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Abstract: This paper provides new models of the attention-based random forests called LARF (leaf
attention-based random forest). The first idea behind the models is to introduce a two-level attention,
where one of the levels is the “leaf” attention, and the attention mechanism is applied to every leaf of
trees. The second level is the tree attention depending on the “leaf” attention. The second idea is to
replace the softmax operation in the attention with the weighted sum of the softmax operations with
different parameters. It is implemented by applying a mixture of Huber’s contamination models
and can be regarded as an analog of the multi-head attention, with “heads” defined by selecting a
value of the softmax parameter. Attention parameters are simply trained by solving the quadratic
optimization problem. To simplify the tuning process of the models, it is proposed to convert the
tuning contamination parameters into trainable parameters and to compute them by solving the
quadratic optimization problem. Many numerical experiments with real datasets are performed for
studying LARFs. The code of the proposed algorithms is available.

Keywords: attention mechanism; random forest; Nadaraya–Watson regression; quadratic programming;
contamination model

1. Introduction

Several crucial improvements in neural networks have been made in recent years.
One of them is the attention mechanism, which has significantly improved classification
and regression models in many machine learning areas, including the natural language
processing models, computer vision, etc. [1–5]. The idea behind the attention mechanism is
to assign weights to features or examples in accordance with their importance and their
impact on the model predictions. The attention weights are learned by incorporating an
additional feedforward neural network within a neural network architecture. Additionally,
the success of the attention models as components of the neural network motivates one to
extend this approach to other machine learning models different from neural networks,
for example, to random forests (RFs) [6]. Following this idea, a new model called the
attention-based random forest (ABRF) has been developed [7,8]. This model incorporates
the attention mechanism into ensemble-based models such as RFs and the gradient boosting
machine [9,10]. The ABRF models stem from the interesting interpretation [1,11] of the
attention mechanism through the Nadaraya–Watson kernel regression model [12,13]. The
Nadaraya–Watson regression model learns a non-linear function by using a weighted
average of data using a specific normalized kernel as a weighting function. A detailed
description of the model can be found in Section 3. According to [7,8], attention weights
in the Nadaraya–Watson regression are assigned to decision trees in an RF depending
on examples which fall into leaves of trees. Weights in ABRF have trainable parameters
and use Huber’s ε-contamination model [14] for defining the attention weights. Huber’s
ε-contamination model can be regarded as a set of convex combinations of probability
distributions, where one of the distributions is considered as a set of trainable attention
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parameters. A detailed description of the model is provided in Section 5.1. In accordance
with the ε-contamination model, each attention weight consists of two parts: the softmax
operation with the tuning coefficient 1− ε and the trainable bias of the softmax weight
with coefficient ε. One of the improvements of ABRF, which has been proposed in [15],
is based on joint incorporating self-attention and attention mechanisms into the RF. The
proposed models outperform ABRF, but this outperformance is not sufficient, because this
model provided inferior results for several datasets. Therefore, we propose a set of models
which can be regarded as extensions of ABRF and which are based on two main ideas.

The first idea is to introduce a two-level attention, where one of the levels is the “leaf”
attention, i.e., the attention mechanism is applied to every leaf of a tree. As a result, we
obtain the attention weights assigned to leaves and the attention weights assigned to trees.
The attention weights of trees depend on the corresponding weights of leaves which belong
to these trees. In other words, the attention at the second level depends on the attention at
the first level, i.e., we obtain the attention of the attention. Due to the “leaf” attention, the
proposed model will be abbreviated as LARF (leaf attention-based random forest).

