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Abstract: Cyclone is often used in the Industry due to its low maintenance costs, simple design, and
ease of operation. This work presents both experimental and simulation evaluation on the effect of
inlet velocity and mass flow rate on the performance of a wheat conveying cyclone. According to the
great importance of the pressure drop and separation efficiency on the separation phenomenon in the
cyclone, a comprehensive study has been conducted in this regard. A computational fluid dynamics
(CFD) simulation was realized using a Reynolds stress turbulence model, and particle-air interactions
were modeled using a discrete phase model. The result showed a good agreement between the
measured value and CFD simulation on the pressure drop and tangential velocity with a maximum
deviation of 6.8%. It was found that the separation efficiency increased with inlet velocity up to
16 m s−1 but decreased slightly at a velocity of 20 m s−1. The pressure drop increased proportionally
with inlet velocity. However, optimum performance with the highest separation efficiency (99%)
and acceptable pressure drop (416 Pa) was achieved at the inlet velocity of 16 m s−1 and mass flow
rate of 0.01 kg s−1.

Keywords: pressure drop; wheat conveying; separation efficiency; turbulent intensity

1. Introduction

A cyclone separator separates the solids from a gas–solid mixture using a centrifugal
force created by swirling flow. A cyclone is often used in a wide range of processes ranging
from food processing to air pollution control due to its simplicity, low operational, and
maintenance costs. For instance, a cyclone is used in many agricultural food processing
plants. Cyclones are also commonly used in cement plants and sawmills for dust removal.

The gas stream behavior in cyclones is complex, despite its simple design [1]. Cyclones
usually separate particles bigger than 10 µm in size. However, conventional cyclones often
have lower than 90% separation efficiency, unless the particle size is greater than 25 µm [2].

Primary studies concerning cyclone separators can be categorized in several subjects,
including (1) study of the inlet velocity, mass flow rate, and temperature effects on cyclone
performance; (2) the effects of cyclone dimensions on pressure drop, separation efficiency,
and velocity field; and (3) the surface roughness effects on cyclone performance and opti-
mization of various cyclone dimensions in order to obtain the best performance (maximum
efficiency and minimum pressure drop).

A CFD study covering the temperature and inlet velocity effects on cyclone pressure
drop was conducted. In this research, four empirical models to predict the pressure drop
were reviewed. Additionally, several empirical models were evaluated to predict cyclone
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efficiency [3–5]. In the following, the effect of the inlet duct angle on cyclone performance
(separation efficiency and pressure drop) was analyzed [6]. Brar et al. studied the cyclone
height as a vital geometry parameter, and they conducted that increasing the cyclone length
by up to 5.5 times the cyclone diameter resulted in a 34% saving in pressure drop and
increased separation efficiency by about 10% [7].

In the following, some mathematical models were applied to study the surface rough-
ness in cyclone separators. The results showed that separation efficiency and pressure drop
decreased when surface roughness increased [8,9]. Multi-objective optimization is another
interesting field related to cyclone separators. Sun et al. performed a multi-objective
optimization using response surface methodology combined with CFD to improve cyclone
performance by minimizing the pressure drop and enhancing separation efficiency [10].
Sun and Yoon carried out a multi-objective optimization using a genetic algorithm and
CFD [11]. The effect of the eccentric vortex finder on cyclone performance was studied.
Additionally, the performance parameters of the cyclone were optimized [12].

Hydrodynamics of aero-cyclones and its simulation in high temperature carried out
by Gimbun [3]. The Reynolds stress model was applied in turbulent modeling, and particle
trajectory calculation was made by Discrete Phase Model (DPM). A good agreement was
reported between simulation results and experimental data (error about 5%) [5].

In some studies, novelties were added to cyclone geometry. The effects of utilizing
ribs on the performance of cyclone and flow patterns were investigated. The authors
applied RSM based on the SIMPLE scheme to model the turbulence in the flow. The
results indicated that utilizing ribs leads to a higher pressure drop and higher collection
efficiency [13]. In another study, various discretization schemes were performed in the
simulation of the dispersed phase of the cyclone separator. The Reynolds Stress Turbulent
Model (RSM) was used in the simulations. According to the results, high order schemes
show good potential to predict the collection efficiency of smaller particles. The CFD
method, utilizing a trapezoidal scheme, is the optimum choice for the simulation of the
dispersed (second) phase of a cyclone separator [14].

