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Abstract: In computer vision, ethnicity classification tasks utilize images containing human faces to
extract ethnicity labels. Ethnicity is one of the soft biometric feature categories useful in data analysis
for commercial, public, and health sectors. Ethnicity classification begins with face detection as a
preprocessing process to determine a human’s presence; then, the feature representation is extracted
from the isolated facial image to predict the ethnicity class. This study utilized four handcrafted
features (multi-local binary pattern (MLBP), histogram of gradient (HOG), color histogram, and
speeded-up-robust-features-based (SURF-based)) as the basis for the generation of a compact-fusion
feature. The compact-fusion framework involves optimal feature selection, compact feature extraction,
and compact-fusion feature representation. The final feature representation was trained and tested
with the SVM One Versus All classifier for ethnicity classification. When it was evaluated in two
large datasets, UTKFace and Fair Face, the proposed framework achieved accuracy levels of 89.14%,
82.19%, and 73.87%, respectively, for the UTKFace dataset with four or five classes and the Fair Face
dataset with four classes. Furthermore, the compact-fusion feature with a small number of features at
4790, constructed based on conventional handcrafted features, achieved competitive results compared
with state-of-the-art methods using a deep-learning-based approach.

Keywords: compact-fusion feature framework; conventional handcrafted features; ethnicity
classification; feature fusion; optimum feature

1. Introduction

Today, the development of technology for data collection, especially image data,
provides an environment that supports demographic data extraction from face images.
The demographic data in this paper focus on ethnicity classification, in which, to label
ethnicity, the ground truth uses labels provided from a public dataset to calculate the
classification accuracy. Compared to other demographic data, ethnicity classification has
been studied the least [1,2]. Nevertheless, it has received increasing attention in recent
years, primarily due to its numerous applications, such as in biometrics identification, video
surveillance, forensic art, human–computer interaction, targeted advertisements, social
media profiling, extensive database searching, demographic statistics, and social science
research (understanding human social behaviors and their relations to the demographic
backgrounds of individuals) [1–3].

Different approaches have been proposed for ethnicity classification, focusing on
feature representation and accuracy for ethnicity classification, especially on deep-learning
architecture [2]. The best state-of-the-art result (SOTA) for ethnicity classification is achieved
using solutions based on convolutional neural networks (CNNs) [1,2,4,5]; however, the
disadvantage of this deep-learning approach is that it requires high-cost computation
resources. Meanwhile, conventional solutions based on handcrafted features have been
shown to provide comparable accuracy with low-cost computing demand. For example,
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the study by Becerra-Riera et al. [1] reported that handcrafted features achieved comparable
accuracy to the CNN approach for ethnicity classification in the FERET subset from the
EGA database. A promising alternative was reported in [1] for the development of ethnicity
classification based on the handcrafted-features approach; however, the comparisons were
not fair enough because the dataset was relatively small and was insufficient for the deep-
learning approach to function optimally. The gap between handcrafted and deep-learning
solutions was shown in the study by Al-Azani and El-Alfy [6] using the HOG feature for
ethnicity classification in a large dataset, which achieved an accuracy level of 69.86% for
three ethnicity classes; this lagged far behind the deep-learning approach, which reached
an accuracy level of over 80.00% [2]. The proposed method, which is based on handcrafted
features, addresses this gap by testing ethnicity classification in a large dataset, especially
those collected in unconstrained environments with three or more ethnicity classes.

The main goal of ethnicity classification is to accurately determine an ethnicity label
from unseen face images. The handcrafted-feature approach is used with the aim of
generating high-dimensional features, commonly by combining one or two handcrafted-
feature types. Combining one or two handcrafted features provides a more discriminant
feature to achieve higher accuracy [1,6]. Feature reduction is applied to combined features
to produce small-size features, which retain the advantages of the handcrafted-features
approach by maintaining a low-cost resource demand. However, an extreme feature-
reduction process causes a significant decrease in accuracy and eliminates the semantic
meaning of handcrafted features. This paper provides an overview of recent feature
representation focused on feature-reduction methods (selection and learning) and proposes
a framework to produce the compact-fusion feature for ethnicity tested on a large dataset.
The contributions of this paper are as follows:

(i) A handcrafted-feature solution for ethnicity classification that was tested on two large
datasets with five ethnicity classes (White, Black, Asian, Indian, and Others) and four
ethnicity classes (White, Black, Asian, and Indian) is implemented;

(ii) The proposed framework utilizes four handcrafted features (multi-local binary pattern
(MLBP), histogram of gradient (HOG), color histogram, and speeded-up-robust-
features-based (SURF-based)) as the basis for generating a compact-fusion feature
with highly discriminant information;

(iii) The proposed framework performs feature reduction only using a single data in-
stance with a simple selection strategy, providing a better understanding of data
representation and generation.

Tested on two large datasets with five ethnicity classes (White, Black, Asian, Indian,
and Others) and four ethnicity classes (White, Black, Asian, and Indian), the proposed
framework achieves high accuracy with a minimum feature size compared with other
methods.

Section 2 reviews feature representation through feature reduction and ethnicity
classification based on handcrafted features and discusses the dataset problem and standard
feature-extraction method used. Section 3 describes the proposed framework focused on
data transformation from raw data to final feature representation, feature extraction, and
the detailed process at each stage. Section 4 describes the datasets used and detailed results
of exhaustive experiments. Finally, the last section attempts to draw conclusions based on
the results of the conducted experiment and future research directions.

2. Related Works

This section discusses related works regarding ethnicity classification based on hand-
crafted features and compact feature representation, which provided the foundation for the
development of the proposed framework.

2.1. Ethnicity Classification Based on Handcrafted Features

This section contains two sections of a focused literature review. The first section dis-
cusses research related to ethnicity recognition based on handcrafted features and focuses
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on early papers that performed ethnicity recognition on large datasets. The second focuses
on research related to the single/multi-feature and fusion strategy. Both sections discuss
and analyze the research with regard to the number of classes, number of data, ethnicity
label distribution, feature-extraction method, feature reduction, and performance measure-
ment. Finally, a summary of the selected papers that discussed ethnicity classification based
on handcrafted features is shown in Table 1.

Table 1. Summary of ethnicity classification based on handcrafted features.

Paper Year
Handcrafted

Feature-Extraction
Method

Ethnicity Feature
Reduction Classifier Dataset Accuracy

(in %)

[7] 2010 BIF (Gabor +
Maximum Value)

Asian, Black,
Hispanic, White,

and Indian
PCA + OLPP Manifold

Learning
MORPH-II with
55,127 images

Mean class
72.73

[8] 2015 Single Feature: LBP,
CLBP, HOG, SWLD

White, Black,
Asian, and
Hispanic

LDA SVM

Merging
MORPH-II with

FERET resulted in
55,195 images

79.40 using
CLBP

[9] 2019 SIFT + Fisher
Vector

Asian, Black,
Hispanic, and

White
PCA DAG-TIPTAC MORPH-II with

55,068 images
Mean class

89.61

[10] 2020
Single Feature:

SURF, LBP, HOG,
Color Moment

Asian, Black,
Hispanic, White,

and Indian
PSO SVM MORPH-II with

55,127 images
93.17 using

LBP

[11] 2017 Fusion from LBP,
HOG

Middle Eastern
and Non-Middle

Eastern
- Best using

SVM
Part of FERET

with 2790 images 98.5

[1] 2019

Filterbank,
geometrical

features, and
Combined Feature

African American,
Asian, Caucasian,
Indian, and Latin

PCA SVM +
Random Forest

EGA dataset with
2345 images 87.00

[12] 2021

Gray Level
Co-occurrence
Matric, Color

Histogram, and
Combined Feature

Banjar, Bugis,
Javanese, Malay,
and Sundanese

- Random Forest Private with
2290 images 98.65

[6] 2019 HOG Asian, Indian, and
Others - SVM UTKFace Part 1

with 4109 images 69.68

[13] 2023 Skin Color Palette Caucasian and
Indian - SVM P-DESTRE dataset.

Video tracking 98.00

From studies in the literature, the study by Guo and Mu [7] describes the first ethnicity
classification that was performed on a very large dataset consisting of 55,000 images,
namely, the MORPH-II dataset. The ethnicity classification was performed on five classes,
namely, Asian, Black, Hispanic, White, and Indian. The feature-extraction approach used
was biologically inspired feature (BIF), which is based on Gabor filters with 4 orientations
and 16 scales, which are then down-sampled by taking the maximum values within a
local spatial neighborhood and across the scales within a band (two consecutive scales).
The Gabor filter-based features result in high-dimensional features; therefore, in Guo and
Mu’s study, feature reduction using principal component analysis (PCA) was carried out,
followed by orthogonal locality preserving projections (OLPP) to produce smaller-sized
features. It was reported that the testing resulted in correct estimation levels for Black,
White, Hispanic, Asian, and Indian ethnicities of 98.30%, 97.10%, 74.20%, 59.50%, and
6.90%, respectively. The mean class accuracy that we calculated based on data in the paper
was 72.73%.

Carcagnì et al. [8] also used MORPH-II for ethnicity classification with additional data
from the FERET dataset. The authors investigated the use of single features, including LBP,
compound local binary pattern (CLBP), HOG, and spatial Weber local descriptor (SWLD),
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with linear discriminant analysis (LDA) used as the dimension reduction method. SVM
was used as the classifier, and four scenarios were tested: (1) unbalanced data (original
data) without LDA scaling, (2) unbalanced data (original data) with LDA scaling in the
range of [0, 1], (3) balanced data (each ethnicity has the same number of samples, i.e., 600)
without LDA scaling, and (4) balanced data (each ethnicity has the same number of samples,
i.e., 600) with LDA scaling in the range of [0, 1]. The reported average accuracy levels for
the recognition of five ethnicities in the four scenarios using LBP, HOG, SWLD, and CLBP
were 71.50%, 56.10%, 62.60%, and 72.40%, respectively. Interestingly, the level of accuracy
in the balanced data scenarios decreased significantly compared to the scenarios using
unbalanced data due to the drastic reduction in the sample size for each ethnicity, which
could not represent the variances in ethnicity, age, and gender in the dataset used.

We analyzed subsequent research on the MOPRH-II dataset carried out in [9], which
used four ethnicities: Asian, Black, Hispanic, and White. The author explored a single-
feature approach that applied Fisher vector encoding to the compressed and augmented
scale invariant feature transform (SIFT). The author applied PCA to reduce the high-
dimensional feature and used a decision direct acyclic graph-truncated isotropic principal
component analysis classifier (DAG-TIPTAC) as the classifier. The author reported the mean
correct estimation value of 89.61%, which was higher than that reported by Guo and Mu [7],
which was 82.3%. The last paper we analyzed that used the MORPH-II dataset was [10].
The author explored single features, including SURF, LBP, HOG, and Color Moment, with
particle swarm optimization (PSO) as the feature-selection method. The highest level of
accuracy using SVM as the classifier was reported to be 93.17%, 92.34%, 81.48%, and 80.68%
for LBP, Color Moment, SURF, and HOG.