One of the peculiarities of LARFs is using a mixture of Huber’s ε-contamination
models instead of the single contamination model, as has been conducted in ABRF. This
peculiarity stems from the second idea behind the model, which takes into account the
softmax operation with different parameters. In fact, we replace the standard softmax
operation by the weighted sum of the softmax operations with different parameters. With
this idea, we achieve two goals. First of all, we partially solve the problem of the tuning
parameters of the softmax operations which are a part of the attention operations. Each
value of the tuning parameter from the predefined set (from the predefined grid) is used
in a separate softmax operation. Then, weights of the softmax operations in the sum are
trained jointly while training other parameters. This approach can also be interpreted as the
linear approximation of the softmax operations with trainable weights and with different
values of tuning parameters. However, a more interesting goal is that some analogs of
the multi-head attention [16] are implemented by using the mixture of contamination
models, where “heads” are defined by selecting a value of the corresponding softmax
operation parameter.

Additionally, in contrast to ABRF [8], where the contamination parameter ε of Huber’s
model was a tuning parameter, the LARF model considers this parameter as the training one.
This allows us to significantly reduce the model tuning time and avoid the enumeration of
the parameter values in accordance with the grid. The same is implemented for the mixture
of the Huber’s models.

Different configurations of LARF produce a set of models, which depend on trainable
and tuning parameters of the two-level attention and on algorithms for their calculation.

We investigate two types of RFs in the experiments: original RFs and Extremely
Randomized Trees (ERT) [17]. According to [17], the ERT algorithm chooses a split point
randomly for each feature at each node and then selects the best split among these. In
contrast to ERTs, original RFs choose the most optimal (not random) split of a set of features
at each node in accordance with a criterion, for example, with the Gini impurity [6].

Our contributions can be summarized as follows:

1. We propose new two-level attention-based RF models, where the attention mechanism
at the first level is applied to every leaf of trees, the attention at the second level
incorporates the “leaf” attention, and it is applied to trees. The training of the two-
level attention is reduced to solving the standard quadratic optimization problem.

2. A mixture of Huber’s ε-contamination models is used to implement the attention
mechanism at the second level. The mixture allows us to replace a set of tuning
attention parameters (the temperature parameters of the softmax operations) with
trainable parameters, whose optimal values are computed by solving the quadratic
optimization problem. Moreover, this approach can be regarded as an analog of the
multi-head attention.
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3. We propose an approach to convert the tuning contamination parameters (ε parame-
ters) in the mixture of the ε-contamination models into trainable parameters. Their
optimal values are also computed by solving the quadratic optimization problem.

Many numerical experiments with real datasets are performed for studying LARFs.
They demonstrate outperforming results of some LARF modifications. The code of the
proposed algorithms can be found at https://github.com/andruekonst/leaf-attention-
forest (accessed on 20 April 2023).

This paper is organized as follows. The related work can be found in Section 2. A
brief introduction to the attention mechanism as the Nadaraya–Watson kernel regression is
given in Section 3. A general approach to incorporating the two-level attention mechanism
into the RF is provided in Section 4. Ways for the implementation of the two-level attention
mechanism and constructing several attention-based models by using the mixture of
Huber’s e-contamination models are considered in Section 5. Numerical experiments with
real data, which illustrate properties of the proposed models, are provided in Section 6.
The concluding remarks can be found in Section 7.

2. Related Work

Attention mechanism. Due to the great efficiency of machine learning models with
the attention mechanisms, different attention-based models have become of great interest
in recent years. Consequently, numerous attention models have been proposed to improve
the performance of machine learning algorithms. The most comprehensive analysis and
description of various attention-based models can be found in in-depth surveys [1–5,18].

It is important to note that parametric attention models as parts of neural networks
are mainly trained by applying the gradient-based algorithms which lead to computational
problems, when training is carried out through the softmax function. Many approaches
have been proposed to cope with this problem. A large part of the approaches is based on
the linear approximation of the softmax attention [19–22]. Another part of the approaches
is based on random feature methods to approximate the softmax function [18,23].

Another improvement of the attention-based models is to use the self-attention which
was proposed in [16] as a crucial component of neural networks called Transformers. The
self-attention models have also been studied in surveys [4,24–28]. This is only a small part
of all the works devoted to attention and self-attention mechanisms.

