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Abstract: In traffic operations, the aim of transportation agencies and researchers is typically to
reduce congestion and improve safety. To attain these goals, agencies need continuous and accurate
information about the traffic situation. Level-of-Service (LOS) is a beneficial index of traffic operations
used to monitor freeways. The Highway Capacity Manual (HCM) provides analytical methods to
assess LOS based on traffic density and highway characteristics. Generally, obtaining reliable density
data on every road in large networks using traditional fixed location sensors and cameras is expensive
and otherwise unrealistic. Traditional intelligent transportation system facilities are typically limited
to major urban areas in different states. Crowdsourced data are an emerging, low-cost solution
that can potentially improve safety and operations. This study incorporates crowdsourced data
provided by Waze to propose an algorithm for LOS assessment on an hourly basis. The proposed
algorithm exploits various features from big data (crowdsourced Waze user alerts and speed/travel
time variation) to perform LOS classification using machine learning models. Three categories of
model inputs are introduced: Basic statistical measures of speed; travel time reliability measures; and
the number of hourly Waze alerts. Data collected from fixed location sensors were used to calculate
ground truth LOS. The results reveal that using Waze crowdsourced alerts can improve the LOS
estimation accuracy by about 10% (accuracy = 0.93, Kappa = 0.83). The proposed method was also
tested and confirmed by using data from after coronavirus disease 2019 (COVID-19) with severe
traffic breakdown due to a stay-at-home policy. The proposed method is extendible for freeways in
other locations. The results of this research provide transportation agencies with a LOS method based
on crowdsourced data on different freeway segments, regardless of the availability of traditional
fixed location sensors.

Keywords: crowdsourced data; big data; Level-of-Service; traffic; machine learning

1. Introduction

Intelligent transportation systems (ITS) are essential for assessing the state of traffic.
ITS traffic measurements can be used in different applications, such as traffic operations,
road work planning, assessing traffic queues, and congestion management. The United
States Highway Capacity Manual (HCM) defines six Levels-of-Service (LOS) for estimating
the traffic performance and state. The HCM provides analytical methods for assessing LOS
from traffic density and highway characteristics [1]. The traffic density, speed, and flow are
key components of LOS assessment [1–3]. The Department of Transportations (DOTs) and
transportation agencies usually want real-time or historical hourly traffic status and LOS
data for different freeway segments.

Traditionally, traffic data (speed, travel time, flow, and density) are collected by a
variety of fixed location sensors, such as loop detectors, remote traffic microwave sensors
(RTMS), magnetic sensors, laser sensors, video images, and License Plate Recognition
(LPR) systems [4,5]. Fixed location data collection methods are typically expensive and
have a limited network coverage. In recent years, data-driven ITS has led to multisource,
high-performance, and powerful solutions in transportation systems [6]. Data collection
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based on probe vehicles and floating cars has gained more attention. These approaches use
new technologies such as smartphones, cellular networks, Bluetooth sensors, Wi-Fi, and
connected vehicles (CVs) to provide traffic data [7,8]. These technologies not only generate
useful data to be employed in different transportation analyses, such as traffic safety [9–12],
public transit [13,14] and energy consumption and emissions analyses [15,16], but also
provide new opportunities to collect crowdsourced data [15,16].

Crowdsourcing refers to obtaining data from a group of users who contribute their
information via smartphones, social media, or the internet. The use of big data and
crowdsourced data in transportation enables researchers to propose innovative ideas and
solutions that were not studied in the past [17]. With an increased use of smartphone
applications, road users can share information (e.g., speed, travel time, delay, incident,
hazards, severe weather, and congestion) using navigation applications (e.g., Waze and
Google Maps). Crowdsourced data are considered a promising alternative to traditional
data collection methods [18–21]. Meanwhile, the advantages of crowdsourced data and
probe vehicles over traditional fixed location data collection methods are the (i) expanded
network coverage and resolution, (ii) low/no implementation and maintenance costs, (iii)
improved real-time application, and (iv) ability to implement proactive applications [20,21].
Crowdsourcing enables transportation researchers to propose new methods and platforms
that have various applications, such as incident detection [22,23], traffic condition analy-
sis [23], traffic speed prediction [24], hotspot analysis [25], road anomaly detection [26],
and road surface evaluation and indexing [27]. Crowdsourcing can also be helpful in the
development of new applications for visually or mobility impaired road users in different
modes of transportation [28].

