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Risk Factors Influencing Fatal Powered Two-Wheeler At-Fault
and Not-at-Fault Crashes: An Application of Spatio-Temporal
Hotspot and Association Rule Mining Techniques
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Department of Transportation Engineering, University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu,
Seoul 02504, Republic of Korea; drtamakloe@uos.ac.kr

Abstract: Studies have explored the factors influencing the safety of PTWs; however, very little has
been carried out to comprehensively investigate the factors influencing fatal PTW crashes while
considering the fault status of the rider in crash hotspot areas. This study employs spatio-temporal
hotspot analysis and association rule mining techniques to discover hidden associations between
crash risk factors that lead to fatal PTW crashes considering the fault status of the rider at statistically
significant PTW crash hotspots in South Korea from 2012 to 2017. The results indicate the presence
of consecutively fatal PTW crash hotspots concentrated within Korea’s densely populated capital,
Seoul, and new hotspots near its periphery. According to the results, violations such as over-speeding
and red-light running were critical contributory factors influencing PTW crashes at hotspots during
summer and at intersections. Interestingly, while reckless riding was the main traffic violation leading
to PTW rider at-fault crashes at hotspots, violations such as improper safety distance and red-light
running were strongly associated with PTW rider not-at-fault crashes at hotspots. In addition, while
PTW rider at-fault crashes are likely to occur during summer, PTW rider not-at-fault crashes mostly
occur during spring. The findings could be used for developing targeted policies for improving PTW
safety at hotspots.

Keywords: spatio-temporal hotspot analysis; powered two-wheeler; association rule mining; fatal
crash; crash risk factor

1. Introduction
1.1. Background

Road traffic injuries claim the lives of numerous young people annually, with over
1.35 million fatalities reported each year, causing injuries to nearly 50 million people [1,2].
Regrettably, vulnerable road users, comprising pedestrians, cyclists, and motorcyclists,
constitute more than half of all road traffic deaths. An alarming 30% of the crash fatalities
reported in 2016 involved powered two and three wheelers (PTWs), including motorcycles,
e-bikes, and scooters, most of which could have been prevented [3]. The Global Status
Report on Road Safety 2018 documents that motorcyclists/PTWs alone accounted for
378,000 deaths, which is more than a quarter of all road traffic fatalities [4]. PTWs have a
higher propensity for fatal and severe injuries than other vehicle types [5]. For example,
in Australia, PTW crash death rates are over thirty times that of car users per distance
traveled. In addition, PTW users account for over 43% of all deaths in the South East Asia
region [4,6]. PTWs offer immense advantages such as low parking space requirements, high
maneuverability, and better fuel efficiency to a diverse group of users, and more than 75%
of the 300 million PTWs worldwide are found in Asia [7,8]. However, the hazardous riding
behavior associated with PTWs is responsible for the majority of accidents. It remains
unclear from the literature what risk factors contribute to fatal PTW crashes, both for
at-fault and not-at-fault accidents, at key crash locations.
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While the majority of the existing studies have primarily focused on identifying and
quantifying the effect of risk factors on PTW crash severity [9,10], others have identified
contributory factors leading to PTW crashes [11] and those influencing crash-type propen-
sity [12]. Regarding the factors associated with PTW crashes, de Rome and Senserrick (2011)
identified influential critical factors using a descriptive analysis procedure [13]. Other stud-
ies applied parametric and non-parametric methods to identify critical PTW contributory
factors [14,15].

Notably, none of the studies in the literature comprehensively explored the chains
of risk factors influencing fatal PTW crashes that occurred at critical hotspot locations
identified using spatio-temporal pattern mining procedure analysis. Regardless of the high
interest in PTW safety, many fundamental questions concerning the factors leading to fatal
PTW crashes at critical crash locations based on the riders’ fault status remain unanswered.
Although road crashes can happen anywhere at any given time, research shows that spatial
and temporal dependencies among crashes exist [16], and may cause contributory factors
influencing a crash to differ. In addition, risk factors leading to a collision could differ
based on the fault status of the driver/rider, as highlighted in the literature [17].

To establish targeted countermeasures that can help in increasing PTW safety at critical
hotspot locations, it is crucial to examine the chains of factors and patterns leading to fatal
PTW crashes using a more disaggregate approach considering spatio-temporal information
and the riders’ fault status. Understanding the contributory factors influencing fatal PTW
crashes at crash hotspots identified over time and differentiated based on the riders’ fault
status could provide valuable information for use by traffic safety analysts worldwide.

1.2. Summary and Critique of the Literature

The causes and severity of crashes can be described under three components: the
driver, vehicle, and environment. In PTW safety, research has identified driver/human
factors such as age, gender, and errors as common risk factors. Young riders are particularly
at risk of PTW crashes, and male riders are highly at risk of crashes on light PTWs relative
to their female counterparts [18,19]. Several reasons have been attributed to this finding,
ranging from lack of experience and poor hazard perception on the part of young riders,
and overconfidence on the part of men [20,21]. Driver errors such as speeding, risky
maneuvers, and late observations have also been identified as critical crash risk factors
in recent studies [11,22,23]. Regarding environmental factors (temporal, weather, and
roadway-related factors), some studies identified that crash risk increases during the early
morning hours, during the weekends, spring and summer, wider roads, and poor roadway
conditions [19,23], broader shoulders and more lanes resulted in a reduced crash risk [24].
While heavy PTWs significantly decrease crash risk, sports bikes tend to double the crash
risk compared to other PTW types [18].

A recent study [25] identified GNI, motorized two and three wheelers per person
ratio, percentage of helmet-wearing rate, and the interaction between vehicle/person ra-
tio and motorized two and three wheelers/person ratio as significant factors affecting
PTW mortality rates. In another study [26], the impact of variables on injury severity
differed significantly for helmet-wearing and non-helmet-wearing motorcyclists. Factors
such as age, gender, collisions, and distracted driving contributed to injury severity. A
Pakistani study [27] showed that crashes involving riders over 50 years old, collisions with
heavy vehicles, and speeding increased the risk of severe or fatal injuries. Similarly, a
Portuguese study [28] found that several factors, such as the PTW category, male rider, and
no helmet use, increased the likelihood of severe injuries in motorcycle accidents. Finally,
another study in Pakistan [29] showed that young drivers, high-speed limits, poor light-
ing, and shiny weather conditions worsened injury severity in three-wheeled motorized
rickshaw crashes.

Research shows that the factors impacting crashes and the severity of injuries sustained
are likely to differ based on fault status [30,31]. PTW riders were identified to be likely at
fault in rear-end crashes when there is no passenger when the passenger is male or is of the
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same age as the rider. In addition, head-on crashes occurring during the day are likely the
fault of PTW riders. In contrast, PTW riders are likely not at fault for sideswipes during
daylight conditions [32]. Regarding injury severity, a recent study separately modeled
at-fault and not-at-fault crash injury severities of all vehicle crashes, including motorcycles
in North Carolina, and identified that, whereas road geometry and weather features had a
similar effect on the severity of both drivers, the driver’s age, gender, number and types
of violations, and vehicle type played critical roles in the severity of injuries sustained by
not-at-fault drivers [33]. The authors acknowledged that motorcycle riders are the most
vulnerable road users in both at- and not-at-fault crashes. Rezapour et al. recently analyzed
PTW at-fault crash data and demonstrated that while age (>35), alcohol involvement, rural
area, and speed increased the severity of crashes, wet road surfaces were associated with a
reduced injury severity propensity for at-fault riders [34]. However, these studies did not
provide detailed insights into how variables affected PTW crashes differently regarding the
rider’s fault status.