It should be noted that the aforementioned models are implemented as neural net-
works, and they have not been studied for applications to other machine learning models,
for example, to RFs. Attempts to incorporate the attention and self-attention mechanisms
into the RF and the gradient boosting machine were made in [7,8,15]. Following these
research works, we extend the proposed models to improve the attention-based models.
Apart from this, we propose the attention models, which do not use the gradient-based
algorithms for computing optimal attention parameters. The training process of the models
is based on solving standard quadratic optimization problems.

Weighted RFs. A lot of approaches have been proposed in recent years to improve
RFs. One of the important approaches is based on the assignment of weights to decision
trees in the RF. This approach is implemented in various algorithms [29–34]. However, most
of these algorithms have a disadvantage. The weights are assigned to trees independently
of training or testing examples, i.e., each weight characterizes trees on average, over all
training examples, and it does not take into account any feature vector. Moreover, the
weights do not have training parameters which usually make the model more flexible
and accurate.

Contamination model in attention mechanisms. There are several models, which
use imprecise probabilities in order to model the lack of sufficient training data. One
of the first models is the so-called Credal Decision Tree, which is based on applying the
imprecise probability theory to classification and proposed in [35]. Following this work, a
number of models, based on imprecise probabilities, were presented in [36–39], where the
imprecise Dirichlet model is used. This model can be regarded as a reparametrization of the

https://github.com/andruekonst/leaf-attention-forest
https://github.com/andruekonst/leaf-attention-forest
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imprecise ε-contamination model, which is applied to LARF. The imprecise ε-contamination
model has been also applied to machine learning methods, for example, to the support
vector machine [40] or to the RF [41]. The attention-based RF applying the imprecise
ε-contamination model to the parametric attention mechanism was proposed in [8,15].
However, there are no other works which use the imprecise models in order to implement
the attention mechanism.

3. Nadaraya–Watson Regression and the Attention Mechanism

The basis of the attention mechanism can be considered in the framework of the
Nadaraya–Watson kernel regression model [12,13], which estimates a function f as a
locally weighted average using a kernel as a weighting function. Suppose the dataset is
represented by n examples (x1, y1), ..., (xn, yn), where xi = (xi1, ..., xim) ∈ Rm is a feature
vector consisting of m features; yi ∈ R is a regression output. The regression task is to
construct a regressor f : Rm → R, which can predict the output value ỹ of a new observation
x, using the dataset.

The Nadaraya–Watson kernel regression estimates the regression output ỹ correspond-
ing to a new input feature vector x, as follows [12,13]:

ỹ =
n

∑
i=1

α(x, xi)yi, (1)

where weight α(x, xi) conforms with a relevance of the feature vector xi to the vector x.
It can be observed from the above that the Nadaraya–Watson regression model esti-

mates ỹ as a weighted sum of training outputs yi from the dataset so that their weights
depend on the location of xi relative to x. This means that the closer xi is to x, the greater
weight is assigned to yi.

According to the Nadaraya–Watson kernel regression [12,13], weights can be defined
by means of the kernel K as a function of the distance between the vectors xi and x. The
kernel estimates how xi is close to x. Then, the weight is written as follows:

α(x, xi) =
K(x, xi)

∑n
j=1 K(x, xj)

. (2)

One of the popular kernels is the Gaussian kernel. It produces weights of the form:

α(x, xi) = σ

(
−‖x− xi‖2

τ

)
, (3)

where τ is a tuning (temperature) parameter; σ(·) is a notation of the softmax operation.
In terms of the attention mechanism [42], the vector x, vectors xi, outputs yi, and

weight α(x, xi) are called the query, keys, values, and the attention weight, respectively.
Weights α(x, xi) can be extended by incorporating trainable parameters. In particular,
parameter τ can also be regarded as the trainable parameter.

Many forms of parametric attention weights, which also define the attention mech-
anisms, have been proposed, e.g., the additive attention [42], the multiplicative or dot-
product attention [16,43]. We also consider the attention weights based on the Gaussian
kernels, i.e., producing the softmax operation. However, the parametric forms of the
attention weights will be quite different from many popular attention operations.