Since leveraging crowdsourced data, many cities governments and DOTs have es-
tablished partnerships with data providers companies such as Waze and INRIX [20,29].
They have utilized crowdsourced data in a variety of applications, such as performance
measurement and incident detection. This paper focuses on Waze. Waze is a naviga-
tion app that provides crowdsourced data, such as the speed, travel time, and road user
reports (incidents, traffic jams, and hazards), through the Waze for Cities (WFC) pro-
gram. The Tennessee Department of Transportation (TDOT) is a Waze partner that uses
crowdsourced data.

The acquisition of crowdsourced data generates an opportunity to propose a new
methodology for assessing LOS based on the data’s features and characteristics. This
study proposes a new methodology that exploits features from crowdsourced data and
speed/travel time deviation to assess LOS on freeways. This methodology can be used
in developing new tools for LOS assessment and hourly traffic status data on freeways
with no need for fixed location traffic volume sensors. The proposed approach can be
considered a supplemental methodology for traditional HCM LOS calculation that relies
on the traffic density and flow.

The remainder of this paper is organized as follows. The next section summarizes
related literature about LOS assessment, traffic situation prediction, and crowdsourced
data in transportation. The methodology section presents the traditional LOS calculation
and the proposed method. Additionally, some data mining approaches are discussed in this
section. Then, the data used in this study are discussed, followed by the results obtained
by implementing the methodology. Finally, the paper is concluded, and areas for future
work are provided.

2. Literature Review

This part reviews the most relevant literature pertaining to this study in the following
order. First, traffic status and LOS assessment methods are summarized. Then, travel time
reliability and alternative LOS methods are discussed. The following parts will review
Waze data used in previous studies and discuss the research gaps.



Informatics 2021, 8, 17 3 of 18

2.1. Traffic Status and LOS Assessment Methods

Most transportation agencies and DOTs focus on the density or volume to capacity
(V/C) ratio to assess LOS. HCM uses the density to define LOS for freeways and multilane
highways. It also defines LOS for intersections using a metric called control delays [1,30].
Traditionally, studies use one or a combination [31–33] of parameters, such as the speed [34],
flow [32,35], and density [36,37], to explain the traffic status and LOS. Previous studies have
used different data sources, such as sensor data [38], probe vehicles [32,39], camera images
and videos [40], CVs [2,41], and simulation [2,35,37,41]. In terms of the methodology, sta-
tistical modeling [37], Neural Networks [38,39], Kalman Filters [39], Image Processing [42],
and Machine Learning [32,40] have been widely used.

2.2. Travel Time Reliability

Previous studies have captured useful information from speed and travel time vari-
ability and reliability to determine the traffic status and performance. These studies used
statistical measures, such as the average, standard deviation, percentiles, and range [43–45].
Additionally, the relation between the speed deviation, travel time variability, planning
time index (PTI), and buffer time index (BTI) with the V/C ratio has been explored in prior
literature [43,46].

2.3. Alternative LOS Methods

The Strategic Highway Research Program 2 (SHRP2) Reliability Project L08 discussed
supplemental methods for LOS measurement. This project used a density-based definition
of LOS to form the distribution of LOS and presented a distribution instead of a single
value for LOS [47]. This study proposed an innovative approach for LOS based on travel
time reliability perspectives. The travel speed range, the most restrictive condition, and the
travel time value were introduced in this project [47]. Travel time reliability and variability
are measures of service quality [48].

Pulugurtha and Imran (2020) and Kodupuganti and Pulugurtha (2019) modeled the
LOS of freeways and urban links using travel time variability indicators such as the plan-
ning time index (PTI), buffer time index (BTI), average travel time, and 95th percentile.
They suggested a threshold travel time reliability to assess LOS [49,50]. Singh et al. (2019)
used Wi-Fi probe data to develop LOS thresholds based on travel time reliability and
variability indices [30]. In a different approach, Altinatasi et al. (2016) used the average
speed of Floating Car Data (FCD) to quantify LOS [34]. Moreover, Khan, Dey, and Chowd-
hury (2017) used simulation and artificial intelligence to assess LOS based on different
CV penetration rates [2]. Table 1 presents the most relevant studies that have proposed
alternative methods for LOS assessment.

Table 1. Summary of alternative Level-of-Service (LOS) assessment methods in the literature.

No. Reference Year Data Index Used Method

1 Kittelson et al. [47] 2008 Sensor data (speed,
density, travel time)

- Travel speed range
- Most restrictive condition
- Value of travel time

- Travel time
reliability threshold

2 Altinatasi et al. [34]. 2016 Floating Car Data
(speed)

- Average speed - Speed threshold

3 Khan, Dey, and
Chowdhury [2] 2017 Simulation (speed,

density)
- Average speed
- CV penetration rate

- Artificial intelligence

4 Singh et al. [30] 2019 Wi-Fi probe vehicle
(speed, travel time)

- Planning Time Index (PTI)
- Buffer Time Index (BTI)
- Travel Time Index (TTI)

- Travel time
reliability threshold

- Statistical regression
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Table 1. Cont.