Recent studies have shown that crash hotspots will likely change in time and space.
For example, a study exploring crash severity during the COVID-19 pandemic revealed that
hotspots would likely change from higher-income to lower-income areas [35]. Further, as
identified from recent studies that the dynamics in crash clusters or hotspots vary over time
and space [16,36,37], and there could be some disparities among the factors influencing fatal
PTW crashes based on when and where the crash occurred. In the area of motorcycle safety,
Jiang et al. are the first to use spatial analysis techniques to identify and visualize motorcycle
crash hotspots in Victoria, Australia [38]. The authors identified that motorcycle crashes
are concentrated around metropolitan areas. It is noteworthy that the researchers only
considered the spatial context in identifying crash hotspots instead of combining it with
the temporal context of the crashes, whose results could be informative in the formulation
of policies. In addition, the authors did not study and identify the critical risk factors
influencing fatal crashes in hotspot areas. As crash hotspots are known to be associated
with higher crash frequency and fatality, which changes from time to time, identifying
crash hotspots over space and time and exploring the associations among fatal PTW crash
risk factors could provide valuable insights that could be used for decision-making. The
literature reviewed in this section is summarized in Table 1 below.



Informatics 2023, 10, 43 4 of 21

Table 1. Summary of the literature reviewed in this study.

Study Objective Location Temporal Scope Methods Adopted Key Findings

Examining fatal and severe life-threatening
accidents at intersections involving a powered two
wheeler and another vehicle [11].

Six countries (UK, The Netherlands,
France, Poland, Italy, and Greece) 2015 to 2016 (n = 92) Causation analysis

Most vehicles do not yield to the PTW, and causal
chains indicate that “looked but failed to see” is
still a problem in this type of collision.

Recognizing segments of motorcycle riders at a
notably elevated risk of accidents and
pinpointing the contributing risk factors
involved [18].

Norway 2005 to 2008 (n = 3356) Survey-based research

The majority of deadly incidents involving sports
motorcycles are due to speeding. In Norway,
young age, limited experience, hazardous actions,
and an “unsafe” mentality appear to be particularly
powerful risk elements for motorcyclists.

Analyzing the factors contributing to motorcycle
crashes using a safe systems approach by
utilizing the case-series data collected from a
recent study that employed a case–control
methodology [22].

Victoria, Australia January 2012 and August 2014
(n = 235) Survey-based research

Although PTW crashes, resulting in injury, involve
a complex array of factors, several noteworthy
connections exist between the primary contributing
factor (rider or other road users) and secondary
factors such as rider age, traffic density, speed, and
road design issues.

To gain a more profound comprehension of how
these incidents happen [23]. Bogota, Colombia 2009 (n = 400) Case study analysis

Various factors, including the absence of clear road
markings, a complex intersection, a wide road, and an
inexperienced motorcyclist, combine to contribute to
the incidence of accidents of this nature.

Validating a previous model to consider the
geometric features of intersections when
predicting the safety of motorcyclists [24].

Italy 2001 to 2006 Experimental investigation

The speed at which vehicles approach an
intersection and how the intersection is designed
are important factors that can help explain why
motorcycle accidents occur at junctions.

Identifying the main risk factors linked with the
severity of injuries sustained by motorcyclists in
Rawalpindi, Pakistan [27].

Rawalpindi, Pakistan 2017 to 2019
Random parameters logit model
with heterogeneity in means and
variances

The likelihood of severe and deadly injuries is
higher for crashes that happen on weekdays,
involve riders over the age of 50, involve a collision
between a motorcycle and a passenger car or a
heavy vehicle, have a female passenger on the back
of the motorcycle, and result from exceeding the
speed limit.

Identifying the factors that increase the severity
of injuries sustained by powered two-wheeler
(PTW) riders in road accidents in Portugal [28].

Portugal 2010 to 2015 (n = 37,769) Ordered logistic regression

Several factors can lead to more severe injuries,
including riding a motorcycle in the PTW category,
having rest days, driving on clean and dry roads
between 20 h and 5 h and 59 min, traveling in rural
areas with bent roads and national roads, being a
male rider without a helmet, having a blood
alcohol content between 0.5 g/L and 0.8 g/L, and
being involved in an accident with a truck or other
vehicles where the driver is injured.
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Table 1. Cont.

Study Objective Location Temporal Scope Methods Adopted Key Findings

To determine the primary elements responsible
for the error of bikers engaged in accidents [32]. Iran 2009 to 2012 (n = 90,418) Classification and regression tree

algorithm (CART)

The type of collision is the primary factor
determining the probability of motorcyclists being
at fault. Based on this information, the chances of a
rear-end collision are the highest, while the chances
of a side collision are the lowest.

To analyze and contrast how certain factors
impact the degree of harm suffered by drivers
involved in accidents, regardless of whether they
were responsible for the incident or not [33].

North Carolina 2009 to 2013 (n = 349,454) Proportional odds model

The impact of road characteristics, weather
conditions, and geometric characteristics on crash
injury severity was similar for both at-fault and
not-at-fault drivers. However, the age of the driver,
physical condition, gender, vehicle type, and the
number and type of traffic rule violations were
identified as significant factors that affect the injury
severity of not-at-fault drivers compared to at-fault
drivers involved in the crash.

Forecasting the extent of injury in a motorcycle
accident caused by the rider at fault [34]. Wyoming 2007 to 2016 (n = 1210) Binary logistic regression and

classification trees (CT)

A number of factors that were recognized as
similar by both approaches include speed limit
displayed on signs, age, functional class of the
highway, and adherence to speed regulations.

To examine how factors contributing to the
severity of injuries sustained in
alcohol/drug-impaired car crashes vary
throughout the day and over time, during three
specific phases of crash cycles that occurred after
the Great Recession [37].

North Carolina 2008 to 2017
Random parameters logit models
with heterogeneity in the means
and variances

Significant temporal instability of risk factor
impacts was identified.

To analyze how the COVID-19 pandemic and
resulting mobility alterations have affected road
traffic safety [35].

Los Angeles and New York March, 2020 Change-point detection and
difference-in-differences analysis

The areas where accidents occur have frequently
changed in terms of both location and time.