4. Two-Level Attention-Based Random Forest

One of the powerful machine learning models handling tabular data is the RF, which
can be regarded as an ensemble of T decision trees so that each tree is trained on a subset of
examples randomly selected from the training set. In the original RF, the final RF prediction
ỹ for the testing example x is determined by averaging predictions ỹ1, ..., ỹT obtained for
all trees.
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Let Jk(x) be the index set of examples which fall into the same leaf in the k-th tree as x.
One of the ways to construct the attention-based RF is to introduce the mean vector Ak(x)
defined as the mean of the training vectors xj which fall into the same leaf as x. However,
this simple definition can be extended by incorporating the Nadaraya–Watson regression
into the leaf. In this case, we can write

Ak(x) = ∑
j∈Jk(x)

µ
(
x, xj

)
xj, (4)

where µ
(
x, xj

)
is the attention weight in accordance with the Nadaraya–Watson

kernel regression.
In fact, (4) can be regarded as the self-attention. The idea behind (4) is that we find the

mean value of x by assigning weights to training examples which fall into the corresponding
leaf in accordance with their vicinity to the vector x.

In the same way, we can define the mean value of regression outputs corresponding to
examples falling into the same leaf as x:

Bk(x) = ∑
j∈Jk(x)

µ
(
x, xj

)
yj. (5)

Expression (5) can be regarded as the attention. The idea behind (5) is to obtain the
prediction provided by the corresponding leaf by using the standard attention mechanism
or Nadaraya–Watson regression. In other words, we weigh predictions provided by the
k-th leaf of a tree in accordance with the distance between the feature vector x, which falls
into the k-th leaf, and all the feature vectors xj which fall into the same leaf. It should be
noted that the original regression tree provides the averaged prediction; i.e., it corresponds
to the case when all µ

(
x, xj

)
are identical for all j ∈ Jk(x) and equal to 1/#Jk(x).

We suppose that the attention mechanisms used above are non-parametric. This
implies that weights do not have trainable parameters. It is assumed that

∑
j∈Jk(x)

µ
(
x, xj

)
= 1. (6)

The “leaf” attention introduced above can be regarded as the first-level attention in a
hierarchy of the attention mechanisms. It characterizes how the feature vector x fits the
corresponding tree.

If we suppose that the whole RF consists of T decision trees, then, the set of Ak(x),
k = 1, ..., T, in the framework of the attention mechanism, can be regarded as a set of keys
for every x, the set of Bk(x), k = 1, ..., T, can be regarded as a set of values. This implies
that the final prediction ỹ of the RF can be computed by using the Nadaraya–Watson
regression, namely,

ỹ = f (x, w) =
T

∑
k=1

α(x, Ak(x), w)Bk(x). (7)

Here, α(x, Ak(x), w) is the attention weight with the vector w = (w1, ..., wT) of train-
able parameters which belong to a setW so that they are assigned to each tree. The attention
weight α is defined by the distance between x and Ak(x). It is assumed due to properties
of the attention weights in the Nadaraya–Watson regression that the following condition
is valid:

T

∑
k=1

α(x, Ak(x), w) = 1. (8)

The above “random forest” attention can be regarded as the second-level attention
which assigns weights to trees in accordance with their impact on the RF prediction
corresponding to x.
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The main idea behind the approach is to use the above attention mechanisms jointly.
After substituting (4) and (5) into (7), we obtain

ỹ(x) = f (x, w) =
T

∑
k=1

α(x, Ak(x), w) ∑
j∈Jk(x)

yjµ
(
x, xj

)
, (9)

or

ỹ(x) =
T

∑
k=1

α

x, ∑
i∈Jk(x)

µ(x, xi)xi, w

 ∑
j∈Jk(x)

yjµ
(
x, xj

)
. (10)

A scheme of the two-level attention is shown in Figure 1. It is observed from Figure 1
how the attention at the second level depends on the “leaf” attention at the first level.