Additionally, the study of separation cyclones with multiple inlets [15–17], new vortex
finders [18,19], as well as the use of new techniques, such as the non-invasive environmen-
tally friendly acoustic emission technique [20], was performed by various authors.

Despite all the previous experimental and modeling studies on the cyclone, the effects
of inlet parameters such as how velocity and solid flow rate on turbulence intensity may
affect the cyclone performance and durability, are not yet fully understood. Previous works
have mainly focused on the effect of geometry on cyclone performance.

2. Materials and Methods
2.1. Cyclone Geometry and Experimental Setup

The cyclone used in experiments is illustrated in Figure 1a. This cyclone is a high-
efficiency Stairmand cyclone with a tangential entrance section. The dimensions of the
cyclone’s different sections are presented in Figure 1b. Additionally, cyclone separator
dimensions are presented in Table 1. Velocity was measured by a hot-wire anemome-
ter, whereas the pressure drop was measured using a differential pressure gauge. The
experimental set-up is shown in Figure 2.
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Figure 1. (a) Schematic of used cyclone in experiments, (b) dimensions of cyclone.

Table 1. Cyclone separator dimensions.

Parameters Values (cm)

Body diameter (D) 55
Gas outlet diameter (d) 27.5

Inlet height (A) 27.5
Inlet width (B) 11

Gas outlet duct length (R) 27.5
Total Height (H) 220

Cylindrical section Height (h) 82.5
Cone-tip diameter (C) 19.25

Vortex finder height (S) 27.5
Inlet length (L) 35

2.2. Separation Efficiency

The particles separation efficiency (η) was computed as follows:

η =
Ei − Ee

Ei
× 100 (1)

where Ei is the wheat seeds mass (kg) at cyclone inlet, and Ee is the wheat seeds mass
(kg) at cyclone exit. The calculations are based on collecting wheat seeds from cyclone
inlet and exit.
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Figure 2. Experimental set-up for validation process.

2.3. Numerical Procedure and Simulation Setup

ANSYS Fluent 15 is a commercial software that operates the finite volume formulation
to conduct segregated and coupled calculations [21]. The selection of a proper turbulence
model is vital to resolve the highly anisotropic swirling flow in cyclones. Based on the
previous work by [3], the two-equation turbulence model, which assumes an isotropic
turbulence intensity cannot predict the flow field and performance of cyclone correctly.
Therefore, a Reynolds Stress Model (RSM) that assumes an isotropic turbulence stress was
used in this work. The RSM model is given as follows:

∂

dt

(
ρu′iu

′
j

)
+

∂

∂xk

(
ρuku′iu

′
j

)
= Dij + Pij + ∏ ij + εij + S (2)

where the left two terms are the local time derivatives of stress and convective transport
term, respectively. The stress diffusion is modeled as follows:

Dij = −
∂

∂xk

[
ρu′iu

′
ju
′
k +

(
p′u′j

)
δik +

(
p′u′i

)
δjk − µ

(
∂

∂xk
u′iu
′
j

)]
(3)

The shear production is given by:

pij = −ρ

[
u′iu
′
k

∂uj

∂xk
+ u′ju

′
k

∂ui
∂xk

]
(4)

The pressure strain term is modeled as:

∏ ij = p

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(5)
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The dissipation term is assumed to be isotropic, modeled by:

εij = −2µ
∂u′i
∂xk

∂u′j
∂xk

(6)

and S is the source term.

2.4. Boundary Condition

The appropriate definition of boundary conditions in a turbulent flow plays a vital role
in numerical simulations. The physical condition of problem and mathematical relations are
essential parameters in selecting the proper boundary condition. The boundary conditions
used in simulations are presented in Table 2.

Table 2. Boundary conditions.

Boundary Condition Type Value/Condition

velocity inlet m s−1

Pressure outlet Atmospheric pressure
Wall No-slip condition

The Eulerian–Lagrangian model was used to simulate the solid phase in the conveying
process. This model is described in detail in Section 3.4. Solid-phase properties applied in
the DPM model are presented in Table 3.

Table 3. Solid phase properties.

Property Value

Density 790 kgm−3

Minimum diameter 0.2 cm
Maximum diameter 0.8 cm

Mean Diameter 0.5 cm

Additionally, the numerical schemes for simulations are presented in Table 4.