To determine the crucial elements associated
with the severity of motorcycle injuries [38]. Victoria, Australia 2006 to 2017 (n = 24,680) Association rule mining and

hotspot analysis

Collisions with trucks, overtaking, overspeeding,
collisions late at night/early morning, and
collisions with fixed objects are critical factors
influencing motorcycle safety in hotspots.
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1.3. Study Objective and Contribution

As discussed, studies have explored the contributory factors of PTW crashes and the
factors impacting their crash risk and severity. However, to the best of our knowledge,
safety researchers have not considered the rider’s fault status, together with both the spatial
and temporal dimensions of PTW crashes, in identifying critical risk factors influencing
PTW safety. In other words, it is not clear how the patterns of critical risk factor associations
influencing fatal PTW crashes differ at different spatio-temporal hotspot segments consid-
ering the fault status of the rider. Identifying risk factors influencing PTW crashes (at-fault
and not-at-fault) in spatio-temporal hotspot locations is essential as it can help discover the
critical issues affecting PTW crashes at critical locations to develop targeted interventions
and countermeasures. In addition, identifying these factors can help allocate resources
and funding for road safety initiatives and improve PTW safety education and training
programs targeting the locations that really need policy interventions. This study aims
to deepen the knowledge of PTW safety by employing spatio-temporal hotspot analysis
and data mining tools to identify critical PTW crash locations and explore chains of risk
factors influencing them based on the fault status of the rider. This study seeks to answer
the following questions:

• Where are the spatio-temporal hotspot locations of fatal PTW crashes in South Korea
concentrated, and what are the trends associated with them?

• What are the chains of factors associated with PTW crashes at critical crash hotspots?
• Do the elements of the chains of risk factors influencing fatal PTW crashes at critical

hotspots differ when the fault status of the PTW rider is considered?

This research is expected to bridge the gap in the literature by expanding the under-
standing of the factor chains or groups of risk factors simultaneously contributing to fatal
PTW crashes considering the riders’ fault status and the space-time hotspots—providing
policymakers with information on how to address these crashes at critical crash locations.

The remainder of the paper is organized as follows. Section 2 presents a study frame-
work that describes how this study was conducted. It also describes the case study area,
the data used for this study, the spatio-temporal pattern mining, and the association rules
mining technique applied in this study. Section 3 provides estimation results and a detailed
discussion of the findings. Finally, the key findings, recommendations, limitations, and
future research directions are provided in Section 4.

2. Materials and Methods
2.1. Study Framework

As illustrated in Figure 1, this study’s framework comprises three main steps. First, the
data for this study are obtained, and the x-y coordinates are imported into the ArcGIS Pro
software after cleaning the data and removing those with missing coordinate information.
Second, all the crashes are visualized in ArcGIS. Using the base map of South Korea as the
boundaries, the ArcGIS Pro software was then used to develop a spatio-temporal hotspot
map based on the frequency of fatal PTW crashes. Crashes at hotspot locations are then
extracted for analysis. Further, the spatio-temporal trends in the PTW crashes are examined.

A data mining technique is employed to explore the chains of factors influencing fatal
PTW crashes for all PTW crashes at critical PTW hotspot locations. The data mining tool
is again used to investigate the contributory factors leading to fatal PTW crashes based
on the fault status of the rider. Finally, the study results are thoroughly examined, and
relevant policies and countermeasures are proposed for use by policymakers both locally
and internationally.
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2.2. Case Study Area and Data Description
2.2.1. Magnitude of the PTW Safety Problem in South Korea

The spatial scope of this study is South Korea, a country in Asia and home to about
51.7 million persons with a land area of 100,210 km2 [39]. Its capital, Seoul, has a population
density of 16,541 persons/km2, extending across 605.2 km2 [40]. The flexibility provided by
PTWs and the incessant demand for quick food delivery services have led to their adoption
by young people and delivery service operators in the country, particularly in Seoul, as one
of the primary means of transport. In particular, the online food ordering service in South
Korea grew from 2732 billion Korean Won in 2017 to 5273 billion Korean Won in 2018, and
the number of PTWs per 1000 inhabitants in the country increased from 36.4 in 2012 to 40.0
in 2018 [41]. Research indicates that almost 60% of these PTWs are used for delivering food
and parcels [42].

The increased use of PTWs has had a negative impact on traffic safety in South Korea.
According to the WHO, there are about 4990 road-related deaths in South Korea each year,
representing about 9.8 deaths/100,000 persons/year [43]. Regarding PTW crashes, it was
estimated that there are about two deaths/100,000 persons/year, which is the fourth-highest
in the same region and sixth-highest among similar high-income countries.

Studies focused on identifying the factors impacting the safety of PTWs in Korea are
limited. The few studies in the literature highlight that overspeeding and non-compliance to
general traffic rules are key factors influencing the severity of PTW crashes [44]. Although
PTWs account for about 5% of traffic crashes, they are associated with a 12% fatality rate
for all road crashes. The burden of PTW crashes in South Korea is unacceptably high
and demands a conscientious and rigorous research approach to understand the factors
influencing fatal PTW crashes for developing adequate measures to mitigate the impact
of crashes.

2.2.2. Descriptive Statistics

In this study, police-recorded fatal PTW crashes on all rural and urban roads in South
Korea between 2012 and 2017 were used. After data preprocessing, a total of 3555 fatal
PTW crashes remained for analysis. It is worth noting that a fatal crash, as used in Korea
for crash severity classification, is a crash in which death is recorded at the crash scene or
up to 30 days after the crash [45]. Fatal PTW crashes were considered for this study due to
their unacceptably high frequency and social cost.

The crash data contained detailed information pertaining to the temporal character-
istics (year, season, time of day, and day of week), the crash characteristics (manner of
collision, driver/rider violation, and crash location), the fault status of the driver/rider
(at-fault and not-at-fault), the number of vehicles involved in the crash, the number of crash



Informatics 2023, 10, 43 8 of 21

casualties, and the crash location coordinates (longitude and latitude). The crash data were
geocoded and displayed on a map (Figure 2). It is noteworthy that other crash risk factors
that may influence crashes, such as the drivers/riders’ features, were not available in the
crash dataset. All the data pertaining to the PTW crashes are summarized in Table 2.
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Figure 2. Visualization of the road network and PTW crash distribution in South Korea.

Figure 2 reveals that most of the crashes occurred around the capital city, Seoul. The
table shows that the number of fatal PTW crashes is gradually increasing (2015–2017). In
addition, fatal crashes are more prevalent during the summer and fall. Regarding the
day-of-week variables, it was observed that a high percentage of crashes occurred on
weekends. Most of the crashes were angle collisions and were caused by risky driving
behaviors. In addition, most of the crashes occurred on main road sections, followed by
intersections. PTW riders were primarily at fault for the crashes. As expected, more than
half of the crashes resulted in multi-vehicle crashes with single-casualty outcomes.
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Table 2. Variable description for fatal PTW crashes in South Korea (n = 3555 obs.).