The second review of related research focuses on the multi-feature and fusion-at-
feature-level strategy for ethnicity classification. In the fusion-at-feature level, several
features are concatenated to produce high-dimensional features, for example, LBP and
histogram of gradient (HOG) [11]; filterbank and geometrical features [1]; and gray level
co-occurrence matric and color histogram [12]. The study by Mohammad and Al-Ani [11]
suggested the fusion feature of LBP with the histogram of gradient (HOG) in the ocular face
area for ethnicity classification on the FERET database with 2730 images from 989 subjects
using two unbalanced classes (non-Middle East, 94%; and Middle East, 6%). It reported
that combining these features would increase the detection power, resulting in higher
accuracy. Moreover, four classifiers, support vector machine (SVM), multi-layer perceptron
(MLP), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA),
were already tested, resulting in the best result with an overall test performance accuracy
level of 98.5% using SVM with the polynomial kernel. However, although a high level of
accuracy was achieved, considering the number of classes, the small-sized dataset, and the
highly unbalanced class, this method still needs to be extensively investigated before it is
applied in real-world scenarios.

Meanwhile, a study by Becerra-Riera et al. [1] observed the combination of filter-
bank and geometrical features as feature representations with random forest (RF) and
support vector machine as the classifiers. The study used the EGA dataset, which contains
2345 images that have five ethnicity labels. The highest level of accuracy, in general, was
87% using a late fusion strategy from RF with filterbank and SVM with the geometric
feature. The results showed only 0.3% less accuracy than the CNN approach, mainly due
to the balanced class, and there were no illumination problems in the dataset. Recently, a
study by Putriany et al. [12] applied a combination of gray level co-occurrence matric, color
histogram, and random forest for ethnicity classification in the five largest ethnic groups
in Indonesia: Banjar, Bugis, Javanese, Malay, and Sundanese. They collected a balanced
dataset of an average of 458 images for each ethnic group, with a total of 2290 images,
and reported that the proposed method achieved 98.65% accuracy. Unfortunately, no
comparison analysis was provided because the study used a private dataset.

The study by Al-Azani and El-Alfy [6] developed ethnicity classification by com-
bining the HOG feature with SVM Classifier, which was tested on UTKFace Part-1 with
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4109 images labeled in three classes. The images were normalized into 68 × 68 pixels; then,
the HOG feature was extracted from the red–green–blue color channel (RGB) using nine
orientation bins with 8 × 8 cells. The final feature vector size was estimated to be 5292,
which was extracted using the aforementioned configuration. Using the HOG feature with
the SVM classifier, the level of accuracy was 69.86% for three ethnicity classes.

According to the first section of the review related to ethnicity classification and
datasets, it can be concluded that there is no consensus regarding the number of classes and
minimum data that should be used, even using the same dataset. The maximum number
of classes is five when highly unbalanced data are used. This paper uses four and five
classes in a large dataset with appropriate balance distribution to evaluate the proposed
feature-representation method for ethnicity classification.

From the second section of the review, it can be seen that previous studies have re-
ported high levels of accuracy in ethnicity recognition by combining high-dimensional fea-
tures, feature reduction, and feature fusion. In [8,10], the single-feature approach based on
the LBP feature achieved higher levels of accuracy than the other feature types. Meanwhile,
the fusion-at-feature-level approach commonly only uses two types of features [1,7,9,11,12].
The proposed framework uses four types of handcrafted features that represent textures
(MLBP and HOG), color distribution (color histogram), and pixel/point patterns (SURF) to
provide better discriminant information. Meanwhile, PCA became a popular method used
to perform feature reduction due to its robustness and flexibility in controlling reduction
size. Finally, all the papers reported classification performance with accuracy.

2.2. Compact Feature Representation

A study by Xie et al. [13] categorized feature selection and feature-learning methods
as the primary process to produce compact features; compact features were addressed as
the result of the feature-reduction process. The feature-selection method aims to reduce
the dimension by selecting the subset of features with highly discriminant information.
Meanwhile, the feature-learning method applies a transformation to generate a set of new
features from the original features; learned features represent the original data and possess
suitable properties, such as extracted hidden patterns [13]. The main benefits of feature
selection are that it avoids the pitfalls of dimensionality to improve prediction performance,
provides a faster and more cost-effective process, and provides a better understanding of
data generation through visualization [13].

This paper focuses on a compact-fusion feature framework using a feature-selection
approach for the classification task, with ethnicity classification becoming the selected
domain for implementation. Summaries of the selected papers that discuss compact feature
representation for classification tasks are shown in Table 2.

Table 2. Summary of compact feature representation literature.

Paper Year Task Domain Compact Feature Strategy/Method

[14] 2015 Age estimation PCA on the combined features of MLBP and Gabor filter.

[15] 2016 Image recognition and retrieval Supervised mutual information based on entropy.

[16] 2018 Texture classification Select local binary pattern (LBP) histograms or bins.

[17] 2021 Face classification The maximum magnitude selection from HOG.

[18] 2022 Age estimation The maximum value from the Gabor filter response.

[19] 2022 Face recognition Select two main edge directions with the highest magnitudes.

[20] 2022 Gender recognition DWT from mean Gabor response.

A study by Nguyen et al. [14] proposed an age-estimation approach by categoriz-
ing images into five groups based on their blurring degree and generating a learning
model for each group by combining multi-local binary pattern (MLBP), Gabor filter, prin-
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cipal component analysis (PCA), and support vector regression. PCA serves as a feature-
reduction method on the combined features of MLBP and the Gabor filter. The study
by Zhang et al. [15] proposed a compact feature for image classification tasks selected us-
ing supervised mutual information based on entropy; it was applied to the Fisher vector
(FV) and vector of locally aggregated descriptors (VLAD). The study reported that the
proposed method achieved a higher level of accuracy and required a lower computa-
tional cost than feature compression methods such as product quantization. PCA and
mutual information, based on entropy, process the features from all training data for the
transformation/selection process.

The study by Porebski et al. [16] proposed a multi-color space histogram selection
(MCSHS) and a multi-color space bin selection for texture classification. These approaches
select local binary pattern (LBP) histograms or bins processed from images coded in
multiple color spaces. In another study by Nuyen-Quoc and Hoang [17], the information
was reduced by selecting a binned histogram of gradient (HOG) using the maximum
magnitude selection method for the face classification task, and this was performed in a
single-image feature vector. The maximum value process was also used in the study by
Lu et al. [18] to fuse the Gabor feature at five scales and eight directions that contained
redundancy in the feature data. The maximum value resulted in 5 compact two-dimensional
features from the initial 40 two-dimensional features, and the process was conducted using
a single image. Furthermore, the study by Najmabadi and Moallem [19] proposed feature
selection by selecting two main edge directions with the highest magnitudes as compact
features. As a result, the proposed method achieved the highest recognition rate for face
recognition tasks on experiment data. The study by Gupta et al. [20] proposed a mean
DWT feature optimization method for large-dimension Gabor filters to produce compact
feature vectors with minimal redundancy. Combined with SVM, the proposed compact
and minimal-redundancy feature vectors achieved a high level of accuracy of 99.5% in a
gender classification task on the UTKFace child dataset.

According to this review related to compact feature representation, it can be concluded
that compact features from high-dimensional features tend to minimize redundant infor-
mation by generating a new set of features through the transformation learned from all
data or selecting features based on feature ranking or highest scores. From the scope of
data needed to create a compact representation, the methods can be categorized into whole
data methods [14–16] (which need to provide a training set for the process) and single data
methods (which only need feature vectors from a single image) [17–20]. The proposed
framework produces compact feature representation using a single data instance approach
and applies feature selection based on the maximum and average values from rearranged
feature vectors.

3. Proposed Framework
3.1. Overview of General Process

In general, the solution for ethnicity classification consists of three major stages: a
dataset preprocessing phase, a training phase, and a testing phase. The proposed frame-
work became a training part of the general process, as seen in Figure 1.

Here, the dataset preprocessing process consists of face detection and image normaliza-
tion. Face detection is applied in the dataset preprocessing phase to ensure that each image
from the dataset contains a human face. Then, after confirming the presence of a face in the
images, they are normalized into 200 × 200 pixel sizes, followed by an adaptive histogram
equalization process, and the images are saved as a preprocessing dataset. Meanwhile,
the image data that fail to be detected as a front-facing human face are excluded from the
preprocessing dataset. Finally, the preprocessing dataset is split into training, validation,
and testing sets to develop and evaluate the proposed method.
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Figure 1. General process used to develop the proposed framework.

As part of the training phase, the proposed framework consists of three main stages:
independent parameter tuning, compact feature strategy, and feature fusion, as seen in
Figure 2. The proposed method is configured and evaluated using training and validation
sets during the training phases. The training and evaluation processes are carried out at
each stage to obtain the best feature configuration as the input for the next step. The final
results from the training phase are the SVM model ethnicity classifier and best feature
configuration to extract compact-fusion features.
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Figure 2. Proposed framework: compact-fusion feature.

In the testing phase, the compact-fusion feature framework is applied to the testing
set and classified using the SVM model from the training phase. Then, several exhaustive
experiments are conducted on the testing set to comprehensively evaluate and analyze the
proposed framework.
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In short, as seen in Figure 3, the proposed framework transforms raw data into
feature representation through independent parameter tuning (optimal feature selection),
compact feature strategy/extraction, and fusion at the feature level (compact-fusion feature
representation). First, the high-dimensional handcrafted features are extracted from the
image, and then, the optimal feature selection produces the optimum features from the
high-dimensional handcrafted features, which balance size and accuracy. The next stage is
to produce compact features with low dimensions and acceptable accuracy levels. Finally,
each handcrafted feature is concatenated to produce a compact-fusion feature with a high
accuracy level and minimum feature size. The handcrafted-feature methods used in the
proposed framework are explained in Section 3.2. The detailed process from independent
parameter tuning, compact feature strategy, and fusion at the feature level is described in
Sections 3.3–3.5, respectively.
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Written informed consent was obtained from the study participants for the publication
of their details.