In total, we obtain the trainable attention-based RF with parameters w, which are
defined by minimizing the expected loss function over the setW of parameters, respectively,
as follows:

wopt = arg min
w∈W

n

∑
s=1

L(ỹ(xs), ys, w). (11)

The loss function can be rewritten as the following:

n

∑
s=1

L(ỹ(xs), ys, w) =
n

∑
s=1

(ys − ỹ(xs))
2

=
n

∑
s=1

ys −
T

∑
k=1

∑
j∈Jk(xs)

yjµ
(
xs, xj

)
· α

xs, ∑
i∈Jk(xs)

µ(xs, xi)xi, w

2

. (12)

The optimal trainable parameters w are computed depending on forms of the attention
weights α in the optimization problem (12). It should be noted that the problem (12) may
be complex from the computation point of view. Therefore, one of our results is to propose
such a form of the attention weights α that reduces the problem (12) to a convex quadratic
optimization problem, whose solution does not meet any difficulties.

Figure 1. A scheme of the proposed two-level hierarchical attention model applied to the RF.
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It is important to point out that the additional sets of trainable parameters can be
introduced into the definition of the attention weights µ

(
x, xj

)
. On the one hand, we obtain

more flexible attention mechanisms in this case due to the parametrization of the training
weights µ

(
x, xj

)
. On the other hand, many trainable parameters lead to the increasing

complexity of the optimization problem (11) and the possible overfitting of the whole RF.

5. Modifications of the Two-Level Attention-Based Random Forest

Different configurations of LARF produce a set of models which depend on trainable
parameters of the two-level attention and its implementation. A classification of models
and their notations are shown in Table 1. In order to explain the classification, two subsets
of the attention parameters should be considered:

1. Parameters produced by the contamination probability distributions of Huber’s ε-
contamination model in the form of the vector w, whose length coincides with the
number of trees.

2. Parameters ε1, ..., εM of contamination in the mixture of M in the Huber’s contamina-
tion models, which define the imprecision of the mixture model.

The following models can be constructed depending on trainable parameters and on
using the “leaf” attention, i.e., the two-level attention mechanism:

• ε-ARF: The attention-based forest with learning ε as an attention parameter, but with-
out the training vector w, i.e., wk = 1/T, k = 1, ..., T, and without the
“leaf” attention;

• w-ARF: The attention-based forest with the learning vector w as attention parameters
and without the “leaf” attention;

• ε-LARF: The attention-based forest with learning ε as an attention parameter, but
without the training vector w and with the “leaf” attention, i.e., by using the two-level
attention mechanism;

• w-LARF: The attention-based forest with the learning vector w as attention parameters
and with the “leaf” attention, i.e., by using the two-level attention mechanism;

• ε-w-ARF: The attention-based forest with the learning vector w and the parameter ε
as attention parameters and without the “leaf” attention;

• ε-w-LARF: The attention-based forest with the learning vector w and the parameter ε
as attention parameters and with the “leaf” attention;

• εM-ARF: The attention-based forest with the learning parameters ε1, ..., εM as attention
parameters with wk = 1/T, k = 1, ..., T, and without the “leaf” attention;

• εM-LARF: The attention-based forest with the learning parameters ε1, ..., εM as atten-
tion parameters with wk = 1/T, k = 1, ..., T, and with the “leaf” attention;

• εM-w-ARF: The attention-based forest with the learning vector w and the parameters
ε1, ..., εM as attention parameters and without the “leaf” attention;

• εM-w-LARF: The attention-based forest with the learning vector w and the parameters
ε1, ..., εM as attention parameters and with the “leaf” attention.

Models ε-ARF, ε-LARF, ε-w-ARF, and ε-w-LARF are not presented in Table 1 be-
cause they are special cases of models εM-ARF, εM-LARF, εM-w-ARF, and εM-w-LARF,
respectively, by M = 1.

Table 1. Classification of the attention-based RF models proposed and studied in this paper.