Category Frequency Percentage Category Frequency Percentage

Year Road segment (location)

2012 606 17.05 Bridge section 44 1.24
2013 564 15.86 At intersection 1128 31.73
2014 578 16.26 At pedestrian crossing 43 1.21
2015 570 16.03 Near pedestrian crossing 12 0.34
2016 616 17.33 Near intersection 332 9.34
2017 621 17.47 Main road 1994 56.09

Season Other road segments
(tunnel/underpass/overpass) 2 0.06

Fall (Sep.–Nov.) 1028 28.92 At-fault party

Spring (Mar.–May) 930 26.16 Agricultural machinery 8 0.23
Summer (Jun.–Aug.) 1068 30.04 Bicycle 8 0.23
Winter (Dec.–Feb.) 529 14.88 Passenger car 651 18.31
Time of day Construction machinery 39 1.10

Daytime (6 a.m.–5:59 p.m.) 2022 56.88 Engine-propelled bicycle 4 0.11
Nighttime (6 p.m.–5:59 a.m.) 1533 43.12 Freight truck 328 9.23
Day of week Minibus/van 99 2.78

Monday 486 13.67 Other vehicle type 20 0.56
Tuesday 483 13.59 Two wheeler 2393 67.31
Wednesday 476 13.39 Unknown 5 0.14
Thursday 491 13.81 Not-at-fault party

Friday 522 14.68 Agricultural machinery 8 0.23
Saturday 572 16.09 Bicycle 13 0.37
Sunday 525 14.77 Passenger car 597 16.79
Type of collision Construction machinery 43 1.21

Angle 923 25.96 Engine-propelled bicycle 6 0.17
Crossing 102 2.87 Freight truck 326 9.17
Driving on edge of road 5 0.14 Minibus/van 138 3.88
Driving on road 14 0.39 No partner 1020 28.69
Head-on 351 9.87 Other vehicle type 17 0.48
Other crash types 726 20.42 Pedestrian 163 4.59
Rear-end 386 10.86 Two wheeler 1221 34.35
Rollover 393 11.05 Unknown 3 0.08
Run-off 108 3.04 Number of vehicles involved

Sideswipe 233 6.55 One 1204 33.87
Collision on sidewalk 7 0.20 Two or more 2351 66.13
Collision at work zone 307 8.64 Number of casualties

Violation One 2786 78.37

Violation of intersection
method 192 5.40 Two 595 16.74

Reckless driving/riding 2040 57.38 Three or more 174 4.89
Other violations 206 5.79
Pedestrian protection
violation 19 0.53

Centerline crossing 358 10.07
Safety distance violation 118 3.32
Signal violation 546 15.36
Over-speeding 76 2.14

2.3. Methodology

This study seeks to identify chains of factor associations linked with at-fault and
not-at-fault fatal PTW crashes at spatio-temporal crash hotspot locations. Unlike previous
studies that manually cluster data for analysis or hotspot mining for analysis, this study
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identifies crash hotspots based on space and time dimensions, providing an enhanced un-
derstanding of how hotspots change over space and time. In addition, rather than applying
traditional regression tools, which essentially identify the impact of individual factors on
crash outcomes, this study applies a machine learning tool that identifies combinations
of factors that collectively lead to a particular outcome. Using results from this method
can provide more information for setting targeted countermeasures. This method is ma-
chine learning-based and requires no assumptions. The methods used for this research are
described in the subsequent subsections.

2.3.1. Spatio-Temporal Pattern Mining

Space-time pattern mining tools available in ArcGIS were employed to explore the
spatio-temporal trends in fatal PTW crashes. Fatal PTW crash data and other related
spatial data are imported into ArcGIS. The data were then transformed into a space-time
cube through a process of combining the crashes based on their spatial and temporal
properties. To determine the spatial scope, a fishnet grid bin method was employed, where
the height of the bins was determined based on a distance threshold in kilometers, which
was established through a spatial autocorrelation test. For the temporal scope, a six-month
time series was utilized, considering the available data and the size of the study area. The
Mann–Kendall statistic was used to analyze the trends in the aggregated crash counts
within each bin [46,47]. This resulted in each bin being associated with a z-score and a
p-value that indicate the significance of the trend observed in the data.

The space-time cube is then inputted into the emerging hotspot analysis tool to dis-
cover the spatio-temporal hot and cold spots. The emerging hotspot tool can discover
trends in the data by examining the space-time trends in the study area over a given period
using the already-created space-time cube file. The researcher must select appropriate
neighborhood distance and time step parameters, which would be used to determine
how many surrounding bins are examined together spatio-temporally when assessing the
local space-time clustering. They are subsequently employed to estimate the Getis-Ord G*

i
statistic for each bin. This statistic is specified in Equation (1) below.

G∗i =
∑n
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X ∑n
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)2
]

n−1
−
X =

∑n
j=1 xj

n
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√
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j=1 x2
j

n −
(−

X
)2

(1)

where xj denotes the bin value for feature j, the spatial weight between features i, and j

is wij; n shows the number of bins,
−
X represents the mean of the attributes, and S is the

corresponding standard deviation.
Upon running the tool, each bin is associated with a hotspot classification, a z-score,

and a p-value which explains the trend in each location. The emerging hotspot analysis tool
then categorizes the study area using each crash location’s resultant trends’ z-score and
p-value, and each bin’s hotspot z-score and p-value. The distance interval and time step
interval used in building the space-time cube are one km and six months, respectively. This
led to the creation of 168,768 bins for analysis (minimum time-step interval—10; maximum
number of bins—2 billion), with a resulting 0.55% temporal bias. In addition, the emerging
hotspot analysis used a 15 km neighborhood distance and three neighborhood time steps.

This approach classified locations within the study area into two main groups: no
pattern detected (analysis location is neither hot nor cold) and critical hotspot (analysis
location is a statistically significant hotspot needing urgent attention). The data associated
with the group of interest (critical hotspots) were extracted for further exploration.
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2.3.2. Association Rule Mining

This study employed the Association Rules Mining (ARM) technique, a data mining
approach first proposed by Agrawal et al. to discover frequent chains of items that occur
together in an event. It has since gained popularity among transportation researchers
due to its ease of understanding and practicality in terms of efficiently discovering the
relationships between different crash risk factors in a database [48]. In addition, since the
algorithm employs the relative frequency approach in identifying frequent itemsets (crash
risk factors) and combinations with each other, it is more suited for unbalanced data such
as crash data.

Researchers have highlighted that the ARM technique is particularly advantageous
since it requires no predefined underlying assumptions, has the capability of handling
small datasets, and requires no specification of dependent and independent variables before
analysis. In particular, previous transport safety studies employed ARM to explore small
datasets ranging from 126 to 449 crash observations [49].

Suppose the fatal PTW crash database is D =
{

d1, d2, . . . , dy
}

, where each crash
observation consists of a subset of x unique items/variables contained in the itemset I,
such that, I = {i1, i2, . . . , ix}. Rules generated by the ARM technique can be defined as an
implication of the form P => Q, such that P, Q ⊆ I, and P ∩ Q = ∅. The left-hand side
(LHS) of the rule, P, is known as the antecedent, and the right-hand side of the rule, Q, is
the consequent. For example, the rule P => Q can be explained as follows: if P exists as a
crash risk factor pertaining to a certain crash observation, then Q is likely to occur.

Obtaining useful rules involves a process guided by three main measures: support,
confidence, and lift [48]. Support of a rule shows how popular the itemset is by expressing
the proportion of the entire database covered by the rule. Support of a rule is expressed
as follows:

Support(P => Q) =
|P ∩Q|
|D| (2)

where |P∩Q| shows the number of times itemsets P and Q co-occur, and |D| represents
the number of crashes in database D. Confidence of a rule depicts the percentage of cases
where the consequent of the rule, Q, occurs given that the antecedent, P, already occurred.
Confidence of the rule P => Q is estimated as follows [50]:

Con f idence(P => Q) =
Support(P => Q)

Support(P)
(3)

The support–confidence framework is complemented by the measure, lift, to efficiently
prune infrequent itemsets from the dataset [51]. The lift of a rule P => Q shows the how
frequently the antecedent and consequent simultaneously occur. It can also be described as
how likely an itemset Q occurs given that P has occurred, while controlling for the popu-
larity of itemset Q (serving as a measure of the statistical interdependence of a rule) [15]. It
is computed as follows:

Li f t(P => Q) =
Support(P => Q)

Support(P) · Support(Q)
(4)

A rule is deemed interesting and valuable when the lift is greater than 1 (indicating
positive interdependence between both P and Q). In addition, there is no correlation
between both P and Q when the lift is 1. A negative interdependence is established when
the lift of the rule is less than 1. It is noteworthy that higher lift values connote higher
interestingness of the rule.