No. Reference Year Data Index Used Method

5 Kodupuganti, and
Pulugurtha [50] 2019

Travel time data
provided by North
Carolina DOT

- Planning Time Index
- Buffer Time Index
- Average travel time

- Travel time
reliability threshold

- Regression model

6 Pulugurtha and
Imran [49] 2020 Simulation (travel

time)
- Planning Time Index
- Buffer Time Index

- Travel time
reliability threshold

- Statistical regression

2.4. Waze Data

Crowdsourcing enables researchers to use big data collected from road users, probe
vehicles, bicycles, and pedestrians [21,51]. This research uses Waze crowdsourced alerts
and speed/travel time data as the primary crowdsourced data source. The company Waze
analyzes the app users’ location to provide speed and travel time data. Waze also provides
different event reports (congestion, incidents, severe weather, and road construction). Prior
studies have explored and verified Waze incident report and travel time data to assess the
reliability and coverage [20,29,52–54]. A recent study by Li et al. showed that Waze incident
alerts are spatially correlated with police crash reports (PCR) and that Waze provides a
broader coverage than PCR [25]. Several previous studies have also used Waze alerts data
for applications such as accident clustering [55], safety hotspot detection [25], incident
detection [22], and improving dynamic traffic lights [56]. A more recent study also verified
the quality of Waze speed data on surface streets [21]. Table 2 summarizes prior studies
using Waze data.

Table 2. Summary of studies using Waze data in the literature.

No. Reference Year Country Waze Data Used Findings and Application

1 Santos et al. [52] 2016 Brazil Waze accident
alerts

- Showed acceptable reliability of Waze
accident reports

2 Bahaweres et al. [53] 2017 Indonesia Waze travel time - Performed t-test to show the Waze travel
time and ground truth are almost equal

3 Pack and Ivanov [20] 2017 United
States Waze alerts - Explored the properties and possible

benefits of Waze data

4 Amin-Naseri et al. [29] 2018 United
States

Waze congestion
and accident alerts

- Showed reasonable spatial and temporal
accuracy of Waze data

5 Perez et al. [55] 2018 Mexico Waze alerts - Used Waze data for road accident
clustering

6 Raul Sanchez et al. [56] 2019 Colombia Waze jam and
accident alerts

- Used Waze data to improve dynamic traffic
lights and urban mobility

7 Turner et al. [54] 2020 United
States Waze alerts

- Found Waze data to be a valuable safety
data source, especially for capturing
unreported traffic incidents

8 Hoseinzadeh et al. [21] 2020 United
States Waze speed - Assessed the quality of Waze speed on

surface streets

9 Li et al. [25] 2020 United
States Waze alerts

- Showed Waze incident alerts are spatially
correlated with PCR

- They showed that Waze provides a broader
coverage than PCR

10 Senarath et al. [22] 2020 United
States Waze alerts - Proposed an incident detection platform
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2.5. Gap in the Literature

As previously discussed, HCM density-based LOS were given the most attention
in prior literature. Moreover, some studies used travel time and speed variability for
determining LOS. Crowdsourced data have not been used to determine LOS. This study
addresses a gap in integrating crowdsourced data (Waze incident report and speed data)
for LOS assessment. This study’s results can help agencies quantify LOS for different
segments, without installing new fixed location equipment.

3. Data

This part describes the primary datasets used in this study. This study used Waze
speed/travel time and Waze alert data for the LOS analysis. In the following, the Waze
speed/travel time, Waze crowdsourced alerts, and fixed location data will be presented.
Then, the study area will be introduced.

3.1. Waze Speed and Travel Time Data

The travel time and traffic speed for specific roadway segments are data sources that
Waze shares with partners through the Waze for Cities (WFC) program. Waze obtains
app users’ kinematic information in specified segments to calculate and report the speed
and travel time. If no user is passing in that time interval or segment, it reports historical
speed and travel time data. Waze implements a tool called “traffic view” that allows
transportation agencies and DOTs to specify a list of road segments. Authorized users
can add links based on their priority or needs to the watch-list. Subsequently, real-time
travel time/speed data for the predefined road segments are available at a one-minute
level. Authorized users can use these data in real-time or archive them in a JavaScript
Object Notation (JSON) format for further analysis. The archived JSON file for each time
interval includes travel time, segment length, and geospatial information for all predefined
segments in that time interval.