Tuning ε Trainable ε1, ..., εM

Fixed w Trainable w Fixed w Trainable w

Without the “leaf” attention - w-ARF εM-ARF εM-w-ARF

With the “leaf” attention - w-LARF εM-LARF εM-w-LARF
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5.1. Huber’s Contamination Model and the Basic Two-Level Attention

In order to simplify the optimization problem (12) and to effectively solve it, we
offer to represent the attention weights α(x, Ak(x), w) by using Huber’s ε-contamination
model [14]. The idea to represent the attention weight by means of the ε-contamination
model has been proposed in [8]. We use this idea to incorporate the ε-contamination model
into the optimization problem (12) and to construct the first modifications of LARF.

Let us provide a brief introduction to Huber’s ε-contamination model. The model
considers a set of probability distributions of the form F(x) = (1− ε) · P(x) + ε · R. Here,
P(x) = (p1(x), ..., pT(x)) is a discrete probability distribution contaminated by another
probability distribution, denoted as R = (r1, ..., rT), which can be arbitrary in the unit
simplex having the dimension T. It is important to note that the distribution P depends
on the feature vector x, i.e., it is different for every vector x, whereas the distribution R
does not depend on x. The contamination parameter ε ∈ [0, 1] controls the impact of the
contamination probability distribution R on the distribution P(x). Since the distribution R
can be arbitrary, the set of the distributions F forms a subset of the unit simplex so that its
size depends on the parameter ε. If ε = 0, then the subset of distributions F is reduced to
the single distribution P(x). In case ε = 1, the set of F(x) is the whole unit simplex.

Following the common definition of the attention weights through the softmax opera-
tion with the parameter τ, we propose to define each probability in P(x) as

pk(x) = σ
(
−‖x−Ak(x)‖2/τ

)
.

This implies that the distribution P(x) characterizes how the feature vector x is far
from the vector Ak(x) in all trees of the RF. Let us suppose that the probability distribution R
is the vector of the trainable parameters w. The idea is to train the parameters w to achieve
the best accuracy of the RF. After substituting the softmax operation into the attention
weight α, we obtain:

α(x, Ak(x), w) = (1− ε) · σ
(
−‖x−Ak(x)‖2/τ

)
+ ε · wk, k = 1, ..., T. (13)

One can observe from (13) that the attention weight is linearly dependent on the
trainable parameters w = (w1, ..., wT). It is important to note that the attention weight
assigned to the k-th tree depends only on the k-th parameter wk, but not on other elements of
the vector w. The parameter ε is a tuning parameter determined by means of the standard
validation procedure. It should be noted that elements of the vector w are probabilities.
Hence, we can write

T

∑
k=1

wk = 1, wk ≥ 0, k = 1, ..., T. (14)

This implies that the setW is the unit simplex of the dimension T.
Let us return to the attention weight µ

(
x, xj

)
of the first level. The attention is non-

parametric at the first level; therefore, the attention weight can be defined in the standard
way by using the Gaussian kernel or the softmax operation with the parameter τ0; i.e., it
can be expressed in this form:

µ
(
x, xj

)
= σ

(
−
∥∥x− xj

∥∥2/τ0

)
. (15)

Finally, we can rewrite the loss function (12) by taking into account the above defini-
tions of the attention weights, as follows:



Informatics 2023, 10, 40 9 of 19

min
w∈W

n

∑
s=1

L(ỹ(xs), ys, w)

= min
w∈W

n

∑
s=1

(
ys −

T

∑
k=1

((1− ε)Ck(xs)− εDk(xs)wk)

)2

, (16)

where

Ck(xs) = ∑l∈Jk(xs)
yl · σ

(
−‖xs − xl‖2

τ0

)

× σ

−
∥∥∥x−∑i∈Jk(xs) xi · σ

(
−‖xs − xi‖2/τ0

)∥∥∥2

τ

, (17)

Dk(xs) = ∑j∈Jk(xs)
yj · σ

(
−
∥∥xs − xj

∥∥2

τ0

)
. (18)

One can observe from the above that Ck(xs) and Dk(xs) do not depend on the param-
eters w. Therefore, the objective function (16) jointly with the simple constraints w ∈ W
or (14) is the standard quadratic optimization problem, which can be solved by means
of many available efficient algorithms. The corresponding model is called w-LARF. The
notation means that trainable parameters are w. The same model without “leaf” attention
is denoted as w-ARF. It coincides with the model ε-ABRF proposed in [8].