The parameters involved in the proposed method were the grid-size value for each
feature-extraction method and the selection strategy used for compact features (the maxi-
mum selecting method and the average value method). The advantages of the proposed
compact-fusion feature framework compared to existing feature-reduction approaches are
as follows:

1. The high-dimensional feature is generated from parameter variation in handcrafted
features’ extraction, resulting in an effective compact feature process because the
feature vector is in the same domain;

2. The selection strategy for compact features only utilizes information from single-
row feature vectors without involving other rows. It is performed with a simple
selection strategy, resulting in a compact feature with a better understanding of data
representation and generation;

3. The compact feature process is applied before the fusion feature, resulting in a compact
feature with the optimum performance used for the fusion;

4. The multiple features used represent textures, colors, and pixel patterns that enrich
feature vectors for better discriminant capability.
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3.2. Handcrafted-Feature Methods

The proposed framework uses four handcrafted feature-extraction methods selected
based on the literature review, consisting of a multi-local binary pattern (MLBP) [8,11,14],
histogram of gradient (HOG) [6,8,11], color histogram (Color HIST) [12,21], and speeded-
up-robust-features-based (SURF-based) [10].

3.2.1. Multi-Local Binary Pattern (MLBP)

The multi-local binary pattern is a variation of the local binary pattern (LBP) that
provides better discriminant information by combining several LBP features obtained
through variations in radius, the number of neighbors, and the number of sub-blocks [14].
The multi-local binary pattern (MLBP) consists of several single-level LBP features with
different parameters of radius (R), number of surrounding pixels (P), and number of sub-
blocks (M) applied to the image. Therefore, by combining several LBP features obtained
through variations in radius, the number of neighbors, and the number of sub-blocks, the
information obtained will be richer and able to capture global and local characteristics.
Figure 4 illustrates the multi-local binary pattern (MLBP) process.
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The feature extraction using LBP begins by transforming all pixel information into
LBP code. After generating the LBP code from all pixels, the next step is to generate a
histogram-based feature vector by determining the appearance of the LBP code. The length
of the feature vector from LBP depends on the number of neighbors processed, where the
length of the feature vector is 2P. The formula for LBP is:

LBPP,R(xc, yc) = ∑P−1
P=0 s

(
gp − gc

)
2P s(x) =

{
1, x ≥ 0
0, x < 0

(1)

where P is the number of neighboring pixels, R is the radius of the neighbors, gp is the gray
level value of the neighboring pixels, gc is the gray level value of the processed pixel, and
s(x) is the threshold function. The LBP descriptor can be categorized as uniform and non-
uniform patterns that can capture the microstructure of the image texture, such as the age
spot region, edge, and corner. The binary pattern of a dot/pixel is expressed as a uniform
pattern if the binary pattern contains at most two-bit-wise transitions on a circular binary
string. Other patterns with larger-than-two-bit-wise changes are considered non-uniform.
The resulting feature vector will be shorter by grouping the texture pattern into uniform
and non-uniform. The pattern is divided into uniform and non-uniform because most of
the local binary patterns in natural images are uniform, and uniform patterns are more
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resistant from a statistical perspective (more resistant to noise). On the other hand, only
considering a uniform pattern significantly decreases the number of possible LBP labels
and is reliable.

3.2.2. Histogram of Gradient (HOG)

Histogram of gradient (HOG) is a handcrafted feature-extraction method based on the
calculation of the appearance of a gradient in a specific orientation in a set of pixels of an
image. The application of HOG in the recognition process has become well known and has
been successfully applied in different recognition tasks such as facial expression, human
detection, and object detection [6]. Figure 5 illustrates the HOG feature-extraction process.
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Figure 5. Illustration of the HOG feature-extraction process.

The HOG descriptor focuses on the distribution of local gradients or edges represented
in the histogram. It ignores the location of local gradients or edges, which provides
better generalization capabilities regarding the variance in the image. The HOG feature
representation considers the gradients’ magnitude value, where the distance between the
orientation angle and the bin histogram angle becomes the basis for the magnitude value
distribution. The equation for the gradient magnitude of a pixel at coordinate (x,y) is
defined as follows:

∆x =
∣∣∣G(x−1,y) − G(x+1,y)

∣∣∣ (2)

∆y =
∣∣∣G(x,y−1) − G(x,y+1)

∣∣∣ (3)

M(x,y) =
√

∆2
x + ∆2

y (4)

∝(x,y)= tan−1
(

∆y

∆x

)
(5)

where G is the grayscale value of a pixel in specific locations, ∆x and ∆y are the gradients
in the horizontal and vertical orientation, M(x,y) is the gradient value at coordinate (x,y),
and ∝(x,y) represents the gradient orientation.
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In the initial stage of HOG, the first-order gradient on the normalized face image is
calculated. Then, the image is divided into several cells, and the histogram formation
process is carried out based on the orientation of the angle. The range of gradient angles
used as a reference is determined beforehand. Next, gradient values at pixel positions are
distributed based on the distance between the pixel orientation angle and the histogram
orientation angle. Next, we overlap the cells to produce a block-based HOG descriptor.
Then, the HOG descriptors from all blocks are combined to represent a feature vector.

3.2.3. Color Histogram (Color HIST)

Naturally, humans identify ethnicity using skin color as one of the phenotypic fea-
tures. Therefore, feature representations based on color, such as the color histogram, are
appropriate in the development of ethnicity classification tasks [22]. The determination
of the occurrence of pixel intensity, normalization, and quantization makes up several
processes to produce the color histogram to represent the color feature of an image [12].
The first-order histogram probability P(g) is defined using Equation (6):

P(g) =
N(g)

M
(6)

where N(g) is the number of pixels at intensity value g, and M is the number of pixels in
the image. The value of P(g) is less than or equal to 1, and the sum value equals 1. The
number of bins from the histogram controls the size of the feature representation. Then, the
histogram passes through normalization to overcome the difference in image dimensions,
where the values in the histogram represent the probability of the color intensity. The
loss of spatial information is a disadvantage of histogram-based representation. Color
spatial features that quantize the pixel values from the sub-image area quantized into one
representation value for the RGB channel contain artifacts of spatial information. Therefore,
adding a spatial color feature can compensate for the loss of spatial information. Figure 6
illustrates the Color HIST feature-extraction process.
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3.2.4. Speeded-up-Robust-Features-Based (SURF-Based)

Speeded-up robust feature (SURF) is a point-of-interest-based feature-extraction
method that can produce robust features to scale and rotation variances. The SURF process
consists of two main stages: detecting points of interest and describing the local environ-
ment [23]. The initial stage of SURF is to find interest points based on the Hessian matrix,
where the application of box filters and integral images makes the computation process
faster. Space scale is analyzed by increasing the filter size rather than decreasing the image
size iteratively. After finding the interest points, the next step is to generate the SURF
descriptor. It begins with the determination of the orientation using the Haar-wavelet,
where the orientation with the most significant sum value indicates the primary orientation
of the feature descriptor. For each point of interest, the descriptor is calculated by con-
structing a rectangular region with window sizes of 20s centered around the key point and
oriented along the orientation. The region is split up regularly into smaller 4× 4 square sub-
regions. The summation and absolute values of the vertical and horizontal Haar-wavelet
responses, dx and dy, applied at 5 × 5 regularly spaced sample points, are computed to
produce a SURF descriptor for each sub-region. Each sub-region has a four-dimensional
descriptor vector, v = (Σdx, Σdy, Σ|dx|, Σ|dy|), and the total number of descriptors for
all 4 × 4 sub-regions is 64.

3.3. Independent Parameter Tuning

Independent parameter tuning became the initial stage in the proposed framework,
with the aim of finding the grid-size parameter for each feature-extraction method, which
achieves optimum conditions by increasing the feature size and level of accuracy. The
feature-extraction process for MLBP and SURF-based features was performed on a grayscale
image, while HOG and Color HIST feature extraction was performed on the RGB + gray
channel. The MLBP, HOG, Color HIST, and SURF-based features are applied based on
predetermined feature-extraction configuration to ensure the extracted feature vector has a
similar size. The predetermined feature-extraction configuration is the parameter setting
for feature extraction, for example, radius and number of neighbors in LBP, number of
histogram bins and orientation in HOG, number of histogram bins and spatial color size in
Color HIST, and scale values in SURF-based.

The feature-extraction method used in this study uses several parameter configuration
variations to control the detailed level of the extraction process. Table 3 shows the parameter
configuration variation used in the feature-extraction methods tested in this study. Based
on Table 3, each feature-extraction method has four variations applied in the processed
area. We used four variations; at first, the extraction results were two-dimensional due to
parameter variations. Then, the features were rearranged into one-dimensional features.
For example, the MLBP was applied in grayscale with N = 8 and four radius variations: 1, 3,
5, and 7. At first, the MLBP features were in two dimensions with dimensions of 59 × 4,
resulting from extraction from eight neighbors at radius of 1, 3, 5, and 7. Then, the MLBP
features were rearranged into one-dimensional features with dimensions of 1 × 256. A
similar process was also applied for the HOG, Color HIST, and SURF-based features based
on their parameter configurations.

The grid size divides the image into several sub-images that control the feature size
and the details regarding the level of extraction in the image. For each sub-image, the MLBP,
HOG, Color_Hist, and SURF-based feature-extraction methods are applied independently
and concatenated to form features for the image level. The grid size also maintains the
spatial location to rearrange feature vectors for a compact feature strategy. Finally, the
grid size is tuned and evaluated using elbow analysis to find the optimum feature vector
for each handcrafted method and the best optimization by increasing the feature size and
accuracy level. The optimum feature is the extracted feature at a specific grid size, indicat-
ing optimization by increasing the feature size and accuracy level. The high-dimensional
optimum feature results from independent parameter tuning contain redundant infor-
mation due to the use of several parameter variations. Therefore, we further process the
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optimum feature for each handcrafted method in the compact feature strategy stage. The
independent parameter-tuning stage is described in Algorithm 1.

Table 3. Handcrafted feature-extraction configuration parameters.

No. Handcrafted Feature-Extraction Method Configuration Parameters

1 Multi-Local Binary Pattern (MLBP) Channel = {grayscale}; N = 8; R = {1,3,5,7}; Uniform Pattern; Feature
size for one grid = 59 × 4 = 236

2 Histogram of Gradient (HOG)
Channel = {[R, G, B, grayscale]}; bin = {9,18}; Block-size = {1 × 1};
Non-Overlap; Orientation = {[0, 180], [−180, 180]}; Feature size for one
grid = 27 × 2 × 4 =216

3 Color Histogram (Color HIST) Channel = {[R, G, B, grayscale]}; bin = {32}; Color spatial info = {[6 × 6]};
Feature size for one grid = 32 × 4 + 108 =236

4 Speeded-Up-Robust-Features-based
(SURF-based)

Channel = {grayscale}; Point-based = {center of grid}; Scale = {1.6, 3.2,
4.8, 6.4}; Feature size for one grid = 64 × 4 =256

Algorithm 1. Compact-fusion feature framework: independent parameter tuning.

