fit the cell during deformation, and all
cells are assumed to be elliptical at all time points. Ellipse geometries were then exported
for analysis.

3. Results
3.1. Electrode Array Fabrication

Indium tin oxide on glass was chosen for electrode fabrication due to ideal optical
and electrical properties. The electrode geometry was designed in such a way as to
accommodate single cells, positioned by DEP forces prior to deformation (Figure 1).
The small gap size allows us to keep voltage low, while the electrode spacing was
chosen to balance the need for separation between cells with parallelization of the
process. One could, in principle, expect some variations of the spatial 3D profile of
the electric field and the equipotential lines by varying the size, the shape, and the
spatial distribution of the electrodes. The electrode design shown here is a result of
numerically optimized design, but we do not exclude the possibility that additional
experimental work with the electrodes’ influence on WBCs could lead to insights not
reported here. Additional details of the microfabrication process are available in the
Supplementary Materials file.

While a more thorough study of cell viability would have been helpful, we report that
all cell data in this report have been viable up to 20 volts. Above this voltage (often as low
as 22 volts and higher), WBCs become either permanently deformed or stuck at the tip of
an electrode (Y1,2,3 spots in Figure 1b,c), or both.

3.2. X-ray Microfluorescence for Detection of Gold Nanoparticles Absorption

Our early tests demonstrated a promising response of white blood cells to DEP forces
in the presence of gold nanoparticles (AuNPs). This has motivated the desire to establish
where exactly are AuNPs located under the experimental conditions in this report.

To this end, electrodeformation experiments were conducted while the electrode
array device and WBCs were under X-ray illumination. Figure 3 here shows the
result of changing spatial concentration of AuNPs while scanning with a sub-micron
resolution (nominal resolution 250 nm ± 75 nm) is performed. Prior to the application
of the electric field, the spatial distribution of AuNPs is approximately even, as there
is no region inside or outside the WBCs that generates a stronger fluorescent signal.
The situation changes appreciably after the electric field is turned on, so at 8.0 V we
see the peaks, the separation of which roughly approximates the width of the white
blood cells studied. It is also possible to detect some decrease in the fluorescence signal
outside the cell and at the cell’s center. Further increase in the applied electric field
produces additional peaks in the fluorescence distribution, indicating that a majority
of AuNPs become adsorbed at the cell membrane (either inside or outside the cell),
with some additional concentration in the area of the cell’s center. We note that there
are uncertainties in these data originating in the averaging of the XRF signal over
several cells and in the positioning. The uncertainties for the horizontal axis (distance
across) measurement are omitted, as they are well approximated by the size of the
symbol. This approach could be seen as a pilot study leading into additional insights
about function of the cells when enriched with AuNPs [28], but we emphasize the
result presented in Figure 3 serves only to confirm that there is a change in the spatial
distribution of AuNPs in and around the WBCs as one changes the applied electric
field.

3.3. Frequency-Dependent Response

DEP forces exerted upon a cell are dependent upon frequency, which is often reflected
in the behavior of the CM factor. The CM factor profile is different for each cell type, so
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understanding the CM profile is an important piece of any DEP study. A study of the
frequency response was performed on both THP-1 and Jurkat cells. This was accomplished
by keeping the voltage constant at 10 V while varying the signal frequency and measuring
the time needed for nearby cells to reach the electrode tip. This time is inversely related
to the attractive force and serves as a good initial approximation of the CM factor [29–31].
Due to the design of our device, negative DEP forces are very small, and this method fails
as the frequency approaches the cell’s crossover value and time goes to “infinity”.

Extrapolation is used to predict the cell’s crossover value based on the measurements
approaching negative DEP (Figure 4 (L)). Specifically, polynomial fitting and extrapolation
lead us to values for crossover frequencies f xo1,Jurkat = 21.5 kHz ± 3.4 kHz and f xo1,THP-1
= 57.7 kHz ± 3.4 kHz. These values are broadly in agreement with a number of related
studies of white blood cells [32–36]. We wish to emphasize that the main purpose of this
report is the deformability study, so this measurement has been conducted primarily as
an overall quality check, and its focus was not to suggest significantly different values
of crossover frequencies for Jurkat and THP-1 white blood cells. These experimental
results motivated our need for better understanding the effect of introducing AuNPs into
WBCs on electrostatic properties of WBCs. With this in mind, we modeled dielectric
responses of WBCs using Claussius–Mossotti’s approach in a double-shell approximation
(See Supporting Materials).