It should be worth knowing that the problem (16) is similar to the optimization
problem stated in [7,8]. However, it turns out that the addition of the “leaf” attention
significantly improves the RF, as it will be demonstrated by many numerical experiments
with real data.

5.2. Models with the Trainable Contamination Parameter ε

One of the important contributions to the work, which makes the proposed model
different from the model presented in [7,8], is the idea of learning the contamination param-
eter ε jointly with the parameters w. However, this idea leads to a complex optimization
problem, where gradient-based algorithms have to be used. In order to avoid using these
algorithms and to tackle a simple optimization problem, we consider two ways. The first
way is just to assign the same value 1/T to all parameters wk. Then, the optimization
problem (16) can be rewritten as the following:

min
0≤ε≤1

n

∑
s=1

(
ys −

T

∑
k=1

(
(1− ε)Ck(xs)− εDk(xs)

1
T

))2

. (19)

We have a simple quadratic optimization problem with one variable ε. Let us call the
corresponding model as ε-LARF. The notation means that the trainable parameter is ε. The
same model without the “leaf” attention is denoted as ε-ARF.

Another way is to introduce new variables γk = εwk, k = 1, ..., T. Then, the optimiza-
tion problem (16) can be rewritten in this form:

min
γ1,...,γT ,ε

n

∑
s=1

(
ys − (1− ε)

T

∑
k=1

Ck(xs)−
T

∑
k=1

γkDk(xs)

)2

, (20)

subject to
T

∑
k=1

γk = ε, γk ≥ 0, k = 1, ..., T, (21)
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0 + ς ≤ ε ≤ 1. (22)

We again deal with the quadratic optimization problem with new optimization vari-
ables γ1, ..., γT , ε and linear constraints. The parameter ς takes a small value to avoid the
case ε = 0. The corresponding model is denoted as ε-w-LARF. The notation means that the
trainable parameters are w and ε. The same model without the “leaf” attention is denoted
as ε-w-ARF.

5.3. Mixture of Contamination Models

Another important contribution is an attempt to search for an optimal value of the
temperature parameter τ in (13) or in (17). We propose an approximate approach, which
can significantly improve the model. Let us introduce a finite set {τ1, ..., τM} of M values of
the parameter τ. Here, M can be regarded as a tuning integer parameter which impacts
the number of all training parameters. Large values of M may lead to a large number of
training parameters and the corresponding overfitting. Small values of M may lead to an
inexact approximation of τ.

Before considering how the optimization problem can be rewritten with allowance for
the above information, we again return to the attention weight α in (13) and represent it
as follows:

α(x, Ak(x), wk) =
1
M

M

∑
j=1

αj(x, Ak(x), wk), (23)

where

αj(x, Ak(x), wk) = (1− εj)σ

(
−‖x−Ak(x)‖2

τj

)
+ εjwk. (24)

We have a mixture of M contamination models with the different contamination
parameters εj. It is obvious that the sum of new weights α over k = 1, ..., T is 1 because the
sum of each αj(x, Ak(x), wk) over k = 1, ..., T is also 1. Each αj(x, Ak(x), wk) forms a small
simplex so that its center is defined by τj and its size is defined by τj. The corresponding
sets of possible attention weights are depicted in Figure 2, where the unit simplex by
T = 3 includes small simplices corresponding to three (M = 3) contamination models
αj(x, Ak(x), wk), j = 1, 2, 3, with different centers and different contamination parameters
ε1, ε2, ε3. The “mean” simplex of weights α(x, Ak(x), wk) is depicted by using dashed
sides. Parameters w are optimized so that the attention weights will be located in the
“mean” simplex.