PROCEDURE Independent_Parameter_Tunning
(Input:
GS[1..ns]: array of grid-size
ITrain [1..nt]: array of image {Training-set}
IValidation [1..nv]: array of image {Validation-set}
LTraining [1..nt]: array of label
LValidation [1..nv]: array of label
{each ConfigFE contain n number of parameter for Feature Extraction}
ConfigFE [1..4]: array of struct configuration of Feature Extraction
Output:
Opt_Gs[1..4]: array of grid_size
Train_Opt_MLBP, Val_Opt_MLBP: 2-D array of image feature
Train_Opt_HOG, Val_HOG_MLBP: 2-D array of image feature
Train_Opt_Color_HIST, Val_Opt_Color_HIST: 2-D array of image feature
Train_Opt_SURF_based, Val_Opt_SURF_based: 2-D array of image feature
)

DECLARATION
VR_MLBP, VR_HOG, VR_Color_HIST, VR_SURF_based: array of region feature
VI_MLBP, VI_HOG, VI_Color_HIST, VI_SURF_based: array of image feature
Train_VI_MLBP, Val_VI_MLBP: 3-D array of image feature
Train_VI_HOG, Val_VI_HOG: 3-D array of image feature
Train_VI_Color_HIST, Val_VI_Color_HIST: 3-D array of image feature
Train_VI_SURF_based, Val_VI_SURF_based: 3-D array of image feature
{3-D array of image feature. 1-dimension indicates grid-size index used for feature extraction, 2-dimension
indicates row/number of data, 3-dimension indicates kol/feature vectors}
Acc_MLBP, Acc_HOG, Acc_Color_HIST, Acc_SURF_based: array of accuracy
Opt_Gs[1..4]: array of selected grid-size for optimum feature
ImageRegion: array of image {store splitting result}
Model_1, Model_2, Model_3,Model_4: SVM_Model
{function/procedure used}
Split_Image() {function to split an image into sub-images based on grid size}
MLBP_FE(), HOG_FE(), Color_HIST_FE(), SURF_based_FE() {function to performed feature
extraction}
Concatenate() {function to concatenate array}
SVM_Train() {function to train SVM Classifier}
Evaluate() {function to evaluate SVM Model}
Elbow() {function to generate data for manual elbow analysis}
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Algorithm 1. Cont.

ALGORITHM
For id_Grid← 1 to ns
{processing Training-set}

For j← 1 to nt
ImageRegion← Split_Image(ITrain(j),GS(id_Grid))
For x← 1 to number_element_of(ImageRegion)
{ Using a predetermined configuration in ConfigFE, apply four independent handcrafted feature

extraction methods, namely: MLBP, HOG, Color HIST, and SURF-based, to produce feature vectors on
sub-Image named Vector Region (VR)}

VR_MLBP(x)←MLBP_FE(ImageRegion(x),ConfigFE(1));
VR_HOG(x)← HOG _FE(ImageRegion(x),ConfigFE(2));
VR_Color_HIST(x)← Color_HIST_FE(ImageRegion(x),ConfigFE(3));
VR_SURF_based(x)← SURF_based_FE(ImageRegion(x),ConfigFE(4));
End
{produce feature in image level by concatenating feature from sub-image}
VI_MLBP(j)← concatenate(VR_MLBP)
VI_HOG(j)← concatenate(VR_HOG)
VI_Color_HIST(j)← concatenate(VR_Color_HIST)
VI_SURF_based(j)← concatenate(VR_SURF_based)

End
{store feature for training-set in 3-D array, id_Grid indicate the grid-size value used for feature extraction}
Train_VI_MLBP(id_Grid,:,:) ← VI_MLBP
Train_VI_HOG(id_Grid,:,:) ← VI_HOG
Train_VI_Color_HIST(id_Grid,:,:) ← VI_Color_HIST
Train_VI_SURF_based(id_Grid,:,:) ← VI_SURF_based
{processing Validation-set }

For j← 1 to nv
ImageRegion← Split_Image(IValidation(j),GS(id_Grid))
For x← 1 to number_element_of(ImageRegion)
{ Using a predetermined configuration in ConfigFE, apply four independent handcrafted feature

extracton methods, namely: MLBP, HOG, Color HIST, and SURF-based, to produce feature vectors on
sub-Image named Vector Region (VR)}

VR_MLBP(x)←MLBP_FE(ImageRegion(x),ConfigFE(1));
VR_HOG(x)← HOG _FE(ImageRegion(x),ConfigFE(2));
VR_Color_HIST(x)← Color_HIST_FE(ImageRegion(x),ConfigFE(3));
VR_SURF_based(x)← SURF_based_FE(ImageRegion(x),ConfigFE(4))
End
{produce feature in image level by concatenating feature from sub-image}
VI_MLBP(j)← Concatenate(VR_MLBP)
VI_HOG(j)← Concatenate(VR_HOG)
VI_Color_HIST(j)← Concatenate(VR_Color_HIST)
VI_SURF_based(j)← Concatenate(VR_SURF_based)

End
{store feature for training-set in 3-D array, id_Grid indicate the grid-size value used for feature extraction}
Val_VI_MLBP(id_Grid,:,:) ← VI_MLBP
Val_VI_HOG(id_Grid,:,:) ← VI_HOG
Val_VI_Color_HIST(id_Grid,:,:) ← VI_Color_HIST
Val_VI_SURF_based(id_Grid,:,:) ← VI_SURF_based
{feature vector from Training-set and Validation-set for GS(i) are produced }
{Train SVM Classifiers for each handcrafted feature }
Model_1← SVM_Train(Train_VI_MLBP(id_Grid,:,:), LTraining)
Model_2← SVM_Train(Train_VI_HOG(id_Grid,:,:), LTraining)
Model_3← SVM_Train(Train_VI_Color_HIST(id_Grid,:,:), LTraining)
Model_4← SVM_Train(Train_VI_SURF_based(id_Grid,:,:), LTraining)
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Algorithm 1. Cont.

{Calculate accuracy from Validation-set }
Acc_MLBP(id_Grid)← Evaluate(Model_1, Val_VI_MLBP(i), LValidation)
Acc_HOG(id_Grid)← Evaluate(Model_2, Val_VI_HOG(i), LValidation)
Acc_Color_HIST(id_Grid)← Evaluate(Model_3, Val_VI_Color_HIST(i), LValidation)
Acc_SURF_based(id_Grid)← Evaluate(Model_4, Val_VI_SURF_based(i), LValidation)
End
{Using accuracy from Validation-set, find the optimum feature for each handcrafted feature extraction
method using elbow analysis. The optimum feature is a vector at GS(id_Grid) that provides an optimum
condition which indicates an optimization between increasing feature size and accuracy}
[Train_Opt_MLBP, Val_Opt_MLBP, Opt_Gs(1)]← Elbow(Acc_MLBP, GS)
[Train_Opt_HOG, Val_HOG_MLBP, Opt_Gs(2)]← Elbow(Acc_ HOG, GS)
[Train_Opt_Color_HIST, Val_Opt_Color_HIST, Opt_Gs(3)]← Elbow(Acc_Color_HIST, GS)
[Train_Opt_SURF_based, Val_Opt_SURF_based, Opt_Gs(4)]← Elbow(Acc_SURF_based, GS)

3.4. Compact Feature Strategy

The compact feature strategy stage produces features that minimize redundant in-
formation from an optimum feature, as seen in Figure 7. The proposed compact feature
strategy designs a single data method, which only needs a feature vector from a single
processed image. This is achieved by selecting or generating a new presentation using
only one row of the feature vector information from an optimum feature for each type of
feature-extraction method.
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The proposed compact feature method is as follows: First, the optimum feature is
rearranged based on the spatial location; this can be achieved because the grid-based
approach defines the feature sizes for each handcrafted feature and has exact feature
sizes for each handcrafted feature. Then, the compact feature strategy is applied to the
rearranged optimum feature. The selection strategy uses the maximum value method,
adapted from [16–18], using the formula defined in Equation (7). Meanwhile, a new
presentation is generated by calculating the average value of feature vectors, adapted
from [1,20], based on the equation defined in Equation (8).

Ĥr = argmax∑n
i=1 Hir (7)

Ĥr =
∑n

i=1 Hir
n

(8)

Ĥ =
⋃k

r=1
Ĥr (9)

where Ĥr is the compact feature at grid number r, n is the number of feature vector
configurations applied, and Hir is the feature vector for i configuration at grid number
r. The compact feature of the image Ĥ is produced by concatenating the compact feature
from the grids Ĥr into a one-dimensional vector. The maximum value method selects
the feature vector with the maximum value, considering that the maximum value is
intended to provide peak feature information that provides better variation. The strategy to
generate new presentations aims to accumulate new presentations by averaging the feature
information from rearranged two-dimensional feature vectors to produce a smaller compact
feature representation. In ideal conditions, the compact feature is generated from the
optimum feature by selecting the feature-reduction methods that achieve higher accuracy
and minimum accuracy decrement. The compact feature strategy stage is described in
Algorithm 2.

Algorithm 2. Compact-fusion feature framework: compact feature strategy.