We have used the output of this model and the prescription offered by [37] to generate
the plot in Figure 4 (R), for the imaginary component of complex permittivity. The white
blood cell parameters are available (references here and Supporting Materials), and approx-
imating the influence of AuNPs as a change of the relativity permittivity of the medium
WBCs is used for this experiment. Understandably, this approximation is a simplification,
but we suggest that, to a first order, scalar modification of permittivity is one way to
understand the role of AuNPs. Details of the model are provided in Supporting Materials,
specifically in part SOM-6.
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Figure 4. (a) The inverse of the time of the “attraction until rest” is recorded at different frequencies
and the fixed applied electric field. In the text we elaborate how these data are (1) fit to a polynomial
and then (2) extrapolated to obtain the reported crossover frequencies. (b) Claussius–Mossotti’s
multi-parameter model indicates a possible range of changes of the relative impedance upon addition
of Au NPs that allows WBCs to achieve the peak at a similar frequency observed in (L).

The results in Figure 4 have, in part, informed our motivation to perform the defor-
mation study at 700 kHz, which is lower than the MHz range where the relaxation rate
and the relative permittivity both start dropping but more than an order of magnitude
above the range where the crossover frequencies occur. Additional studies are necessary
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to understand the response of WBCs to a broader range of frequencies, especially in the
overall region [100 kHz, 3 MHz].

3.4. Deformation Study

Two cell lines were studied: THP-1 monocytes and Jurkat’s T-lymphocytes. The cells
were deformed without gold nanoparticles (AuNPs) modification, then after incubation
with plain AuNPs, and AuNPs modified with PEG and citrate. Cells were suspended in
isotonic, nonconducting media for DEP. DEP forces attracted single cells to the electrode
tip, where they were trapped and subsequently deformed. A gradual deformation was
induced by increasing voltage in 1.0 volt increments at 700 kHz. Very little deformation was
seen until the voltage reached a value of 5.0 volts for most cells, after which cells stretched
into a shape well approximated by an ellipsoid (ellipse in 2D), with the aspect ratio of the
ellipse increasing as the applied voltage grows. Voltage was limited to a 20 V maximum, as
beyond this point cells suffered permanent damage. This is not an impediment to scale-up
of this method, as we will see that the voltages below 20.0 V are sufficient for controllable
deformation and cell sorting protocols. If cell density is too high, the likelihood of multiple
cells chaining together to span the electrode gap increases. In this case, the cells do not fully
deform but become permanently trapped at the electrodes, so we have avoided performing
measurements for more than one cell. It is not impossible to rely on multi-cell capture,
but the findings from such work require more detailed statistical analysis, and this report
focuses on simple, easy-to-repeat experiments.

Figure 5 shows raw deformation data for both types of cells and for variations in the
utilization of AuNPs (PEG, citrate). We have tested at least 10 cells, one cell at a time, for
each of the sample variations reported. We note that, as of yet, this is not a high-throughput
process. Some observations that follow from this are:

(a) It is apparent that very little deformation occurs below 5.0 V.
(b) It takes some additional voltage increase (+2 to 3 volts, in general) to start observing

statistically significant differences for various modifications of WBC with AuNPs.
(c) As expected, the larger the applied voltage, the more difference between deformation

curves is observed
(d) The deformation curves (the stretch ratio vs the applied voltage) while generally non-

linear, are not as apparently quadratic in voltage as one would expect from numerous
electro-deformability studies conducted for red blood cells.

To better understand data in Figure 5, and ultimately to check for the predicted
quadratic dependence [14,27] of the stretch ratio on applied voltage, we have performed
the fit of the stretch ratio as a linear function of the square of the applied voltage. From
the deformation data, we were able to calculate the shear elastic modulus for the cells by a
Maxwell force model modified from Engelhardt and Sackmann [17].

FDEP = 2πr3εmRe{K(ω)}∇|Erms|2 (1)

where r is the particle radius, εm is the absolute permitivity of the fluid, and

K(ω) =
ε∗p − ε∗m

ε∗p + 2ε∗m
(2)

is the Clausius–Mossotti factor, which describes the polarizability of the particle. Erms is the
root-mean-square amplitude of the electric field. These calculations rely on the Maxwell
stress, which predicts a dependence of the deformation as the square of the voltage.
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Figure 5. (a) Stretch ratio measured as a function of the applied voltage for THP-1 white blood cells
(WBC). In addition to “cells only” and “nanoparticles enriched WBCs”, we used PEG-ylated and
citrated solutions of AuNPs, as discussed in the main text. (b) Same study, but for the Jurkat type
WBCs. Elliptical deformation is assumed during analysis of cells’ images. The concentration of
AuNPs, in the form of a volume fraction of the overall cell medium, was kept at 5%.