In ARM, no specific rules govern the selection of support, confidence, and lift values.
However, it is desirable to have rules with sufficiently high support, large confidence, and
a lift value higher than one. Researchers have advocated for the validity verification of the
addition of each item i to the rule to ensure that the addition of a new item results in an
increase in the lift [15]. To do this, a rule with item i in the antecedent itemset is used as
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the starting point. The lift value, Li f tAi+1
, obtained after adding a new item i + 1 is then

compared to the previous lift value, Li f tAi
, as follows:

LIC =
Li f tAi

Li f tAi+1

(5)

where Ai is the antecedent with i item, and Ai+1 is the antecedent after a new item is added.
A rule with LIC greater than the preselected minimum threshold is more favored.

There are no specific rules governing the selection of support (s), confidence (c), lift
(l), and LIC threshold values; however, consistent with transport safety literature and in
view of the data used for the analysis, the following thresholds are used: s = 1%, c = 5%,
l = 1.10, and LIC = 1.02. The rule mining was conducted using R software [52].

3. Results and Discussions
3.1. Spatio-Temporal Pattern Mining

Spatio-temporal trends in fatal PTW crashes were discovered to help identify recent
trends and where fatal PTW crashes are frequently clustered. The spatio-temporal patterns
of fatal PTW crashes occurring on urban and rural roads in South Korea between 2012 and
2017, as illustrated in Figure 3, show that fatal crashes are concentrated around the capital,
Seoul, and its environs. Thus, the analysis results would focus on those areas.

From Figure 3, it is evident that consecutive hotspots (indicated in light brown color)
are predominant in Seoul, particularly around the central business district. Consecutive
hotspots are those locations in which statistically significant hotspot bins occur uninterrupt-
edly in recent time steps. Still, within Seoul, it is observed that few locations are sporadic
fatal PTW hotspots. In essence, these locations are hot in some years and not hot in other
years. Essentially, none of the time steps in these bins have ever been statistically significant
cold spots. Note that the yellow-colored sections are those with no crashes, and those
white-colored sections are those where crashes occurred, but no patterns were identified,
likely due to the low frequency of crashes (these are dotted across the entire map and
clearly visible when zoomed in to, as shown below).

The neighboring cities around Seoul, namely Incheon, Gyeonggi, Sejong, and Gimpo,
also had some hotspot locations. While Incheon, Gyeonggi, and Sejong had few consecutive
hotspot locations, Gimpo had new and emerging hotspots. New hotspots are identified
by bins that have never been hot but had their final time steps as statistically significant
hotspots. The other cities had no statistically significant hotspots or cold spots, indicating
that Seoul and its environs are critical locations worth studying. The findings from the
spatio-temporal hotspot analysis are intuitive as the patronization of food delivery service
using PTWs in Seoul, South Korea’s most densely populated city and home to many
companies, is the order of the day as most Koreans like to eat away from home [53]. These
delivery services are recently gaining popularity in the neighboring cities as population
flows to cities around Seoul are being observed due to the government’s promotion of
decentralization and population redistribution [39].

Table 3 shows the number of crashes classified at each location and the number of
crashes per classification category with statistically positive or negative trends determined
based on their z-scores and p-values. Crashes in locations with significant and positive
trends have positive z-scores with a p-value < 0.1. Interestingly, almost all hotspots showed
positive/increasing trends, indicating the need for more focus on these areas and suggesting
interventions for use by road safety authorities.

Out of the 3555 crashes considered, 198 crashes were identified at fatal PTW crash
hotspots. In particular, 181 crash observations were identified at consecutive hotspots, and
only one crash observation found at a new hotspot showed statistically positive trends (182
crashes in total with positive trends at hotspots). Since most crashes were spread across
the entire country, they were identified as no-pattern locations. As this study seeks to
identify the key chains of factors associated with PTW crashes at hotspot locations, the 182
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crash observations at the significant hotspot locations were extracted for further analysis.
A total of 128 fatal crashes were caused by the PTW riders, and the remaining were not
caused by the PTW riders. The dataset used for the analysis is small. However, the machine
learning method is robust at identifying patterns in small datasets—an advantage over the
traditional regression methods [54].
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Table 3. Space-time trend mining results.

Emerging Hotspot
Classification

Negative Trend Positive Trend Total
(Significant

Trends)

Total
(Non-Significant

Trends)
Grand TotalSignificant Trends

at 90% CL
Non-Significant

Trends at 90% CL
Significant at

90% CL
Non-Significant

at 90% CL

Consecutive Hotspot 0 0 181 13 181 13 194
New Hotspot 0 1 1 3 1 4 5

No Pattern Detected 589 1626 773 360 1362 1986 3348
Sporadic Hotspot 0 0 0 8 0 8 8

Grand Total 589 1627 955 384 1544 2011 3555

S = 0.01; C = 0.05; L = 1.1, LIC = 1.02.

3.1.1. Interesting Rules for All Fatal PTW Crashes at Critical Locations

The association rules for fatal PTW crashes at hotspots are shown in Table 4. All
the rules satisfy the minimum lift and LIC thresholds, signifying greater interdependence
between the antecedents and consequents of the rules. The first rule in Table 4 shows
that fatal PTW crashes caused by the fault of freight truck drivers are likely to occur on
Mondays. Essentially, a freight truck driver being at fault increases the probability that a
PTW crash will occur on a Monday by 3.92 times. According to rule 2, if the truck driver
disregarded the safety distance regulation, the likelihood of a PTW crash increases 6.54
times more than the average. Freight transport share by road in Korea increased by more
than 90% since 2011, and the number of trucks on the roads also keeps increasing. Since
truck operation times in Korea is during the daytime (9 a.m.–6 p.m.), the likelihood of
interactions with PTWs on the road during the daytime is likely to be high, particularly on
Mondays, when many trucks and PTW delivery workers operate. In addition, in line with
the literature, the likelihood of crashes in Korea (particularly involving trucks) has been
identified to increase with safe distance violations [55], which is likely due to aggressive
driving, inattention, or high traffic volume. These driving behaviors are likely to impact
PTW safety negatively.

Table 4. List of interesting rules identified for fatal PTW at critical locations.