Table 4. Numerical scheme for simulations.

Numerical Setting Scheme

Pressure distribution PRESTO
Pressure-velocity coupling SIMPLE
Momentum discretization Second-Order Upwind
Turbulent Kinetic Energy Second-Order Upwind

Turbulent Dissipation Rate Second-Order Upwind

2.5. Discrete Phase Model

The discrete phase model (DPM) was used to model the particle-fluid interactions
using the Eulerian–Lagrangian approach. The dispersed phase is solved by tracking
particles through the calculated flow field, and the fluid phase is considered a continuum by
solving the time-averaged Navier–Stokes equations. It should be noted that the dispersed
phase fluid phases could exchange mass, momentum, and energy. The primary assumption
of DPM is that the dispersed phase engrosses less than 10–12% of the volume fraction [22].
The particle motion equation in the Eulerian–Lagrangian approach is defined as below:

dupi

dt
=

18µ

d2
pρp

Cd
Rep

24
(ui − upi) +

gi
(
ρp − ρ

)
ρp

(7)
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dxpi

dt
= upi (8)

Rep =
ρpdp

∣∣u− up
∣∣

µ
(9)

where µ and ρ are dynamic viscosity (Pa s) and gas density (kg m−3), respectively. Ad-
ditionally, 18µ

d2
pρp

Cd
Rep

24(ui−upi)
is the drag force per unit of particle mass. dp and ρp are the

particle diameter (m) and density, respectively (kg m−3), CD is the drag coefficient, upi and
ui are the particle velocity (m s−1) and gas velocity (m s−1), respectively, in i direction, Rep
is the relative Reynolds number and gi is the gravitational acceleration in i direction [23].
For non-spherical particles Haider and Levenspiel, (1989) developed the following correla-
tion [24]:

CD =
24
Re

(1 + b1Reb2) +
b3Re

b3 + Re
(10)

b1 = exp(2.3288− 6.4581φ + 2.4486φ2) (11)

b2 = 0.0964 + 0.5565φ (12)

b3 = exp(4.905− 13.8944φ + 18.4222φ2 − 10.2599φ3) (13)

b4 = exp(1.4681 + 12.2584φ− 20.7322φ2 + 15.8855φ3) (14)

where φ is the shape factor.

2.6. Cyclone Meshing and Grid Independence Test

The 3D computational model using in the simulation is shown in Figure 3. A grid
refinement was employed in the cyclone vortex core to resolve the reverse vortex flow
feature correctly. Four different mesh densities (i.e., coarse = 425,700, medium = 612,600,
fine = 812,410, and very fine = 1,146,100) were used for the grid independence test. The
results showed that the discrepancy among pressure drop between the gas inlet and vortex
finder outlet was less than 2.5% when the grid cells above 612,600 were used. Therefore,
the mesh containing 612,600 cells was used in the simulations.
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3. Results and Discussion
3.1. Validation

CFD simulations must be validated to guarantee the results. Then, the pressure drop,
and inlet velocity were presented in both experimental and numerical results. Figure 4
illustrated the experimental and numerical pressure drop at the barrel section of the
cyclone separator. There is good agreement between numerical and experimental data.
In both, with increasing inlet velocity, the pressure drops increased. It was concluded
that the created simulation was reliable to extract other desired parameters of cyclone
performance. Additionally, validation between numerical and experimental data for the
tangential velocity in vin = 16 m s−1 is presented in Figure 5.
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3.2. Comparison of Various Inlet Velocities and Mass Flow Rates

In six inlet velocities including 10 m s−1, 12 m s−1, 14 m s−1, 16 m s−1, 18 m s−1,
20 m s−1, and mass flow rate of 0.01 kg s−1 the axial velocity contours are shown in
Figure 6. To better compare the inlet velocity efficacy on various parameters, the rainbow
value index is fixed in various inlet velocities.
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Additionally, comparisons of tangential velocity, turbulent intensity and static pressure
were carried out in three mass flow rates, including 0.01, 0.05, and 0.1 kg s−1. In these
simulations, the inlet velocity was kept constant at an optimum value of 16 m s−1 with
acceptable values of pressure drop and separation efficiency.