As can be seen from Figure 6 here, the data demonstrate an overall good fit to V2 (κR
2

in the range 0.95 and 0.98 for all fitting shown), but with a caveat that there is a region of
data overperforming and underperforming the parabolic fit. One way to interpret data in
Figures 5 and 6 here is to propose the existence of different regimes of electro-deformability
for white blood cells. For example, based on the intersection points between the data and
the straight fit lines in Figure 6, it seems that these regimes would be approximately (i)
0.0 V–8.0 V, (ii) 8.0 V–15.0 V, and (iii) 15.0 V–20.0 V. Assuming this empirically driven
qualitative argument has a basis in the fundamental response of the {WBCs + AuNPs}
system, it would indicate that a more detailed, molecular level model for the behavior of
the {WBCs + AuNPs} system in an electric field is called for. Development of such model
is beyond the scope of this report, however. It would likely start by accounting for (i) an
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increase in dielectric constant due to the insertion of AuNPs and/or (ii) a charge separation
of the counterions from the double layer occurring before migration of AuNPs.
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Figure 6. (a) Stretch ratio plotted as a function of the squared applied voltage, for THP-1 white blood
cells (WBC), for the purpose of linear fit. Points represent the same values as in Figure 5, while
the dashed line represents the fit values. It is clear that there are different deformation regimes, as
indicated by the crossover points (where the imaginary line connecting the points crosses the line of
the fit); (b) same analysis for Jurkat cells.

Finally, based on electro-deformability data from Figure 5 and fitting analysis in
Figure 6, we have determined the elastic modulus for the types of WBC we studied here.
Results reported in Figure 7 show a significant reduction in the effective elastic modulus
for both THP-1 and Jurkat cells with the addition of AuNP, and further reduction with
nanoparticle modification. Some possible mechanisms for AuNP effected modulus changes
are as follows:

(1) Particles embedded within the cell membrane or floating within the cytoplasm change
the electrical impedance enough to affect the permittivity of the system.

(2) Nanoparticles provide additional active surface area for electrical forces, effectively
increasing the surface area of the cell without increasing its resting radius.
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(3) Furthermore, AuNP modified with molecular conjugates PEG and citrate showed
additional changes to the effective elastic modulus for WBCs.
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Figure 7. Values of the Young modulus for different experimental cases in this report.

4. Conclusions

We have chosen dielectrophoresis (DEP) as a method to examine the Young modulus
of white blood cells (WBCs) because it offers more than one externally controlled design
parameter (voltage, frequency, shape of electric field lines due to control of the geometry of
the electrodes), and we enriched WBCs with AuNPs leading to more controllable WBCs.

We have fabricated a novel microelectrode array for the controlled deformation of
WBCs. THP-1 monocytes and Jurkat’s T-lymphocytes were enriched with gold nanoparti-
cles; were deformed with electrostatic forces; and based on the geometry of the device and
applied voltage and cell size, Maxwell tension and cell elastic modulus were determined.

This method was developed because despite the existence of several methods for
measuring white blood cells’ elastic moduli, they often give different results for similar cell
types. Introduction of AuNPs helps in this regard because they modify the dielectric con-
stant of WBCs, allowing for a tunable control of the modified cells’ electrical dipole moment,
via a frequency-dependent applied electric field. In addition to the cell elastic modulus, we
report on spatial resolution of the adsorbed AuNPs and on crossover frequencies in the
standard Claussius–Mossotti model of response.

The nature of the electrodeformation data indicates that novel efforts are needed to
better understand the response on white blood cells to electric fields on a molecular level.
The device we have developed is likely to lead to a highly parallel measurement of cells
with a high degree of confidence for high-throughput characterization. Overall, these
results represent a useful addition to the rapidly growing field of on-chip quantifiable
cell properties [38–51]. It can be expected that improvements in the approach here bring
additional progress towards high-throughput cell quantification methods, such as those
reported in [52–54], including confocal laser scanning microscopy [52], fluorescence lifetime
imaging [53], and third harmonic generation cytometry [54].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr10010134/s1, Figure S1: A 3D model of electric field lines for two electrodes, top and side
view, Figure S2: A side of the main steps of the microfabrication, Figure S3: A movie depicting the
deformation of a single white blood cell with gold nanoparticles, as the voltage increases; Figure S4:

https://www.mdpi.com/article/10.3390/pr10010134/s1
https://www.mdpi.com/article/10.3390/pr10010134/s1
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An electron microscope image of a 2D array of AuNPs and a study of their size; Figure S5: UV-VIS
spectra of some of the AuNPs with varied ligands; Figure S6: Some additional details of modeling.
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