No. Rules S% C% Lift LIC

1 {At-fault party: freight truck} => {Day of week: Monday} 1.64 60.00 3.92 -
2 {At-fault party: freight truck, Violation: safety distance violation} => {Day of week: Monday} 1.09 100.00 6.54 1.67
3 {Road segment: near intersection} => {Violation: centerline crossing} 3.83 41.18 3.01 -
4 {Road segment: near intersection, Type of collision: head-on} => {Violation: centerline crossing} 1.09 66.67 4.88 1.62
5 {Road segment: near intersection, Year: 2012} => {Violation: centerline crossing} 1.64 100.00 7.32 2.43
6 {Road segment: near pedestrian crossing} => {Type of collision: angle} 1.64 75.00 2.98 -
7 {Road segment: near pedestrian crossing, Violation: centerline crossing} => {Type of collision: angle} 1.09 100.00 3.98 1.33
8 {Not-at-fault party: minibus/van} => {Type of collision: angle} 3.28 66.67 2.65 -
9 {Not-at-fault party: minibus/van, Violation: signal violation} => {Type of collision: angle} 1.64 100.00 3.98 1.50

10 {Road segment: at pedestrian crossing} => {Violation: signal violation} 1.09 50.00 2.41 -
11 {Road segment: at pedestrian crossing, Year: 2013} => {Violation: signal violation} 1.09 100.00 4.82 2.00
12 {Road segment: bridge section} => {Type of collision: other crash type} 2.19 66.67 2.39 -
13 {Road segment: bridge section, Year: 2017} => {Type of collision: other crash type} 1.09 100.00 3.59 1.50
14 {Violation: over-speeding} => {Season: summer} 2.73 71.43 2.33 -
15 {Violation: over-speeding, Year: 2013} => {Season: summer} 1.09 100.00 3.27 1.40
16 {At-fault party: freight truck} => {Not-at-fault party: PTW} 2.19 80.00 2.32 -
17 {At-fault party: freight truck, Violation: safety distance violation} => {Not-at-fault party: PTW} 1.09 100.00 2.90 1.25
18 {Violation: centerline crossing} => {Not-at-fault party: passenger car} 5.46 40.00 2.15 -
19 {Violation: centerline crossing, Year: 2012} => {Not-at-fault party: passenger car} 2.73 83.33 4.49 2.08
20 {Violation: centerline crossing, Year: 2014} => {Not-at-fault party: passenger car} 1.09 50.00 2.69 1.25
21 {Type of collision: rear-end} => {At-fault party: passenger car} 3.83 46.67 2.14 -
22 {Type of collision: rear-end, Violation: over-speeding} => {At-fault party: passenger car} 1.09 100.00 4.58 2.14
23 {Type of collision: rear-end, Year: 2013} => {At-fault party: passenger car} 2.19 66.67 3.05 1.43
24 {Violation: signal violation} => {Type of collision: angle} 10.38 50.00 1.99 -
25 {Violation: signal violation, Year: 2012} => {Type of collision: angle} 2.19 100.00 3.98 2.00
26 {Violation: signal violation, Year: 2015} => {Type of collision: angle} 2.19 80.00 3.18 1.60
27 {Type of collision: angle} => {Road segment: at intersection} 13.66 54.35 1.95 -
28 {Type of collision: angle, Violation: signal violation} => {Road segment: at intersection} 9.84 94.74 3.40 1.74

S = 0.01; C = 0.05; L = 1.1, LIC = 1.02.
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Rule 3 depicts that if a PTW crash occurs near an intersection, it is likely that it was
due to a centerline crossing violation. According to rule 4, if the PTW crash occurs near
an intersection and it is a head-on collision, then the probability of it being caused by
a centerline violation is 4.88 times more than the average. In addition, these kinds of
crashes mainly occurred in 2012 (Rule 5). These results are plausible as violating centerline
regulations, particularly at intersection areas where interactions between different road
user types are high, could lead to head-on collisions with unsuspecting drivers/riders.

Other rules in Table 4 present interesting findings. PTW crashes involving not-at-fault
minibus/van drivers will likely be an angle collision (lift = 2.65). In addition, when a
not-at-fault minibus/van crash occurs due to the PTW rider disregarding the traffic signal,
the likelihood of angle collisions is 3.98 times more than the average (rule 9). From rule
14, it is observed that over-speeding violations increase the probability of PTW crashes
in summer by 2.33 times, which is supported by the literature and is intuitive as drivers,
in general, are likely to engage in risky behaviors when they perceive the weather to be
good [49]. Rules 18–20 show that if a PTW-passenger car crash occurs due to a centerline
violation, the PTW rider is likely to be at fault (not the passenger car driver). However,
according to rule 21, a passenger car driver is likely to be at fault in rear-end crashes
(lift = 2.14). From rule 22, if the rear-end collision is caused by over-speeding, the probability
that a passenger car driver is at fault increases 4.58 times more than the average. A survey
showed that drivers are likely to step on their brakes about 70% of the time when they feel
threatened. An unsuspecting PTW rider who happens to be right behind this vehicle could
easily run into it if the car driver slams his brakes and stops abruptly [56].

Finally, from rule 24, signal violations are likely to lead to angle collisions (supporting
rule 9—{Not-at-fault party: minibus/van, Violation: signal violation} => {Type of collision:
angle}). In addition, Rules 27 and 28 suggest that angle collisions occurring due to signal
violations are likely to occur at intersection segments. This finding is in line with the
literature. Research shows that running red lights at intersections increases the vulnerability
of PTW riders and raises the chance of angle collisions [57]. The authors added that the
vulnerability of PTW riders to angle collisions could be substantially reduced by introducing
red-light cameras.

3.1.2. Interesting Rules for Fatal PTW Crashes Based on PTW Rider’s Fault Status

To obtain a clearer understanding of the risk factors influencing fatal PTW crashes at
crash hotspots due to the fault of PTW riders, association rules were mined for PTW rider-
at-fault crashes occurring at hotspot locations (see Table 5). Rule 1 shows that PTW crashes
occurring on Saturdays are likely to be the fault of PTW riders (lift = 1.18). According to
rules 2 and 3, crashes occurring on Saturdays at main road segments or due to reckless
riding are likely due to the fault of PTW riders. In particular, PTW crashes in Korea mainly
occurred on Saturdays [58]. Due to the reduced traffic volumes, PTW riders are likely to
ride recklessly, causing crashes.

The crash risk factors contained in rules 4–7 show that PTW crashes resulting in two
casualties due to reckless riding during the nighttime or at other road segments, such
as tunnels, overpasses, or underpasses, are likely to be due to the fault of PTW riders.
According to rule 8, if a PTW crash occurs at these segments, the chance that the PTW rider
is at fault increases 1.16 times. In addition, when the crash occurs at other road segments
due to reckless riding, during the nighttime or summer, the probability that the PTW rider
is at fault increases by 1.28, 1.34, and 1.25 times, respectively (see rules 9, 10, 11, and 12).
Finally, the risk factors in rules 13 to 18 show strong associations between nighttime crashes,
reckless riding, and PTW rider at-fault variables. In South Korea, most PTW crashes occur
during the nighttime from 6 p.m. to 6 a.m. [58]. Most ride fast and weave through traffic
to reach their destinations on time. Previous research identified riding at night and on
weekends as a predictor of offenses among PTW riders [59]. These offenses are likely to
increase the risk of crashes involving PTWs, putting the riders and their passengers at
a greater risk of fatal crashes. Interestingly, a study conducted in Singapore maintained
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that PTW riders are likely not to be at fault for a crash that occurs on the expressway or at
intersections during the nighttime due to the low conspicuity of the rider [17]. However, in
South Korea, PTWs are banned from using expressways. Thus, this study considered all
rural and urban roads aside from expressways. Additionally, note that this study focused
on crashes at hotspot locations, which may be the reason for the difference in findings.