3.3. Axial Velocity

In conveying particles along with the cyclone, the axial velocity performs an important
role. The volumetric flow rate impacts the axial velocity such that the increasing volumetric
flow rate increases the axial velocity, even though the tangential velocity pattern does
not change. Upstream and downstream are two main streams of gas-particle flow. The
concentration of axial velocity in the vortex finer could lead to a better performance of
the cyclone by improving the separation efficiency. The axial velocity variations can be
discussed in four sections, as shown in Figure 6. The four sections are (1): vortex finder,
(2): bottom section of vortex finder until the middle of the cone, (3): near the wall, and
(4): exit section of particles. The maximum value for axial velocity obtained for the vortex
finder bottom section and the minimum amount appeared in the exit section of the particles.

An essential issue in the cyclone body is the variation of axial velocity in the x-direction.
As shown in Figure 7, the variations of axial velocity in several cyclone cylinder heights
were presented. The plots indicate a decreasing–increasing treatment concerning axial
velocity in various ratios of heights, so that from the wall to a small distance, the axial
velocity was decreased and then dramatically increased to the maximum value in the center
section of the cyclone. On the positive side of the axial axis, the treatment reverses and
significantly decreases, and finally increases near the cyclone wall. With increment l/d
ratio value and inlet velocity, maximum values of axial velocity increased.
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The axial velocity plots in six various heights of cyclones are illustrated in Figure 7.
As shown in Figure 7, the variation of an axial velocity in several cyclone cylinder heights
(l/d = 0, l/d = 0.18, l/d = 0.36, l/d = 0.54, l/d = 0.72, l/d = 0.9) are presented. The
six portions were achieved based on (0, 0.1, 0.2, 0.3, 0.4 and 0.5 m, divided by cyclone
cylinder heights.

The use of various mass flow rates in the simulation has an insignificant effect on axial
velocity contours. Referring to Figure 8, the axial velocity distribution, as well as its value
in different mass flow rates, were the same for 0.01 and 0.5 kg s−1 mass flow rates. Then,
the comparison of results between 0.5 and 0.1 indicated that a slight change occurred in this
range. The main reason for the low impact of mass flow rates was a constant value of inlet
velocity as the axial velocity was mostly affected by the volumetric flow rate (air flow rate).
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3.4. Tangential Velocity

The Tangential velocity contours for various inlet velocities are illustrated in Figure 9.
In the inlet section and the tangential direction of the cyclone, the tangential velocity is
the maximum, whereas along the vertical axis connected to the top and bottom of it, the
tangential velocity is the minimum. The mediocrity of the two mentioned sections is the
third section with an intermediate value of tangential velocity.

Additionally, the change in the tangential velocity profile pattern is insignificant in
various inlet velocities. In Figure 10, the variations of the three mentioned sections are
illustrated in various inlet velocities and l/d ratios. Xiang and Lee indicated that decrement
in tangential velocity is responsible for the lower separation efficiency, whereas the higher
tangential velocity will not necessarily lead to higher separation efficiency [25].
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In the different situations of axial velocity contours in various mass flow rates, applying
the different mass flow rates has a direct effect on tangential velocity. Referring to Figure 11,
the tangential velocity reduced to 21.7 m s−1 for the mass flow rate of 0.5 kg s−1 (decrement
of 0.36 m.s−1), whereas this decrement was 0.4 at mass flow rate of 0.1 k/s and the axial
velocity reached 21.3 m s−1. Increasing the mass flow rate regarding constant inlet velocity
(16 m s−1) resulted in the decrement of the tangential component of the velocity field. These
patterns of contours and plots for static pressure, axial and tangential velocity have been
presented in Elsayed and Lacor’s work about optimization of the cyclone [7,26], which
were similar results to this research.

3.5. Turbulent Intensity

The turbulent intensity has a direct effect on the separation efficiency of cyclone
separators. The study of this parameter is essential, especially in the vortex finder. The
increment of the inlet velocity has a direct impact on the increment of the turbulent intensity.
The vortex finder has a significant role in the separation process in the cyclone. Increasing
the turbulent intensity in the vortex finder was an important factor in decreasing the
separation efficiency at high inlet velocities (18 and 20 m s−1) (Figure 12).

A comparison trend of variations of maximum tangential velocity, axial velocity,
and turbulent intensity of mentioned parameters in various inlet velocities is presented
in Figure 13. The increase of tangential velocity is sharper with inlet velocity increase, while
both axial velocity and turbulent intensity increased moderately with increasing inlet velocity.
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Figure 13. Variation of axial velocity, tangential velocity and turbulent intensity in various inlet velocities.