3.2. Waze Crowdsourced Alert Data

User report data are other valuable crowdsourced data that Waze provides to partners,
which are referred to as alerts. Waze alerts can be used in different analyses, such as
incident detection, hot spot clustering, and end of queue prediction. Waze users can
report predefined incident types in the Waze App while traveling. These alerts include
accidents (major or minor), traffic jams (heavy, moderate, standstill, or light), hazards
(severe weather, stopped cars, or road potholes), construction, and closed roads. Users
can also verify existing reports on the road. Waze shares all users’ reports through the
WFC program. Waze alerts data include the incident unique ID, time, spatial coordinates,
direction, reliability, and confidence level of the reported alert. Waze partners can use
real-time alerts or archive them in an Extensible Markup Language (XML) format for their
analysis. This study had access to Waze alerts for Tennessee State.

3.3. Fixed Location Data

The Tennessee Department of Transportation (TDOT) uses Radio Data System (RDS)
sensor data, which provide traffic information such as the traffic count, speed, and occu-
pancy in 30-s time intervals. RDS stations are located on freeways close to four major cities,
including Nashville, Memphis, Knoxville, and Chattanooga in Tennessee. This study uses
the traffic volume (flow) from RDS data and traffic speed from Waze to calculate the density
and LOS. The estimated LOS can be used as ground truth data. This will be elaborated on
in the methodology section.

3.4. Study Time and Area

To quantify hourly data and assess the LOS for freeways, a study area was designated
in Knoxville, Tennessee. A segment on the Interstate 40 (I-40) highway at westbound mile
marker 385 was selected (Figure 1). The study segment length is about 1.5 miles (~2.4 km).
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The speed limit for this segment is 65 mph (~105 km/h). This location was selected for
two reasons: (1) The variability of traffic and LOS during the hours of the day, and (2) the
availability of roadway sensor data (flow) to calculate different ground truth LOS.
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One month of data, representing 1 October 2019 to 31 October 2019 (744 h), were
selected to train the methodology. The world faced a significant challenge in 2020 from
the coronavirus disease 2019 (COVID-19) pandemic [57]. Stay-at-home is known to be
an effective policy [28] for preventing the spread of COVID-19 in the US and led to a
major breakdown in mobility in March and April 2020. The traffic also recovered by
about 90% in August 2020. Therefore, two months of data, consisting of 16 March 2020 to
15 April 2020 and 1 August 2020 to 3 August 2020 (overall 1488 h), were collected to test
the final method. These two months were selected to test the method in both a normal and
abnormal situation.

4. Methodology

The methodology used in this paper combines raw crowdsourced speed and user
report data to obtain the hourly LOS-based traffic status. This methodology uses the speed
variation, travel time reliability, and user alerts in the selected segment to define measures
of traffic conditions. Here, the Waze speed/travel time and crowdsourced alerts are used
as the primary data source in the study, which will be elaborated on in the following
sections. Unlike some previous studies, this method does not solely depend on the average
speed [34] or density.

This section provides more details about the proposed algorithm of this study. As
shown in the framework of the study (Figure 2), the different steps of the proposed method
are as follows:

• Step 1: Data collection, which includes archiving Waze data and traditional fixed
location sensor data, as well as preprocessing and normalization;

• Step 2: Extract model inputs, which includes statistical measures, travel time perfor-
mance measures, and crowdsourced Waze alerts;

• Step 3: Calculating ground truth LOS, using fixed location sensors, and labeling
observations of Waze input data with the corresponding ground truth data;

• Step 4: LOS assessment, by performing different machine learning methods. This part
includes feature selection, cross validation, and selecting the preferred method.
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4.1. Step 1: Data Collection

Waze continuously generates a massive amount of data. The first step in such a
study is to archive Waze speed/travel time and Waze alert data. A Python code was
implemented to capture crowdsourced alert, speed, and travel time data for 1-min time
intervals. Employing real-world raw data can always present challenges, such as missing
values or noise. In the next step, data were preprocessed by cleaning and removing possible
errors. Possible missing values and outliers were removed/imputed. Next, RDS traffic
volume data were collected to calculate the hourly traffic flow and LOS ground truth,
which will be elaborated on in Step 3.

4.2. Step 2: Model Inputs

As explained, previous studies have explored the variation of speed/travel time to
capture LOS. This study combined different speed and travel time variation indexes with
crowdsourced data to assess LOS. Multiple indices were calculated as the inputs of the
classification model. This paper divides these indicators into three categories, as follows.
Each index will be elaborated on in the following paragraphs.

• Basic statistical measures, including the average speed, standard deviation, range,
coefficient of variation, standard error, percentiles (25th, 50th, and 90th), and interquar-
tile range.