Table 5. List of interesting rules identified for fatal PTW rider at-fault crashes at critical locations.

No. Rules S% C% Lift LIC

1 {Day of week: Saturday} => {At-fault party: PTW} 13.11 82.76 1.18 -
2 {Day of week: Saturday, Road segment: other road segments} => {At-fault party: PTW} 8.20 93.75 1.34 1.13
3 {Day of week: Saturday, Violation: reckless driving/riding} => {At-fault party: PTW} 9.29 94.44 1.35 1.14
4 {Number of casualties: two} => {At-fault party: PTW} 18.58 80.95 1.16 -
5 {Number of casualties: two, Road segment: other road segments} => {At-fault party: PTW} 10.93 86.96 1.24 1.07
6 {Number of casualties: two, Time of day: nighttime} => {At-fault party: PTW} 14.75 87.10 1.25 1.08
7 {Number of casualties: two, Violation: reckless driving/riding} => {At-fault party: PTW} 8.20 93.75 1.34 1.16
8 {Road segment: other road segments} => {At-fault party: PTW} 43.72 80.81 1.16 -

9 {Road segment: other road segments, Violation: reckless driving/riding} => {At-fault
party: PTW} 31.69 89.23 1.28 1.10

10 {Road segment: other road segments, Time of day: nighttime} => {At-fault party: PTW} 33.88 87.32 1.25 1.08

11 {Road segment: other road segments, Time of day: nighttime, Violation: reckless
driving/riding} => {At-fault party: PTW} 24.04 93.62 1.34 1.07

12 {Road segment: other road segments, Season: summer} => {At-fault party: PTW} 14.75 87.10 1.25 1.08
13 {Time of day: nighttime} => {At-fault party: PTW} 53.01 76.98 1.10 -
14 {Time of day: nighttime, Violation: reckless driving/riding} => {At-fault party: PTW} 31.69 89.23 1.28 1.16
15 {Time of day: nighttime, Year: 2015} => {At-fault party: PTW} 9.84 85.71 1.23 1.11
16 {Time of day: nighttime, Type of collision: other crash type} => {At-fault party: PTW} 16.94 81.58 1.17 1.06

17 {Time of day: nighttime, Type of collision: other crash type, Violation: reckless
driving/riding} => {At-fault party: PTW} 12.57 88.46 1.26 1.08

18 {Time of day: nighttime, Year: 2013} => {At-fault party: PTW} 12.57 79.31 1.13 1.03

S = 0.01; C = 0.05; L = 1.1, LIC = 1.02.

Association rules for PTW crashes that were not caused by the PTW rider’s fault were
also explored (see Table 6). This was performed by setting the item {Not-at-fault party:
PTW} as the consequence of the rule and identifying strong rules that meet the lift and
LIC criteria. Due to the low number of crashes in which the PTW rider was not at fault
for the crash, the support of the rules generated was lower compared to the other sets of
rules generated. The crash risk factors in rules 1 to 5 show that PTW riders are likely not to
be at fault for rear-end and head-on fatal crashes at hotspot locations. This result seems
counterintuitive as research conducted in Iran identified that the at-fault probability of PTW
riders increases in head-on and rear-end crashes [32]. However, from rule 6, it is evident
that the probability that the PTW rider is not at fault increases by 1.94 times if the head-on
crash is caused by the other drivers’ signal violation/red-light running act. This finding is
plausible as the number of red-light running crashes involving cars in Korea is substantial.
A study conducted in Cheongju, Korea, identified that out of 6130 crashes, 2246 were
red-light running crashes, of which private cars formed the majority (58%) [60]. According
to the authors, the reasons why drivers run red lights could be drowsiness, inattentiveness,
or a perception of being delayed while waiting. As a result, an unsuspecting rider is likely
to collide with a red-light-running vehicle, particularly at an intersection. In line with
our study, Campbell et al. identified that disregarding traffic signals led to more head-on
crashes than other crash types [61].

According to rule 7, a PTW rider is likely not to be at fault if two or more vehicles are
involved in the crash (lift = 1.50). Items such as daytime, sideswipes, spring, and safety
distance violation are common among the items in rules 8 to 18. This finding shows that,
at critical hotspot locations, the PTW rider is likely not to be at fault if s/he is involved in
two or more vehicle crashes, particularly sideswipes, during the daytime or spring due
to improper safety distance. This finding is likely, as several interactions occur between
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different road users during the daytime. Drivers who do not look carefully before changing
lanes are likely to obstruct or hit an oncoming PTW. These findings are consistent with
other studies. For example, the literature identified that a PTW rider is likely not at fault if
a sideswipe crash occurs during the day in an urban setting [32].

Table 6. List of interesting rules identified for fatal PTW rider not-at-fault crashes at critical locations.

No. Rules S% C% Lift LIC

1 {Type of collision: rear-end} => {Not-at-fault party: PTW} 4.92 60.00 1.74 -
2 {Type of collision: rear-end, Year: 2013} => {Not-at-fault party: PTW} 2.73 83.33 2.42 1.39
3 {Type of collision: head-on} => {Not-at-fault party: PTW} 5.46 55.56 1.61 -
4 {Type of collision: head-on, Year: 2017} => {Not-at-fault party: PTW} 1.64 75.00 2.18 1.35
5 {Type of collision: head-on, Year: 2016} => {Not-at-fault party: PTW} 2.19 66.67 1.94 1.20
6 {Type of collision: head-on, Violation: signal violation} => {Not-at-fault party: PTW} 2.19 66.67 1.94 1.20
7 {Number of vehicles involved: two or more} => {Not-at-fault party: PTW} 34.43 51.64 1.50 -

8 {Number of vehicles involved: two or more, Violation: safety distance violation} =>
{Not-at-fault party: PTW} 5.46 71.43 2.07 1.38

9 {Number of vehicles involved: two or more, Road segment: near pedestrian crossing}
=> {Not-at-fault party: PTW} 1.09 66.67 1.94 1.29

10 {Number of vehicles involved: two or more, Road segment: bridge section} =>
{Not-at-fault party: PTW} 2.19 66.67 1.94 1.29

11 {Number of vehicles involved: two or more, Type of collision: sideswipe} =>
{Not-at-fault party: PTW} 4.37 66.67 1.94 1.29

12 {Number of vehicles involved: two or more, Time of day: daytime} => {Not-at-fault
party: PTW} 14.75 65.85 1.91 1.28

13 {Number of vehicles involved: two or more, Time of day: daytime, Violation: safety
distance violation} => {Not-at-fault party: PTW} 3.28 85.71 2.49 1.30

14 {Number of vehicles involved: two or more, Time of day: daytime, Violation: reckless
driving/riding} => {Not-at-fault party: PTW} 4.92 81.82 2.38 1.24

15 {Number of vehicles involved: two or more, Time of day: daytime, Year: 2013} =>
{Not-at-fault party: PTW} 2.19 80.00 2.32 1.21

16 {Number of vehicles involved: two or more, Season: spring, Violation: safety distance
violation} => {Not-at-fault party: PTW} 1.64 75.00 2.18 1.24

17 {Number of vehicles involved: two or more, Season: spring, Year: 2015} => {Not-at-fault
party: PTW} 1.64 75.00 2.18 1.24

18 {Number of vehicles involved: two or more, Season: spring, Time of day: daytime} =>
{Not-at-fault party: PTW} 4.37 72.73 2.11 1.20

S = 0.01; C = 0.05; L = 1.1, LIC = 1.02.