PROCEDURE Compact_Feature
(Input:
Opt_Gs [1..4]: GS that is considered optimum for each Feature Extraction
{ 2-D array of image features that are considered optimum features }
Train_Opt_MLBP, Val_Opt_MLBP: 2-D array of image feature
Train_Opt_HOG, Val_Opt_HOG: 2-D array of image feature
Train_Opt_Color_HIST, Val_Opt_Color_HIST: 2-D array of image feature
Train_Opt_SURF_based, Val_Opt_SURF_based: 2-D array of image feature
ConfigFE [1..4]: array of struct configuration of Feature Extraction
GS[1..ns]: array of grid-size
LTraining [1..nt]: array of label
LTValidation [1..nv]: array of label
Output:
Cmp_S: selected compact strategies
Train_Cmp_MLBP, Val_Opt_MLBP: 2-D array of image feature
Train_Cmp_HOG, Val_HOG_MLBP: 2-D array of image feature
Train_Cmp_Color_HIST, Val_Opt_Color_HIST: 2-D array of image feature
Train_Cmp_SURF_based, Val_Cmp_SURF_based: 2-D array of image feature
)
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DECLARATION
VR_MLBP, VR_HOG, VR_Color_HIST, VR_SURF_based: 2-D array of region feature
VI_MLBP, VI_HOG, VI_Color_HIST, VI_SURF_based: array of struct image feature
Train_VI_MLBP, Val_VI_MLBP: 2-D array of image feature
Train_VI_HOG, Val_VI_HOG: 2-D array of image feature
Train_VI_Color_HIST, Val_VI_Color_HIST: 2-D array of image feature
Train_VI_SURF_based, Val_VI_ URF_based: 2-D array of image feature
Acc_MLBP, Acc_HOG, Acc_Color_HIST, Acc_SURF_based: array of struct for accuracy
{function/procedure used}
rearrange() {function to rearrange optimum feature to 2-D array}
selectMax() {function to calculate maximum in column-based 2-D array}
selectAverage() {function to calculate mean in column-based 2-D array}
SVM_Train() {function to train SVM Classifier}
Evaluate() {function to evaluate SVM Model}
Analyse() {function for accuracy analysis}
ALGORITHM
{Extract Compact Feature from Optimum Feature on Training-set}
For j← 1 to nt
{rearrange the Optimum feature into a 2-D array based on the optimum grid size and configuration of
Feature Extraction. The illustration can be seen inFigure 7, continued by applying two strategies:
maximum selecting method and averaging value method for each data}
VR_MLBP(j)← rearrange(Train_Opt_MLBP(j),GS(Opt_Gs(1)), ConfigFE(1))
VI_MLBP(j).Max← selectMax(VR_MLBP(j))
VI_MLBP(j).Mean← selectAverage(VR_MLBP(j))
VR_HOG(j)← rearrange (Train_Opt_HOG(j),GS(Opt_Gs(2)), ConfigFE(2))
VI_HOG(j).Max← selectMax(VR_HOG (j))
VI_HOG(j).Mean← selectAverage(VR_HOG(j))
VR_Color_HIST(j)← rearrange (Train_Opt_Color_HIST(j),GS(Opt_Gs(3)),ConfigFE(3))
VI_Color_HIST (j).Max← selectMax(VR_Color_HIST (j))
VI_ Color_HIST (j).Mean← selectAverage(VR_Color_HIST (j))
VR_SURF_based(j)← rearrange(Train_Opt_SURF_based(j),GS(Opt_Gs(4)), ConfigFE(4))
VI_SURF_based(j).Max← selectMax(VR_SURF_based(j))
VI_SURF_based (j).Mean← selectAverage(VR_SURF_based(j))
End
{store feature for training-set in variable}
Train_VI_MLBP← VI_MLBP
Train_VI_HOG← VI_HOG
Train_VI_Color_HIST← VI_Color_HIST
Train_VI_SURF_based← VI_SURF_based
{Extract Compact Feature from Optimum Feature on Training-set}
For j← 1 to nv
{rearrange the Optimum feature into a 2-D array based on the optimum grid size and configuration of
Feature Extraction. The illustration can be seen inFigure 7, continued by applying two strategies:
maximum selecting method and averaging value method for each data}
VR_MLBP(j)← rearrange(Val_Opt_MLBP(j),GS(Opt_Gs(1)), ConfigFE(1))
VI_MLBP(j).Max← selectMax(VR_MLBP(j))
VI_MLBP(j).Mean← selectAverage(VR_MLBP(j))
VR_HOG(j)← rearrange (Val_Opt_HOG(j),GS(Opt_Gs(2)), ConfigFE(2))
VI_HOG (j).Max← selectMax(VR_HOG (j))
VI_HOG (j).Mean← selectAverage(VR_HOG (j))
VR_Color_HIST(j)← rearrange (Val_Opt_Color_HIST(j),GS(Opt_Gs(3)),ConfigFE(3))
VI_Color_HIST (j).Max← selectMax(VR_Color_HIST(j))
VI_Color_HIST (j).Mean← selectAverage(VR_Color_HIST(j))
VR_SURF_based(j)← rearrange (Val_Opt_SURF_based(j),GS(Opt_Gs(4)), ConfigFE(4))
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VI_SURF_based(j).Max← selectMax(VR_SURF_based (j))
VI_SURF_based(j).Mean← selectAverage(VR_SURF_based (j))
End
{store compact feature for validation-set in variable}
Val_VI_MLBP← VI_MLBP
Val_VI_HOG← VI_HOG
Val_VI_Color_HIST← VI_Color_HIST
Val_VI_SURF_based← VI_SURF_based
{Train SVM Classifiers with the compact feature from maximum method}
Model_1← SVM_Train(Train_VI_MLBP.Max, LTraining)
Model_2← SVM_Train(Train_VI_HOG.Max, LTraining)
Model_3← SVM_Train(Train_VI_Color_HIST(i).Max, LTraining)
Model_4← SVM_Train(Train_VI_SURF_based(i).Max, LTraining)
{Calculate accuracy from Validation-set}
Acc_MLBP.Max← evaluate(Model_1, Val_VI_MLBP.Max)
Acc_HOG.Max← evaluate(Model_2, Val_VI_HOG.Max)
Acc_Color_HIST.Max← evaluate(Model_3, Val_VI_Color_HIST.Max)
Acc_SURF_based.Max← evaluate(Model_4, Val_VI_SURF_based.Max)
{Train SVM Classifiers with the compact feature from averaging method}
Model_1← SVM_Train(Train_VI_MLBP.Mean, LTraining)
Model_2← SVM_Train(Train_VI_HOG.Mean, LTraining)
Model_3← SVM_Train(Train_VI_Color_HIST(i).Mean, LTraining)
Model_4← SVM_Train(Train_VI_SURF_based(i).Mean, LTraining)
{Calculate accuracy from Validation-set}
Acc_MLBP.Mean← Evaluate(Model_1, Val_VI_MLBP.Mean)
Acc_HOG.Mean← Evaluate(Model_2, Vali_VI_HOG.Mean)
Acc_Color_HIST.Mean← Evaluate(Model_3, Val_VI_Color_HIST.Mean)
Acc_SURF_based.Mean← Evaluate(Model_4, Val_VI_SURF_based.Mean)
{Using accuracy from Validation-set, evaluate the accuracy of candidate compact features compared with
optimum features and determine the compact method used }
[Train_Cmp_MLBP,Val_Cmp_MLBP,Train_Cmp_HOG,Val_Cmp_HOG_MLBP,
Train_Cmp_Color_HIST,Val_Cmp_Color_HIST,Train_Cmp_SURF_based,
Val_Cmp_SURF_based,Cmp_S]←Analyse(Acc_MLBP,
Acc_HOG,Acc_Color_HIST,Acc_Color_HIST)

3.5. Fusion at The Feature Level

The compact feature strategy results in features with smaller sizes than the optimum
features, but the method suffered from classification performance degradation. It should
be noted that the independent parameter tuning and compact feature strategy stages that
are carried out on the MLBP, HOG, Color HIST, and SURF-based features are evaluated
independently (single feature). Finally, the compact-fusion feature is produced by fusing
compact features of the MLBP, HOG, Color HIST, and SURF-based features to produce
a multi-feature that is able to counter performance degradation problems [1,11,12]. The
feature fusion stage is described in Algorithm 3.

Algorithm 3. Compact-fusion feature framework: feature fusion at the feature level.

PROCEDURE Feature_Fusion
(Input:
Cmp_S: selected compact strategies
{2-D array of image features that are considered compact features }
Train_Cmp_MLBP, Val_Cmp_MLBP: 2-D array of image feature
Train_Cmp_HOG, Val_Cmp_HOG: 2-D array of image feature
Train_Cmp_Color_HIST, Val_Cmp_Color_HIST: 2-D array of image feature
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Train_Cmp_SURF_based, Val_Cmp_SURF_based: 2-D array of image feature
LTraining [1..nt]: array of label
LTValidation [1..nv]: array of label
{from independent parameter tunning }
Opt_Gs [1..4]: GS that consider optimum for each Feature Extraction
ConfigFE [1..4]: array of struct configuration of Feature Extraction
Opt_Gs [1..4]: GS that is considered optimum for each Feature Extraction
Output:
Config_CF: struct of compact feature configuration
Model_CF: SVM Model {best SVM Model}
)

DECLARATION
Train_CF, Val_CF: 2-D array of image feature
Acc_CF: variable to save the accuracy
Config_CF: struct of compact feature configuration
{function/procedure used}
Concatenate() {function to concatenate array}
SVM_Train() {function to train SVM Classifier}
Evaluate() {function to evaluate SVM Model}
Analyse() {function for accuracy analysis}
ALGORITHM
{Concatenate Compact Feature of Training-set}
For j← 1 to nt
{concatenate four optimum compact features MLBP, HOG, Color_HIST, SURF_based}

Train_CF (j)← Concatenate(Train_Cmp_MLBP(j), Train_Cmp_HOG(j),
Train_Cmp_Color_HIST(j), Train_Cmp_SURF_based(j))

End
{Concatenate Compact Feature of Validation-set}
For j← 1 to nv
{ concatenate four optimum compact features MLBP, HOG, Color_HIST, SURF_based}

Val_CF (j)← Concatenate(Val_Cmp_MLBP(j), Val_Cmp_HOG(j),
Val_Cmp_Color_HIST(j), Val_Cmp_SURF_based(j))

End
{Train SVM Classifiers with compact-fusion feature}
Model_1← SVM_Train(Train_CF, LTraining)
{Calculate accuracy from Validation-set to determine the best model in case there were several model build}
Acc_CF← evaluate(Model_1, Val_CF)
{Model from SVM Classifier and best configuration of Compact Fusion to used for the testing dataset}
[Model_CF, Config_CF]← Analyse(Acc_CF)

4. Experiment and Results

This section describes the seven stages conducted to develop and test the proposed
framework: (1) the dataset and experimental preparation and setup, (2) the initial exper-
iment results and discussion, (3) the ablation study, (4) the comparison of the proposed
framework with proven feature dimension methods, (5) cross-dataset experiments, (6) the
classifier comparison, and (7) the comparison of the proposed method with SOTA.

4.1. Dataset and Experimental Preparation

The datasets selected for this study were the UTKFace [24] and Fair Face datasets [25].
Our choice of datasets considered the number of images, public availability, number
of ethnicity groups, variations in image quality, data distribution, and availability of
other research results. The UTKFace dataset was used for the experiment in which we
tuned the parameters of the proposed method. Meanwhile, the Fair Face dataset was
used in the cross-dataset experiment to analyze the generalization of the parameters of
the proposed method.
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The UTKFace dataset can be accessed at https://susanqq.github.io/UTKFace/
(accessed on 30 May 2023), and it consists of over 20,000 face images with annotations of
age, gender, and ethnicity. In addition, the dataset covers significant variations in pose,
facial expression, illumination, occlusion, and resolution [24].

The Fair Face dataset is balanced based on race, consisting of 108,501 images from 7 races:
White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino [2,3]. Fair
Face [25] can be accessed at https://github.com/joojs/fairface/ (accessed on 30 May 2023),
and contains challenging appearance, illumination, and pose variation due to the images
being taken from bad angles in unconstrained environments. The study by Belcar et al. [2]
reported that the preprocessing stage to detect landmark points failed in a high number of
image data on the Fair Face dataset. This indicates that there is a high number of non-frontal
face images in the Fair Face dataset.