• Travel time performance measures, including the Travel Time Index, Planning Time
Index, and Buffer Time Index.

• Crowdsourced data, including the number of users’ accident, jam, and hazard reports
in the Waze alerts data.

4.2.1. Basic Statistical Measures

Pertaining to speed variation, different statistical measures were considered. As
discussed, speed variation has been considered in prior studies [2,34,47,48]. All these
measures were captured and measured during each period (in this study, hourly). Table 3
provides the different statistical measures used in this study.
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Table 3. Model input equations.

Model Input Measure Equation Eq. No.

Basic statistical measures
of speed

Average Speed
v = ∑n

1 vi
n

where vi is the speed and n is the number
of observations in each time interval

(1)

Standard Deviation (SD) σ =

√
∑n

1 (vi−v)2

n
(2)

Range Range (v) = max
i=1,2,...,n

vi − min
i=1,2,...,n

vi (3)

Coefficient of Variation (CoV) CoV = σ
v (4)

Standard Error (SE) SE = σ√
n (5)

Percentiles
(25th, 50th, 75th, 90th)

kth percentile = rank
(

k
100 (n + 1)

)
where k = 25, 50, 75, 90
Here, rank is ordering the dataset from smallest to
largest and finds the value with the k

100 (n + 1) index

(6)

Interquartile Range (IQR)
IQR = Q3 −Q1
where Q3 is the 75th percentile and
Q1 is the 25th percentile of vi

(7)

Travel time performance

Travel Time Index (TTI)
TTI = TTAvg

TTf ree− f low

where TTAvg is the average travel time and
TTf ree− f low is the free flow travel time

(8)

Buffer Time Index (BTI)
BTI = TT95th−TTAvg

TTAvg

where TT95th is the 95th percentile of the travel time
(9)

Planning Time Index (PTI) PTI = TT95th
TTf ree− f low (10)

Crowdsourced data Hourly Number of Alerts
Count(Waze Alerts

t )
where s is the study segment and t is
the time intervel (hour of day)

(11)

4.2.2. Travel Time Performance Measures

To analyze the travel time variability for each time period, the following well-known
travel time performance measures were also calculated. It should be noted that all the
travel time reliability indexes were derived based on a one-hour aggregation level. The
travel time performance measures are as follows. Table 3 also presents the different travel
time performance equations (Equations (8) to (10)).

• The Travel Time Index (TTI) captures the travel time variation by calculating the
average travel time ratio to the free flow travel time in the segment. This index explores
how the travel time deviates from the free flow travel time during the intended period,
which is typically LOS A [30].

• The Buffer Time Index (BTI) represents the amount of extra time that the traveler
needs to be on time [30,49,50].

• The Planning Time Index (PTI) calculates the ratio of the 95th percentile of travel
time to the free flow travel time. A higher PTI value indicates a lower reliability and
theoretically lower LOS [30,49,50].

4.2.3. Crowdsourced Data

This study incorporated crowdsourced data along with the speed and travel time
variability. Here, the number of Waze user reports (alerts) in each period (one hour) for the
study area was calculated. This number was then used as an input for the final model of
LOS assessment.
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4.3. Step 3: Ground Truth LOS

LOS is a widely used performance measure of the quality of service for a road segment.
The HCM identified six LOS categories for freeways and highways based on density and
road characteristics. HCM employs the traffic density as the primary measure of LOS for
freeway segments [2,34,41,58,59]. Table 4 presents the density pertaining to each LOS [1].
In this study, traffic flow (from RDS sensors) and speed (from Waze) were used to calculate
the hourly traffic density. The calculated density was used to obtain hourly LOS based on
Table 4. The calculated LOS was used as the ground truth. The hourly input data were
also labeled with ground truth values, which were used in the LOS model presented in the
next section.

Table 4. Description of different LOS adapted from the Highway Capacity Manual (HCM) [1].

LOS Density (Vehicle/Mile/Lane) Description

A ≤11 Free flow
B >11–18 Reasonably free flow
C >18–26 Stable flow (acceptable delays)
D >26–35 Speeds decline slightly with increasing flows
E >35–45 Operation near or at capacity
F >45 Forced or breakdown flow

4.4. Step 4: Machine Learning Methods

To accomplish the study objectives and estimate hourly LOS using crowdsourced data,
machine learning classification methods were used. In this study, a variety of machine
learning algorithms were tested. Among seven methods (Random Forest, Support Vector
Machines, K-nearest Neighbor, Decision Tree, Boosted Tree, Naïve Bayes, and Multinomial
Logistic Regression), the three methods with the highest accuracy were selected and are
reported in this paper. These are as follows:

• Random Forest (RF): RF is an ensemble classification method that combines several
random decision trees. In this method, all trees are built independently. Then, it
classifies the data based on the majority of votes of all trees;

• Support Vector Machines (SVM): SVMs are well-known margin-based classification
methods. For each class, the SVM algorithm finds the optimal support vector that
provides the maximum distance to other classes. By calculating the optimal support
vectors, the algorithm can identify the boundaries and classify the data;

• K-Nearest Neighbor (KNN): KNNs are non-parametric methods that are widely
used for classification. All training data are considered in an n-dimensional feature
space (n = number of input features) in this method. For each observation, the
algorithm looks for the k (a predefined constant) nearest neighbors based on the
Euclidean distance. Then, it assigns the category based on the most frequent label of
the neighbors.

Since this study implemented different machine learning methods, they had to be
compared to find the preferred model. The classification accuracy and Cohen’s kappa
coefficient were used to choose the preferred model and features. The accuracy captures the
ratio of correctly classified predictions (LOS in this study) in comparison to ground truth
data. Kappa is another classification performance measure that calculates how close the
classified instances are to the labeled ground truth. Kappa eliminates the correct predictions
occurring by chance. Kappa is useful when the data are unbalanced due to the number of
observations in each category. It should be noted that the higher the accuracy and Kappa
value, the better the performance of the method. The accuracy and Kappa can be calculated
using the following equations:

Accuracy =
Number o f correct predictions
Total number o f predictions

, (12)
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Kappa =
Pr(a)− Pr(e)

1− Pr(e)
, (13)

where, Pr(a) is the ratio of correct classification or accuracy (Equation (12)), and Pr(e)
represents the probability of success due to chance.

5. Results

This section first provides the descriptive statistics for all input variables. Then, the
machine learning model results are presented. It should be noted that R programming
language (version 4.0.0) was used for all analyses and visualization presented in this section.
It should also be noted that missing values in the datasets represented less than 1% of the
total population and were therefore removed from the dataset. Additionally, outlier values
in the speed dataset represented less than 1% of the total; these were replaced with the
median speed value.

5.1. Descriptive Statistics

Table 5 presents the descriptive statistics for the hourly input data. All input measures
have a range of values during different hours. For example, the hourly average speed has
a range between 31.1 and 119.4 km/h (19.3 and 74.2 mph). Furthermore, the number of
Waze alerts has a range of 0–101 hourly alerts. This suggests that some of the measures
require normalization to remove bias in the models. Therefore, some of the speed measures
(average, maximum, minimum, and percentiles) were normalized to improve the dataset
quality and prevent an imbalance bias of the dataset.

Table 5. Descriptive statistics of hourly data.

Model Input Measure Mean Min. Max. Median S.D.

Basic statistical
measures on speed

Average speed (km/h) 100.6 31.1 119.4 110.7 21.7
Speed standard deviation (km/h) 6.6 0.0 39.4 4.0 6.3

Minimum speed (km/h) 88.4 18.0 118.4 105.4 25.7
Maximum speed (km/h) 111.0 39.4 146.0 118.4 20.1
Range of speed (km/h) 22.7 0.0 91.1 14.5 18.2

CoV of speed 0.0 0.0 0.5 0.0 0.1
SE of speed 0.5 0.0 3.1 0.3 0.5

25th percentile (km/h) 96.9 25.9 114.4 109.8 24.5
50th percentile (km/h) 100.9 29.1 118.4 110.7 22.9
75th percentile (km/h) 105.1 36.5 121.0 111.5 21.1
90th percentile (km/h) 107.7 39.4 126.5 118.4 20.3

Travel time
performance

IQR 5.1 0.0 51.9 3.8 7.7
TTI 1.2 1.0 3.9 1.0 0.5
BTI 0.2 −0.4 3.4 0.0 0.4
PTI 1.4 1.0 5.8 1.1 0.7

Crowdsourced data Number of Waze alerts 9.0 0.0 101.0 4.0 20.0

Figure 3 presents a boxplot of the number of hourly crowdsourced alerts for each time
of day. It shows that, typically, during the daytime and peak hours, there are a higher
number of alerts than during night hours. Furthermore, Figure 4 shows a boxplot of the
number of alerts, average speed, TTI, BTI, and PTI in each LOS category. This figure
indicates that from LOS A to F, the range of the number of Waze alerts, TTI, BTI, and PTI
for each LOS increases. On the other hand, the average speed decreases. Moreover, the
range of measures in each LOS category is different. The results suggest that these features
can be beneficial in describing the traffic status and LOS.
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5.2. LOS Classification Model Using Machine Learning
5.2.1. Model Training and Hyperparameter Tuning