The increase in the mass flow rate has an insignificant effect on the distribution of
turbulent intensity. This trend is illustrated in Figure 14.
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3.6. Static Pressure

The static pressure contours can be discussed in three main sections of cyclones. High
static pressure values were obtained in the top section of the cyclone wall and cyclone
inlet due to the high friction in this area. Low pressure drop values were attained in
the axis of the vortex finder as the reverse flow was created in this section. Intermediate
values of pressure drop occurred in the area between the two mentioned sections due
to the attenuation of the intensity of the mentioned parameters. As a significant point,
the minimum pressure occurred in the middle part of the vortex finder (Figure 15). This
trend (increase in the pressure drop with increasing inlet velocity) was reported in several
studies [3,27,28]
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Additionally, the pressure drops plots in six various heights of cyclones (l/d = 0,
l/d = 0.18, l/d = 0.36, l/d = 0.54, l/d = 0.72, l/d = 0.9) are illustrated in Figure 16.

Zhou et al. indicated that increasing the inlet velocity increases the pressure drop.
In their work, four levels of inlet velocities, including 10, 15, 20, and 25 m s−1 were
evaluated [29].

3.7. Separation Efficiency

The separation efficiency in various flow inlet velocities is illustrated in Figure 17.
Additionally, the variation of maximum static pressures (pressure drop) was presented
against inlet velocity change. The pressure drop increased directly regarding increasing
the inlet velocities, whereas the separation efficiency increased to the velocity of 16 m s−1

and afterward decreased. The main reason for this significant decrement is the less time
to obtain high separation efficiency in velocities more than Vin = 16 m s−1. Additionally,
the turbulent intensity increased with increasing inlet velocity, which was significant in
decrement separation efficiency.

3.8. Static Pressure and Separation Efficiency in Various Mass Flow Rate

Both Static pressure and separation efficiency were decreased by increasing the mass
flow rate (Figure 18). The increasing mass flow rate regarding constant inlet velocity is the
main reason for this treatment (16 m s−1). Increasing the mass flow rate leads to an increase
in the particle velocity and a reduction in the friction and pressure drop. As shown in
Figure 19, a reasonable compromise should be made between pressure drop and separation
efficiency to obtain the best performance.
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Figure 17. Maximum static pressure and separation efficiency in various inlet velocities.

Additionally, Zhou et al. reported that the separation efficiency has an increasing–
decreasing result with increasing inlet velocity [29].
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Figure 18. Static pressure contours in various mass flow rates.
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4. Conclusions

A comprehensive assessment of flow behavior was carried out for six various inlet ve-
locities and three mass flow rates of a wheat conveying cyclone separator. Along with CFD,
experimental tests were performed to calibrate pressure drop, separation efficiency, axial,
and tangential velocity, and turbulent intensity. The significant results and conclusions
may be drawn as:

• The pressure drop increased with increasing inlet velocity, while the separation effi-
ciency increased to 16 m s−1, and subsequently indicated a decreasing trend for 18 and
20 m s−1 inlet velocities. Minimum pressure drop was obtained along the vortex finder
axis, and the maximum pressure drop was obtained in the top section of the cyclone
wall, demonstrating a uniform trend in all inlet velocities. In terms of compromise
between the pressure drop and separation efficiency in wheat conveying within a
cyclone, the velocity of 16 m s−1 was determined as the best inlet velocity between all
inlet velocities.

• The turbulent intensity as an effective factor in separation efficiency increased with
increasing inlet velocity. One of the factors to reduce separation efficiency is the
increase in the turbulent intensity and effectiveness.

• In the second case, increasing the mass flow rate resulted in a decrement in pressure
drop and separation efficiency. Additionally, the distribution of axial velocity in the
mass flow rate of 0.01 to 0.05 remained almost constant and increasing to 0.1 observed
a minor increase. It can be conducted that increasing the mass flow rate in the desired
range has a negligible effect on the axial velocity distribution. The tangential velocity
decreased with increasing mass flow rate. Additionally, increasing the mass flow rate
was insignificant in the turbulent intensity within the cyclone.

To summarise, it can be conducted that for inlet velocity and mass flow rate ranges,
the inlet velocity 16 m s−1 and mass flow rate of 0.01 is the best choice in the conveying
process in similar conditions.
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