Figure 8 shows that the variations in appearance, in terms of age, gender, and five
racial classes: White, Black, Asian, Indian, and Others (such as Hispanic, Latino, and
Middle Eastern) are very high in both datasets due to data acquisition taking place in an
unconstrained environment. The appearance variation in the unconstrained-environment
dataset causes a high degree of skin color bias, which is a visual phenotypic trait used to
identify ethnicity.
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4.1.1. Dataset for Initial Experiment

For the initial experiment, this study used the aligned and cropped-face version from
the UTKFace dataset; it consists of 23,750 face images of different people aged 1 to 116 years
divided into five racial classes, which are: White, Black, Asian, Indian, and Others (such as
Hispanic, Latino, and Middle Eastern). The selected datasets have ethnicity labels for each
image, serving as ground truth values for the calculation of performance measurements.
In addition, face detection is applied as a preprocessing process to ensure that each image
from the dataset contains a front-facing human face. Then, after confirming the presence
of a face in the image, the images are normalized into 200 × 200-pixel sizes and saved as a
preprocessing dataset. Meanwhile, the image data that fail to be detected as a front-facing
human face are excluded from the preprocessing dataset. Therefore, from the total original
data of 23,750, after preprocessing, the number of data becomes 22,332. The original data
distribution is accepted as balanced, with percentages of composition for White, Black, Asian,
Indian, and Others being 43%, 19%, 14%, 17%, and 7%, respectively. The preprocessing
results do not significantly change the distribution of ethnicity labels; the data distribution
becomes 43%, 19%, 14%, 17%, and 7% for White, Black, Asian, Indian, and Others. Therefore,
after preprocessing, the UTKFace dataset should still provide exceptional data quality for the
evaluated ethnicity classification algorithms. Figure 9 compares all ethnicities represented in
the original UTKFace dataset against the preprocessing UTKFace dataset used in this study.

https://susanqq.github.io/UTKFace/
https://github.com/joojs/fairface/
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4.1.2. Dataset for Cross-Dataset Experiment

The cross-dataset experiment aims to evaluate the performance of the best configura-
tion of the compact-fusion feature on other datasets. The dataset used in the cross-dataset
experiment is a subset of the Fair Face dataset. The Fair Face dataset is a balanced dataset
based on race, consisting of 108,501 images from seven races: White, Black, Indian, East
Asian, Southeast Asian, Middle Eastern, and Latino [3,25]. Due to the difference in the
number of ethnic labels between the UTKFace and Fair Face datasets, this test uses the four
ethnic classes that are present in both datasets: White, Black, Asian, and Indian.

The UTKFace Preprocessing dataset, which is reduced to only four classes, is named
UTKFace Preprocessing-A and consists of 20,690 data divided into 15,522 training data
and 5168 testing data. The ethnicity distribution of the data in UTKFace Preprocessing-A
is as follows: 47% White, 20% Black, 15% Asian, and 18% Indian. Meanwhile, the Fair
Face dataset used in this test is a subset called Fair Face Subset-A, consisting of 18,963 data,
including 14,218 training data and 4745 testing data. Face detection preprocessing is
performed on Fair Face Subset-A to ensure the faces are front-facing. As a result, the
ethnicity distribution of the data in Fair Face Subset-A is as follows: 32% White, 20% Black,
25% Asian, and 23% Indian. The comparison is shown in Figure 10.
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4.1.3. Experimental Preparation and Setup

The initial experiment applies the holdout validation protocol that divides the dataset
into training, validation, and testing sets, with the proportion of 50%, 25%, and 25%,
respectively. The dividing process uses stratified random sampling to ensure variation
in the sample, and each subset has similar sample variations. The final data used in this
study consist of 22,332 data split into 11,183 in the training set, 5572 in the validation
set, and 5577 in the testing set. In addition, the experiment uses the training set for the
feature-extraction configuration and learning classification model. Next, the validation set
is used to adjust the configuration and classification model to achieve the best performance.
Finally, the experiment in the testing set will evaluate the capability to generalize the
feature extraction and classification model. The classifier in the experiment uses the SVM
multi-class and implemented OVA schemes (One Versus All). The learning parameter used
for the initial experiments is a polynomial kernel with order 3, C = 1, and the kernel scale
is set as auto (which uses a heuristic procedure to select the scale value with a random
number set to 5); this parameter is based on initial observations using several different
kernels (linear, quadratic, polynomial, and RBF).

The measurement parameters in the experiments are adjusted according to the analysis
needs, which include: classification accuracy, dimension reduction ratio, feature size,
precision, recall, and F1-Score, using Equations (10)–(14).

Accuracy =
True_Positive + True_Negative

True_Positive + True_Negative + False_Positive + False_Negative
(10)

Reduction ratio = 1− reduction size
original size

(11)

Precision =
True_Positive

True_Positive + False_Positive
(12)

Recall =
True_Positive

True_Positive + False_Negative
(13)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(14)

4.2. Initial Experiment Result and Discussion

This study aims to design compact and efficient features for ethnicity classification
through a comprehensive initial experiment consisting of independent parameter tuning, a
compact feature strategy, and a fusion strategy. The experiment begins by independently
evaluating the accuracy performance of each handcrafted feature; it attempts to find the
grid-size value that provides equality between accuracy and feature size. However, the
optimum feature still contains redundant information caused by multiple variations in the
feature-extraction process. Next, compact features are extracted from optimum features
using maximum and average values. As a result, the compact feature will be smaller
than the optimum features but has a lower discriminant capability. After that, the fusion
strategy is applied to reach a compromise between the size and accuracy of the ethnicity
classification task.

The independent parameter tuning, compact feature strategy, and fusion-at-the-
feature-level experiment use a testing and validation set to provide the best configuration
and learning model to be evaluated in the testing set. It should be noted that the indepen-
dent parameter tuning and compact feature strategy stages are evaluated independently
(single feature). Finally, the experiment is conducted in the testing dataset to show the
comparative performance of the proposed framework compared with a single-feature
approach and fusion without a compact process.
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4.2.1. Independent Parameter-Tuning Experiment

The independent parameter-tuning experiment separately evaluates (treated as a
single feature) each feature’s performance to produce the optimum feature through accuracy
analysis to determine the equilibrium position, which indicates an optimization between
increasing feature size and accuracy. The data to find the equilibrium position are generated
by changing the grid size, which impacts the detail and size of the extracted feature for
all feature-extraction parameters used. The experiment uses five grid sizes: 200 × 200,
100 × 100, 50 × 50, 40 × 40, and 25 × 25. The results of independent parameter tuning are
shown in Table 4.

Table 4. Results of parameter tuning for each handcrafted feature.

Grid Size
MLBP HOG Color HIST SURF-Based

Size Acc. Size Acc. Size Acc. Size Acc.

200 × 200 236 57.09% 216 40.47% 236 65.11% 256 71.28%
100 × 100 944 67.43% 864 54.88% 944 73.22% 1024 77.35%
50 × 50 3776 76.24% 3456 69.63% 3776 76.85% 4096 78.32%
40 × 40 5900 78.28% 5400 72.54% 5900 76.92% 6400 77.96%
25 × 25 15,104 80.20% 13,824 77.39% 15,104 77.51% 16,384 77.39%

In theory, the larger the feature vector size, the greater the data variance, which
increases the possibility of separating data with different characteristics. The best level
of accuracy achieved from independent parameter tuning is 80.96%, 77.39%, 77.51%, and
78.32%, respectively, for the MLBP, HOG, Color HIST, and SURF-based features, with a
feature size of 15,104, 13,824, 15,104, and 4096. The experimental results in Table 4 show a
directly proportional relationship between feature size and accuracy, except for SURF-based
features, which achieve a peak accuracy level at 4096 features. However, there is a saturated
condition in which the increment in feature size is not comparable with the increment
in accuracy, as seen in Figure 11. Elbow analysis from the experiment results indicates
two optimum candidates for grid parameters, denoting a saturation condition for each
feature. Therefore, two optimum candidates are selected for further investigation and
analysis regarding the relationship between feature size and accuracy, named Optimum-1
and Optimum-2 features.

At this stage, the already-obtained optimum feature for each handcrafted feature,
which is the Optimum-1 feature with a smaller feature size, consists of MLBP [50 × 50],
HOG [40 × 40], Color HIST [50 × 50], and SURF [100 × 100]. Meanwhile, the Optimum-2
feature consists of MLBP [40 × 40], HOG [25 × 25], Color HIST [40 × 40], and SURF-based
[50 × 50] features. Two optimum features will be processed further at the compact feature
strategy stage.

4.2.2. Compact Feature Strategy Experiment

The grid parameter tuning produces two optimum features that mark the equilibrium
between feature size and accuracy. Although the optimum feature achieves an acceptable
minimum accuracy level of ~70%, it has a high dimension and creates redundant informa-
tion that is caused by variations in the channel and extraction configuration. Therefore, the
next step is to minimize redundant information from the optimum feature to produce a
compact feature with a smaller size while maintaining accuracy through feature selection.
The feature-selection method performs an element-based operation for spatial locations that
contain redundant information. The maximum value and simple averaging methods are
applied to minimize redundant information. The process is applied as single-row feature
vector operations that provide trace-back characteristics for an explanation if needed.
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From the predetermined parameter in Table 3 in Section 3.3, the handcrafted feature
will have four variations for each grid location. This means that the maximum value and
simple averaging methods are applied in four values for each attribute to produce one
value for each attribute, resulting in an estimated 75% ratio reduction. Except for the Color
HIST, the spatial color features that contain spatial color distribution are excluded in the
compact feature process. The results of the compact feature strategy are shown in Table 5.

Table 5. Results of compact feature strategy experiment.

Optimum
ID

Feature Type
Optimum Feature Compact Feature Delta Acc. (%) Reduction

Ratio (%)

Size [a] Acc. (%)
[b] Size [c] Avg. Acc.