To classify LOS, this study employed a variety of machine learning techniques. Among
the tested methods, the highest accuracy methods are reported in this paper, which were
SVM, RF, and KNN. As previously mentioned, one month of data (October 2019) was
selected for the training and validation datasets. The stratified k-fold cross-validation
technique was used for all three techniques (SVM, RF, and KNN) to remedy the overfitting
problem, reduce the impact of unbalanced label frequencies, and maximize the use of data
for both training and testing. In this cross-validation technique, the datasets were randomly
divided into equal k-folds with approximately the same number of instances. One-fold
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was used as the validation set, and the remaining k-1 folds were used for training. Each
fold was used once as the validation dataset. Then, the final accuracy and Kappa value
were calculated as the average of k validation results. The k-fold cross-validation technique
enabled us to select tuning hyperparameters and increase the classification accuracy. For
this purpose, different values of grids of hyperparameters were used in each method to
tune hyperparameters and select the best model. To account for overfitting, this study
limited the hyperparameters for each machine learning algorithm as follows:

• RF:

- Number of trees: A higher number of trees typically avoids overfitting;
- Maximum number of features: A smaller number of features basically reduces the

chance of overfitting;
- Maximum tree depth: The lower the tree depth, the less likely overfitting is;

• KNN:

- Number of neighbors (K): Increasing the number of neighbors can avoid overfitting;

• SVM:

- C: Demonstrates a trade-off between a high and low accuracy, with a low C value
resulting in a smoother decision surface and a lower chance of overfitting.

- Sigma: A large gamma value can cause overfitting.

5.2.2. Model Selection

Here, three different models were estimated to elaborate on the impact of adding
crowdsourced data in terms of the LOS assessment accuracy. By comparing these models
using different machine learning methods, the preferred model could be selected. The
proposed models are as follows:

• Model I uses only travel time performance measures as the model inputs and shows
how accurately travel time performance measures can determine LOS;

• Model II uses travel time performance measures and basic statistical measures as the
inputs;

• Model III incorporates crowdsourced Waze alerts and uses all three types of input.
Model III captures the impact of the crowdsourced alerts in terms of improvement of
the LOS classification.

Next, 10-fold cross validation was performed for the three models. Figure 5 displays
the result of cross validation for the different machine learning techniques for each model.
It can be inferred that, for most methods, adding a statistical measure (Model II) improves
the accuracy and Kappa in comparison to Model I. Moreover, adding crowdsourced data
to the input measures (Model III) increased the performance of all methods. Based on
this step, it can be concluded that crowdsourced data improved the LOS classification
performance. All three types of input measures were used in the final model.

In order to assess the sensitivity to the number of folds in cross validation, the values
of k (3, 5, and 10) were selected. Table 6 compares the selected classification methods with
3, 5, and 10 cross validation folds for Model III (using all inputs).

Table 6. Summary of classification methods with 3-, 5-, 10-fold cross validation (train dataset).

Classifier
3-Fold Cross Validation 5-Fold Cross Validation 10-Fold Cross Validation

Accuracy Kappa Accuracy Kappa Accuracy Kappa

SVM 0.91 0.81 0.91 0.81 0.90 0.79
RF 0.91 0.82 0.93 0.83 0.92 0.83

KNN 0.88 0.77 0.89 0.79 0.88 0.76
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The result of this study shows that machine learning techniques are capable of deter-
mining LOS. The RF accuracy of the method with 3, 5, and 10 cross validation was 0.91,
0.93, and 0.92, respectively. Additionally, all Kappa values for RF were above 0.8, which is
acceptable for a classification with six different categories. Among the selected machine
learning techniques, the RF performed the best result using model III inputs. Here, LOS
calculated from RDS data was used as the ground truth. The best RF model (with the
highest accuracy and kappa values) was selected to be evaluated with the test dataset.
The hyperparameters for the best model (selected RF) included a number of trees of 250,
maximum number of features of 2, and maximum tree depth of 3.

5.2.3. Test Result

As mentioned earlier, two months of data in 2020 were collected to test the methodol-
ogy. The first month (March 16 to April 15) is known to have exhibited a major breakdown
in traffic and mobility due to the stay-at-home policy regarding the COVID-19 outbreak.
The second month (August) was selected since the traffic breakdown was slightly recov-
ered (about 90%) to normal traffic. The selected RF model was evaluated by using the
test data. Table 7 shows that the test result is close to training datasets. The proposed
method was also applied to and tested in other segments of I-40 in the Knoxville area, and
the result showed a similar accuracy. It shows that the proposed method is extendible to
other locations.
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Table 7. Summary of testing classification methods.