4. Conclusions
4.1. Key Findings

This study’s ultimate goal was to investigate the associations between chains of factors
that lead to fatal PTW crashes at crash hotspot locations in South Korea, considering the
fault status of the PTW rider. Although previous studies highlighted that the influence
of PTW crash risk factors could differ based on the fault status of the rider and that
crash hotspots are critical locations with particularly high crash frequencies, no study
comprehensively examined the key associations between crash risk factors influencing
fatal PTW crashes at hotspot locations considering the fault status of the rider and the
spatio-temporal locations of the crash. This study bridged the literature gap by

• Identifying different types of fatal PTW crash hotspots in South Korea based on
spatio-temporal information, together with their evolution patterns over time;

• Exploring the chains of contributory factors of fatal PTW crashes at the crash hotspots;
• Discovering and comparing the chains of contributory factors influencing fatal PTW

crashes considering the fault status of the PTW rider.

To achieve this study’s objective, the police-reported fatal PTW crashes were obtained,
and time-stamped crash observations were geocoded and displayed on a map. This
information is then used in spatio-temporal clustering of fatal PTW crashes to identify PTW
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crashes at PTW crash hotspots with a significantly increasing trend. The association rules
mining technique was then employed to explore the associations existing among the crash
risk factors and between crash risk factors and the at-fault involvement of the PTW rider.

Generally, this study identified that the majority of the significant fatal PTW hotspot
locations were in the Seoul Metropolitan Area. While the hotspot locations in Seoul were
predominantly consecutive, those in Gimpo were mostly new hotspots. From the general
association rules, it was identified that signal violations are likely to cause angle collisions
and have strong associations with intersection crashes. In addition, violations such as
running red lights and centerline crossing are strongly related to angle collisions. Over-
speeding is also found to have strong associations with PTW crashes during the summer,
and rear-end PTW-involved crashes occurring due to over-speeding are likely to be caused
by passenger car drivers.

Upon analyzing the rules identified at hotspots for both at-fault and not-at-fault
PTW riders, it was identified that while there were strong associations between fatal PTW
rider at-fault crashes and the nighttime variable at crash hotspots, that of PTW rider
not-at-fault crashes were highly correlated with the daytime variable. Regarding traffic
violations leading to fatal PTW crashes at hotspot locations, while reckless riding is the
predominant and the only violation found among the rules mined for PTW rider at-fault
crashes, those for PTW rider not-at-fault crashes were diverse, including signal violations,
safety distance violations, and reckless driving. Concerning the season in which fatal PTW
crashes occurred, it was discovered that summer had strong associations with PTW rider
at-fault crashes, and spring had strong correlations with PTW rider not-at-fault crashes.

4.2. Proposed Countermeasures

Based on the findings of this study, the following countermeasures are proposed for
both PTW riders and other drivers to help mitigate the fatality of PTW crashes at the
hotspot locations.

• The finding that most fatal PTW crash locations in Seoul have begun getting more
popular in recent years and the significant positive trends identified highlight that the
safety of PTW riders is gradually worsening. Therefore, there is a need to intensify
rider/driver education and enforcement to help check traffic violations such as speed-
ing, signal violations, and centerline violations to help reduce the fatality of these
crashes. Education of road users could be undertaken through safety campaigns, and
enforcement could be targeted at both the road users and the business owners who
use PTWs for business;

• Excessive speeds by both riders and drivers could be managed by the application of
traffic calming designs, such as introducing mini traffic circle configurations at inter-
sections, speed humps, roadway diets, and speed limit reductions, where necessary,
on rural and urban roads. In addition, other control measures which self-enforce
speed reductions, such as horizontal and vertical deflections, could be explored to
help reduce the approach speed of vehicles;

• While signal violations could be checked by deploying adequate red-light cameras and
enforcement measures, it would be worthwhile to consider making traffic signals more
visible for all road users. This can be achieved by carefully considering their design,
placement, and luminance when choosing traffic signals. Clearly visible roadway
signs should be placed at vantage points to remind riders of impending intersections
and speed limits. In addition, adequately putting in measures to control the speeds of
vehicles could reduce their chance of running red lights;

• Centerline violations at crash hotspots could be controlled by using countermeasures
such as centerline rumble strips to alert drivers who may unintentionally drive across
the centerlines. In addition, illuminated in-ground light-emitting diodes (LEDs) and
retroreflective lane markings could be used in marking out the centerlines to help
provide visual guidance and increase drivers’ awareness of road separations;
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• The finding that fatal rider at-fault PTW crashes at hotspot locations is strongly
associated with nighttime highlights that these riders may be fatigued, sleepy, or
under the influence of drugs due to the need to overwork and achieve daily targets.
Again, this problem could be tackled by educating riders on the need to rest when
tired. While rumble strips and better lighting at night could be used to check crashes
associated with drowsiness and low visibility, nighttime riding restrictions at hotspots
could be meted out to PTW riders, particularly delivery company riders who are found
culpable to ensure that riders obey traffic regulations even at night. In addition, there
is a need to encourage the wearing of luminous vests to increase the conspicuity of
riders. Similar interventions could be explored in checking PTW rider at-fault crashes
during summer;

• Other vehicle drivers have been identified to have strong associations with traffic
infringements such as reckless driving, signal violations, and safety distance violations,
leading to PTW rider not-at-fault crashes. These violations are likely due to driver
distraction and aggressive driving. To control rider not-at-fault crashes, vehicle drivers
need to be trained on the need to stay focused and be on the lookout for PTW riders,
especially when making lane changes. Additionally, there is a need to heighten
enforcement such that repeat offenders of traffic infringements are subjected to harsher
punishments to deter others;

• In the long term, interventions such as providing exclusive PTW lanes at crash hotspots
and creating policies for anti-lock braking systems should be considered.

4.3. Study Limitations and Future Study Areas

The findings obtained from this comprehensive study provide a clearer insight into
the factors impacting fatal PTW crashes at hotspots considering PTW riders’ fault status.
Together with the recommended countermeasures, this study can be useful for policymak-
ers and road safety authorities to develop appropriate strategies geared toward reducing
fatal PTW crashes at hotspots. As a limitation, this study lacked basic information about
the driver/rider and other environmental features. These variables should be included in
future studies to help understand how they affect the occurrence of PTW crashes clearly
at hotspot locations. In addition, selecting the most relevant rules for a given application
can be challenging, as it is largely based on the researcher’s knowledge of the field and
the thresholds selected. Although this study used a dataset from South Korea, its findings
and recommendations could be extended to other countries with increasing dependence
on PTWs. Future studies may adopt the method adopted in this study to conduct a more
comprehensive analysis to understand and provide more targeted mitigation strategies
specific to their locations. It is also recommended that future studies consider exploring
the factors associated with other crash severity types at spatio-temporal hotspot locations,
considering variables like land use. Finally, given that Seoul is a megacity with the highest
population density in the country, it would be worthwhile to conduct a separate analysis to
identify hotspots in Seoul and compare them to other parts of the country.
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