(%) * [d]
Max Acc.
(%) ** [e] [b]–[d] [b]–[e] 1-[c]/[a]

1 MLBP [50 × 50] 3776 76.24 944 75.22 73.38 1.02 2.86 75.00
1 HOG [40 × 40] 5400 72.54 1350 68.19 70.42 4.35 2.12 75.00

1 Color HIST
[50 × 50] 3776 76.85 2240 78.21 77.82 −1.36 −0.97 40.68

1 SURF-based
[100 × 100] 1024 77.35 256 70.70 68.72 6.65 8.63 75.00

Average of Optimum-1 group - 75.75 - 73.08 72.59 2.67 3.16 66.42

2 MLBP [40 × 40] 5900 78.28 1475 77.44 75.95 0.84 2.33 75.00
2 HOG [25 × 25] 13,824 77.39 3456 72.30 76.60 5.09 0.79 75.00

2 Color HIST
[40 × 40] 5900 76.92 3500 79.33 78.18 −2.41 −1.26 40.68

2 SURF-based
[50 × 50] 4096 78.32 1024 77.34 74.82 0.98 3.5 75.00

Average of Optimum-2 group 77.54 76.60 76.39 1.13 1.34 66.42

* Denotes accuracy using averaging method; ** denotes accuracy using maximum value method.
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By analyzing the experimental results in Table 5, we can see that overall, the com-
pact feature produced from the Optimum-1 group and Optimum-2 group are ~3 times
smaller features than the original (reduction ratio at ±67%). Furthermore, by analyzing
the data in Table 5, we can see that, on average, the compact feature from the Optimum-2
group, referred to as Compact-Optimum-2, results in better performance compared with
the compact feature from the Optimum-1 group, now called Compact-Optimum-1. For
Compact-Optimum-2 and Compact-Optimum-1, the average accuracy level is 76.60%,
and 73.08%, the accuracy deficiency for the averaging method is 1.13% and 2.67%, and
the accuracy deficiency for the maximum value method is 1.34% and 3.16%, respectively.
Interestingly, on average, more features result in lower accuracy deficiency, in which the
deficiency in accuracy is proportional to the size of the feature. The main advantage of
Compact-Optimum-1 is that only the feature size is half that of Compact-Optimum-2,
providing a low resource requirement with an estimated two-times-faster computing time.

The compact feature strategy experiment results indicate that the maximum selection
or averaging of the feature vector could minimize redundant information in a feature
vector; as a result, the proposed compact feature strategy achieves an acceptable trade-off
condition in terms of reducing feature size and maintaining accuracy. Furthermore, the
experiment results in Table 5 also provide an alternative strategy to determine the best
accuracy between the maximum selection or averaging method for each feature extraction,
which consists of the maximum value for the HOG feature and averaging for others, named
the Combine-AMV method.

At this stage, the compact feature from each handcrafted-feature extraction is in a
fit state for feature fusion. Although Compact-Optimum-2 has a higher level of accuracy
and lower accuracy degradation than Compact-Optimum-1, Compact-Optimum-1 requires
fewer resources and has a faster computation time. Both are relevant to the final objective
of the proposed method: to achieve high accuracy with minimum feature size. Therefore,
the best feature group and method to use to extract compact features have yet to be
determined, and this will be carried out in the fusion strategy experiment, which will
include both Compact-Optimum-1 and Compact-Optimum-2 with three compact strategies:
the maximum value, averaging, and Combine-AMV methods.

4.2.3. Fusion-at-the-Feature-Level Experiment

The compact feature strategy produces two compact-optimum features in an appro-
priate state for the feature fusion feature strategy. This experiment evaluates and analyzes
fusion feature schemes based on Compact-Optimum-1 and Compact-Optimum-2, focused
on the trade-off between accuracy and feature size. The schema-1 fusion combines the com-
pact feature configuration, which has a minimum length (Compact-Optimum1), resulting
in a feature length of 4790, which is a combination of MLBP [50 × 50], HOG [40 × 40],
Color HIST [50 × 50], and SURF [100 × 100]. Meanwhile, the schema-2 fusion combines
the compact feature configuration, which has a maximum length (Compact-Optimum-2),
which results in a feature length of 9455, which is a combination of MLBP [40 × 40], HOG
[25 × 25], Color HIST [40 × 40], and SURF [50 × 50]. The compact-optimum feature from
the maximum value, averaging, and combined methods are used for the fusion strategy
experiment, and there are no significant performance differences from the previous exper-
iment. To address the contradiction of feature size and accuracy decrement, the fusion
from Optimum-1 and Optimum-2 serves as the baseline for Compact-Optimum-1 and
Compact-Optimum-1, respectively.

From the experiments, as seen in Table 6, on average, the Schema-1 and Schema-2
groups achieve accuracy levels of 81.00% and 81.35%, with a decrement of 0.28% and 0.56%,
respectively. This result contrasts with the compact feature strategy experiment, in which
the configuration with more features experiences a less significant decrease in performance.
Although, on average, a higher level of accuracy is achieved by Schema-2, the differences
in accuracy are not significant, only being 0.35%. However, the feature size is as much
as 1.97 times higher than Schema-1, which causes a higher demand for computational
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resources and suggests that the Schema-2 processing time is twice that of Schema-1. The
objective of the proposed method is to produce compact features with high accuracy and
minimum feature size; therefore, considering the trade-off between accuracy and feature
size, the Schema-1 group is selected as the having best configuration. Meanwhile, based on
Table 6, the compact feature strategy using the averaging method achieves a higher level
of accuracy in Schema-1 and Schema-2. This indicates that averaging the feature vector
from several variations in a spatial location is more effective in reducing the redundant
information while maintaining discriminant information compared with the maximum
value, which assumes the peak of a signal always represents high discriminant information.
Furthermore, the Combine-AMV method, expected to provide the best results, achieves
slightly lower accuracy than the applied averaging method on all features in Schema-1 but
achieves the best accuracy in Schema-2. Therefore, further investigation needs to be carried
out, especially with regard to the compact feature strategy method, which could provide a
high level of accuracy with a minimum feature size.

Table 6. The experiment results from the fusion strategy.

Fusion Schema Fusion From Compact Feature Strategy Feature Size Ethnicity
Accuracy Delta Acc.

Schema-1 Compact-
Optimum-1 Averaging 4790 81.12% 1 0.16% 4–1

Schema-1 Compact-
Optimum-1 Maximum Value 4790 80.89% 2 0.39% 4–2

Schema-1 Compact-
Optimum-1 Combine-AMV 4790 80.98% 3 0.30% 4–3

Avg. 81.00% Avg. 0.28%
Fusion-Optimum-1 13,976 81.28% 4 -

Schema-2 Compact-
Optimum-2 Averaging 9455 81.69% 5 0.22% 8–4

Schema-2 Compact-
Optimum-2 Maximum Value 9455 80.50% 6 1.41% 8–5

Schema-2 Compact-
Optimum-2 Combine-AMV 9455 81.86% 7 0.05% 8–7

Avg.81.35% Avg. 0.56%
Fusion-Optimum-2 29,720 81.91% 8 -

1,2,3,4,5,6,7,8 address specific values in the table.

Based on the experiment results regarding feature fusion and referring to the objective
of the proposed method (to produce compact features with high accuracy levels and
minimum feature sizes), the configuration using Fusion-Compact-Optimum-1 with the
averaging method, named Compact-Fusion AVG, is selected as an optimum solution for
the ethnicity classification task.

4.2.4. Experiment on Testing Set

The evaluation of the best feature configuration (Compact-Fusion AVG) on the testing
set is the final stage in the initial experiment. From the previous experiment, the best feature
configuration to extract compact features is the averaging value method. As a reminder,
the UTKFace Preprocessing dataset used in this study consists of 22,332 data, which are
split into a training set (11,183), validation set (5572), and test set (5577). The previous
experiment on the training and validation sets aimed to find the optimum configuration
by adjusting parameters and configuration. Therefore, the evaluation of the testing set
aims to determine the generalization capability of the learning model and configuration
parameters from previous experiments. Finally, the testing set results are compared with
the best independent handcrafted features (single feature) and fusion from the optimum
feature to show a broad overview of the proposed framework.
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The experiment results in Table 7, which compare the proposed method, the best
of independent handcrafted features, and fusion from the optimum feature, show that
the SVM learning model produces a similar accuracy rate on the testing and validation
sets for all feature representations. Furthermore, the experiment results in Table 7 show
the accuracy level from Compact-Fusion AVG with 4790 features (6.20 and 2.98 smaller
than Fusion-Optimum-1 and Fusion-Optimum-2) is included in the top three, with slightly
lower accuracy of about 0.29% and 1.12%. Generally, the proposed compact-fusion feature
achieves higher accuracy than independent handcrafted features with smaller feature sizes.
This result shows that the proposed framework has a sufficient generalization capability to
handle unseen data. It offers a promising performance with low-cost resource requirements.

Table 7. Comparison of the proposed framework with handcrafted features and fusion from optimum.

No. Feature Representation Feature Size Validation Acc. Testing Acc.

1 Compact-Fusion AVG 4790 81.12% 82.03%
2 MLBP [25 × 25] 15,104 80.20% 80.96%
3 HOG [25 × 25] 13,824 77.39% 78.79%
4 Color HIST [25 × 25] 15,104 77.51% 78.36%
5 SURF-based [50 × 50] 4049 78.32% 79.20%
6 Fusion-Optimum-1 13,976 81.28% 82.32%
7 Fusion-Optimum-2 29,720 81.91% 83.15%

In an ethnicity classification task, it is essential to examine the recognition performance
for each ethnicity to determine whether the proposed classification method contains bias
for a specific ethnicity. Therefore, precision, recall, and F1-score are calculated for every
ethnicity class, as seen in Table 8 and the confusion matrix reported in Figure 12. The
experiment result in Table 8 shows that the proposed method has a fair accuracy value for
each class with an average F1-Score of 73.32%. However, the proposed method performs
poorly for the Others class; the main reason for the deficiency is unbalanced data and
ambiguous labels. The ambiguous labels, as mentioned in the dataset description, mean
that the Others class contains several ethnicities: Hispanic, Latino, and Middle Eastern.
From the confusion matrix in Figure 12, the ethnic group pairs with the most significant
misclassification for each class are: White–Indian, Black–White, Black–Indian, Asian–White,
Indian–White, and Others–White. This result confirms our earlier assumptions regarding
the challenges in ethnicity classification, where the feature representation must handle
the appearance variance in the UTKFace dataset. Nevertheless, the multi-feature in this
paper that compromises pixel color, texture, and pixel pattern has yet to be able to reduce
misclassification due to ambiguous labels and insufficient sample data.

Table 8. Precision-recall and F-1 score for compact-fusion AVG.