Date
Random Forest Test Result

Accuracy Kappa

03/15/2020 to 04/15/2020 0.95 0.86
08/01/2020 to 08/31/2020 0.92 0.83

5.3. Sensitivity Analysis

The sensitivity of the preferred model (Model III using RF) to different hours of the
day was investigated. In the RF model, the corresponding accuracy of each hour of the
day was calculated. The accuracy values displayed a range from 0.92 to 0.94 during 24 h of
the day. The result highlights that the LOS estimation model is not dependent on the time
of day. This method can be used for both peak hours and non-peak hours to estimate the
traffic state and LOS. Additionally, the classification accuracy for each ground truth LOS
was calculated based on the confusion matrix. Similar to the hourly analysis, each LOS
category’s accuracy did not deviate from the total accuracy (0.93). This suggests that the
proposed method results are not biased due to the frequency of each LOS category.

5.4. Variable Importance

This study suggests that crowdsourced data can improve the LOS classification accu-
racy. Accordingly, variable importance analysis was performed based on the preferred RF
model (Figure 6). The mean decrease in the Gini index was computed from the RF model.
A higher value of this index indicates a higher variable importance. The average speed,
number of crowdsourced alerts, TTI, BTI, minimum speed, PTI, and standard deviation
(SD) of speed are the most important variables in determining the LOS, respectively. This
result is consistent with previous studies in the literature that employ speed and travel
time reliability measures when determining LOS thresholds. However, the number of
crowdsourced alerts seems to impact the LOS prediction accuracy significantly more than
TTI, BTI, and TTI.
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6. Limitations and Future Work

This study proposed a new methodology for estimating LOS using crowdsourced
data and machine learning algorithms. However, there were some limitations to this
study. This study did not consider the variability and sensitivity of the methodology
regarding weather conditions. Additionally, the proposed method used crowdsourced
data, travel time variability, and speed statistics measures to estimate LOS. The travel
time reliability and speed statistics measures captured the temporal variability of speed
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and travel time; however, the spatial variation in speed was not considered. In future
research, spatial variation can be used as an input variable for LOS assessment. The
speed deviation from upstream and downstream segments can also be addressed in LOS
estimation. To this end, more complex methods such as deep learning can be deployed.
Using deep neural networks such as convolutional neural network (CNN) and recurrent
neural network (RNN) could enable future research to simultaneously capture spatial and
temporal variation. Furthermore, in this study, Waze speed and alert data were used as the
primary data source. In the future, other crowdsourcing methods (e.g., social media) can
be examined when estimating LOS. Finally, this study used Waze alert counts regardless
of the event type (jam, accident, and hazards). The impact of each type of event on traffic
conditions and LOS should be evaluated in the future.

7. Conclusions

Crowdsourced data availability is increasing rapidly, and machine learning offers
the opportunity to analyze it. This study proposed a new methodology to incorporate
crowdsourced data in LOS assessment. The method was applied to a 1.5-mile (~2.4 km)
segment of freeway on I-40 in Knoxville, Tennessee. Crowdsourced data from Waze were
collected, and three categories of input measures (basic statistical measures, travel time
reliability, and Waze crowdsourced alerts) were calculated. Machine learning techniques
were performed to classify LOS on an hourly basis. Additionally, data collected from fixed
location RDS sensors were used to calculate the traffic density and estimate the LOS ground
truth using HCM density thresholds.

The results of this study highlight that crowdsourced data and machine learning
techniques can be used to estimate LOS. The results revealed that using crowdsourced
alerts as an input can significantly improve the model accuracy (about 10%). Moreover,
the RF method showed the highest performance among other classification methods in
training datasets (accuracy = 0.93 and Kappa = 0.83). Evaluating and testing the trained
method also confirmed the classification accuracy. In this method, the LOS estimation
accuracy value was relatively consistent among different times of day and LOS categories.
Sensitivity analysis confirmed that the accuracy of this methodology does not deviate in
traffic peak-hours or non-peak hours. The results also suggest that the average speed,
number of alerts, TTI, and BTI are the most important variables in determining LOS.

This method helps to explore the traffic status of freeways without relying on fixed
location sensors, times of day, or days of the week. The proposed method has the potential
to be applied to different freeway segments to assess LOS. This method does not need fixed
location sensors, potentially resulting in lower implementation and maintenance costs.
Transportation agencies and DOTs can utilize this method for traffic operation purposes.
This method can also analyze freeway traffic in locations outside of urban areas with no
fixed location sensors. It benefits from crowdsourced data and can be applied for different
time periods, such as hourly, daily, and traffic peak hours.
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