No. Ethnicity Number of Data Precision Recall F1-Score

1 White 2.414 83.93% 90.43% 87.06%
2 Black 1.028 84.77% 87.74% 86.23%
3 Asian 774 86.76% 83.85% 85.28%
4 Indian 952 75.65% 78.99% 77.29%
5 Others 409 52.35% 21.76% 30.74%

Average 76.69% 72.55% 73.32%

4.3. The Ablation Study

This study focuses on feature representation using multi-handcrafted features: MLBP,
HOG, Color HIST, and SURF-based features. The ablation study to investigate the contri-
bution of each handcrafted feature to accuracy in ethnicity classification is conducted on
Compact-Fusion AVG. The ablation study alternately excludes one handcrafted feature
from the feature representation, resulting in four feature-representation variations, named:
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Compact-Fusion-AVG minus MLPB, Compact-Fusion-AVG minus HOG, Compact-Fusion-
AVG minus Color, and Compact-Fusion-AVG minus SURF-based. A feature’s contribution
level is measured as the difference between accuracy with a full feature and a minus-one
feature. The result from the ablation experiment is shown in Figure 13.
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Based on Figure 13, the SURF-based features provide the lowest contribution, with
only 256 features, compared to the MLBP, HOG, and Color HIST features. Moreover,
the experiment results indicate that Color HIST features are most important in ethnicity
classification. When Color HIST features are not included in the feature representation,
there is a relatively high decrease in accuracy compared to other features, being as much
as 2.73%. This experiment result is consistent with the theory that skin color is one of the
phenotypic features that can be used to classify ethnicity.

4.4. Comparison with Feature-Reduction Method

The effectiveness of the strategy for compact feature representation was compared
with three proven conventional feature-reduction algorithms, which are NCA (neighbor-
hood component analysis), RICA (reconstruction-independent component analysis), and
PCA (principal component analysis). NCA, PCA, and RICA were used to reduce Fusion-
Optimum-1 features, which included MLBP [50× 50], HOG [40× 40], Color HIST [50× 50],
and SURF [100 × 100]. As a result, the size of the Fusion-Optimum-1 feature was reduced
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from 13,976 to 4780 via NCA, PCA, and RICA. Figure 14 shows the experimental results
comparing the Compact-Fusion AVG with the Fusion-Optimum-1+NCA, Fusion-Optimum-
1+PCA, and Fusion-Optimum-1+RICA. The experiment results show that Compact-Fusion
AVG outperforms other feature-reduction methods with slightly higher accuracy than PCA;
this indicates that the compact-fusion feature has comparable discriminant information to
the reduced feature result from PCA. In addition, the compact feature from the proposed
method has trace-back characteristics that maintain the spatial location and provide a better
understanding of the data generation process through the single data process.
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4.5. Cross-Dataset Experiment

For the cross-dataset experiment, four models are trained and tested pairwise. Model_1
is trained and tested on UTKFace Preprocessing-A, Model_2 is trained and tested on
Fair Face Subset-A, Model_3 is trained on UTKFace Preprocessing-A and tested on Fair
Face Subset-A, and Model_4 is trained on Fair Face Subset-A and tested on UTKFace
Preprocessing-A. The results of the cross-dataset experiment can be seen in Table 9.

Table 9. The results of the cross-dataset experiment.

Trained On

Te
st

ed
on

UTKFace Preprocessing-A Fair Face Subset-A

UTKFace Preprocessing-A
Model_1 Model_4

Accuracy F1-Score Accuracy F1-Score
89.14% 88.11% 75.95% 73.01%

Fair Face Subset-A

Model_3 Model_2

Accuracy F1-Score Accuracy F1-Score
55.31% 53.33% 73.87% 73.53%

Average 72.23%, 74.91%

Table 9 shows that the model that is trained with the same dataset as the testing set
achieves the best accuracy. For example, in Model_1 (trained and tested on UTKFace
Preprocessing-A), the highest accuracy is 89.14%, far surpassing Model_4 (trained on
Fair Face Subset-A and tested on UTKFace Preprocessing-A) at 75.56%. Meanwhile, the
highest accuracy in Model_2 (trained and tested on Fair Face Subset-A) is 73.87%, far
surpassing Model_3 (trained on UTKFace Preprocessing-A and tested on Fair Face Subset-
A) at 55.31%. Moreover, the cross-dataset experiment shows that the accuracy from the
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model trained with UTKFace Preprocessing-A performs poorly when tested on different
datasets compared with the model trained with Fair Face Subset-A. Finally, the dataset
generalization is evaluated from the average accuracy of the models trained with it. As seen
in Table 9, the average accuracy level from two models trained on UTKFace Preprocessing-
A and Fair Face Subset-A is 72.23% and 74.91, respectively. These results indicate that the
Fair Face Subset-A has better generalization than UTKFace Preprocessing-A when used
in a cross-dataset. However, further investigation needs to be carried out to measure the
generalization of the dataset used for cross-dataset evaluation.

The proposed compact feature framework shows suitable generalization, which can be
seen from the accuracy of Model_2, which uses the compact feature configuration obtained
from UTKFace and achieves an accuracy level of 73.87%, slightly lower than the reported
accuracy of 75.40% by Karkkainen and Joo in [3], which was evaluated in the entire set.
This condition probably occurs because we limit the number of data used, as with UTKFace,
which means the data sample is insufficient to build a model to overcome the variation in
the Fair Face dataset.

4.6. Classifier Comparison

The initial classifier used in the experiment is the SVM multi-class and implemented
OVA schemes (One Versus All). The SVM learning parameter used is a polynomial kernel
with order 3, C = 1, and a kernel scale set as auto (which uses a heuristic procedure to
select the scale value with a random number set to 5). For further analysis, the comparison
experiment is conducted with four types of classifiers: support vector machine (SVM),
linear discriminant analysis (LDA), random forest (RF), and ensemble tree with Total-Boost
to provide a comprehensive analysis.

The kernel parameters tested for SVM are: linear, polynomial order = 3, and RBF with
a kernel scale of 69.21 (square root from feature dimension, which is 4790) and C = 1. For
LDA, the kernels tested are linear and pseudolinear. Random forest is evaluated using a
grid search with the number of trees in {100, 300, 750, 1000} and the number of predictors
in {690, 863, 1035, 1208, 1380}. Finally, the grid search with the number of learners in {30, 50,
100, 300} and max split in {20, 50, 100, 200, 500} are tested for ensemble tree with Total-Boost.

Based on the experimental results shown in Table 10, the SVM-OVA-based classifier
with the parameter setting of the polynomial kernel with the order of 3, C = 1, and a kernel
scale of 69.21 (square root from feature dimension) achieves the best accuracy level of
82.19%. Meanwhile, the LDA classifier with a linear kernel obtains an accuracy level of
80.11%. Finally, for the RF and ensemble tree classifier, the accuracy obtained from the grid-
search configuration is around 70%, estimated to be due to the large size of the dataset and
the fact that the parameter tuning is not optimal yet, which requires further investigation.

Table 10. Experiment result for classifier comparison.

Classifier Tested Accuracy

SVM-OVO, linear kernel 78.82%
SVM-OVO, polynomial kernel order 3 81.82%

SVM-OVO, RBF kernel 79.74%
SVM-OVA, linear kernel 79.68%

SVM-OVA, polynomial kernel order 3 82.19%
SVM-OVA, RBF kernel 81.05%
LDA with linear kernel 80.11%
LDA with linear kernel 71.63%

RF: Grid search, best at nTree = 100, the number of predictors = 1035 70.29%
Ensemble Tree, Total-Boost, n Learner= 100, maxSplit = 200 71.01%

4.7. Comparison with SOTA

With the development of hardware resources and the emergence of large datasets
providing ethnicity labels, neural networks, especially CNNs, are more often used than the
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handcrafted approach to developing ethnicity classification solutions. However, fair and
exact comparisons with other research are hard to achieve as different authors use different
validation protocols, feature-extraction methods, and learning models. The relative position
of the proposed method with the results of other studies that used the UTKFace dataset for
ethnicity classification tasks is reported in Table 11. The proposed compact-fusion AVG
method achieves comparable accuracy in multi-class ethic classification with an accuracy
level above 80%, and it represents a promising alternative solution with the requirement of
low-cost resources compared with deep-learning approaches.

Table 11. Comparative result accuracy of state of the art for ethnicity classification on the UTKFace
for five classes.

Paper Ethnicity Method Feature Size Accuracy

Proposed method
White, Black, Asian, Indian, and
Others
White, Black, Asian, and Indian

Compact-Fusion +
SVM 4790 82.19%

89.14%

Belcar et al. (2022) [2] White, Black, Asian, Indian, and
Others CNN Based 11,520 * 80.34% **

Ahmed et al. (2022) [4] Caucasian, African, Asian,
Indian R-Net 3136 * 77.5% ***

Hamdi and Moussaoui (2020) [5] White, Black, Asian, Indian, and
Others CNN Based 8192 * 78.88%

Al-Azani and El-Alfy (2019) [6] Asian, Indian, and Others HOG 5292 * 69.68%

* Estimated based on information in the paper; for deep-learning approach, it is the output of the last max pool
layer. ** Only used the middle part of the face. *** Average accuracy from age group experiment.

5. Conclusions

The proposed compact-fusion feature framework shows the capability of producing
compact features that achieve optimum performance with minimum feature size and
competitive accuracy. In the initial experiment, the proposed method achieved signif-
icant improvement in accuracy, from 80.96% to 82.03% (+1.07%), and a 68.29% (from
15,104 to 4790) reduction ratio compared with the best accuracy for single handcrafted
features (MLBP [25 × 25]). Furthermore, the proposed feature reduction has comparable
discriminant information with PCA, which means that the proposed feature reduction
successfully removes redundant information. Finally, combined with the SVM-OVA-
based classifier with the parameter setting of the polynomial kernel with the order of 3,
C = 1, and kernel scale of 69.21 (square root from feature dimension), and with a feature
size of 4790, the proposed method with the SVM-OVA classifier achieves accuracy levels
of 89.14% and 82.19%, respectively, in the UTKFace dataset with four and five classes,
and the Fair Face dataset with four classes. This result is comparable with the method
based on the deep-learning approach.

The proposed compact-fusion feature framework is a tailor-made design, using the
feature-extraction method, compact feature strategy, and feature fusion. The simple process
of producing compact features with averaging and a grid-based process gives trace-back
characteristics and provides a better understanding of the data generation. The experiment
results indicate that the conventional approach using handcrafted features is still promising
for use in ethnicity classification tasks. Furthermore, with a proper analysis and strategy,
the solution based on handcrafted features can achieve suitable performance with a low-
cost demand for computing resources. However, the limitation of the proposed framework
is the absence of a parameter to control the level of the reduction ratio for flexibility
in application.
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In future work, to achieve a higher reduction ratio, this method can be preceded by
using the feature-selection/feature-reduction method, including importance measurement,
RICA, NCA, and PCA, to produce more compact features for ethnicity classification. Fur-
thermore, the exploitation of a grid-based approach allows grids with low discriminant
information to be discarded, which results in a higher reduction ratio. Meanwhile, to
achieve a higher level of accuracy, it can be combined with a deep-learning approach while
maintaining the explainable characteristics of the handcrafted feature.
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