Figure 2. The unit simplex of possible attention weights, which includes small simplices correspond-
ing to three contamination models with different centers and different contamination parameters ε

and the “mean” simplex (with dashed sides), which defines the set of the final attention weights.
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Let us prove that the resulting “mean” model represents the ε-contamination model
with the contamination parameter ε. We use Pj to denote the probability distibution

Pj = (p(1)j , ..., p(T)j ) as follows:

Pj = σ

(
−‖x−Ak(x)‖2

τj

)
. (25)

Then, we can write

α(x, Ak(x), wk) =
1
M

M

∑
j=1

(1− εj)Pj +
1
M

M

∑
j=1

εjwk

=
1
M

M

∑
j=1

(1− εj)Pj + εwk, (26)

where

ε =
1
M

M

∑
j=1

εj. (27)

Suppose there is a probability distribution Q = (q(1), ..., q(T)); therefore, it holds

1
M

M

∑
j=1

(1− εj)Pj = (1− ε)Q. (28)

If we prove that the probability distribution Q exists, the resulting “mean” model is
the ε-contamination model. Let us find sums of the left and the right sides of (28) over
i = 1, ..., T. Hence, we obtain

1
M

M

∑
j=1

(1− εj)
T

∑
i=1

p(i)j = (1− ε)
T

∑
i=1

q(i). (29)

Substituting (27) into (29), we obtain

T

∑
i=1

q(i) = 1,

as it was to be proved.
The introduced mixture of the contamination models can be regarded as a multi-head

attention to some extent, where every “head” is produced by using a certain parameter τj.
Let us represent the softmax operation in (13) jointly with the factor (1− ε) as follows:

(1− ε) · σ
(
−‖x−Ak(x)‖2

τ

)
=

1
M

M

∑
j=1

(1− εj) · σ
(
−‖x−Ak(x)‖2

τj

)
. (30)

It can be observed from (30) that new parameters ε1, ..., εM along with τ1, ..., τM are
introduced in the place of ε and τ, respectively. Term (1− ε)· Ck(xs) in (16) and (17) is
replaced with the following terms:

1
M

M

∑
j=1

(1− εj)C
(j)
k (xs), (31)
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where

C(j)
k (xs) = ∑l∈Jk(xs)

yl · σ
(
−‖xs − xl‖2

τ0

)

× σ

−
∥∥∥xs −∑i∈Jk(xs) xiµ(xs, xi)

∥∥∥2

τj

. (32)

Finally, we observed the following optimization problem:

min
γ1,...,γT ,ε

n

∑
s=1

(
ys −

1
M

M

∑
j=1

(1− εj)
T

∑
k=1

C(j)
k (xs)

− 1
M

M

∑
j=1

εj

T

∑
k=1

wkDk(xs)

)2

, (33)

subject to
T

∑
k=1

wk = 1, wk ≥ 0, k = 1, ..., T.

Let us introduce new variables γ
(j)
k = wkεj, k = 1, ..., T, j = 1, ..., M. Hence, we can

write the optimization problem with the new M · T + M variables as

min
γ1,...,γT ,ε

n

∑
s=1

(
ys −

1
M

M

∑
j=1

(1− εj)
T

∑
k=1

C(j)
k (xs)

− 1
M

M

∑
j=1

T

∑
k=1

γ
(j)
k Dk(xs)

)2

, (34)

subject to
T

∑
k=1

γ
(j)
k = εj, γ

(j)
k ≥ 0, k = 1, ..., T, , j = 1, ..., M, (35)

0 + ς ≤ εj ≤ 1. (36)

We again face the quadratic optimization problem with linear constraints. The corre-
sponding model will be denoted as εM-w-ARF or εM-w-LARF, depending on applying
the “leaf” attention. The notation means that the trainable parameters are w and ε1, ..., εM.
Additionally, we will use the same model, but with condition wk = 1/T for all k = 1, ..., T.
The corresponding models are denoted as εM-ARF or εM-LARF.

6. Numerical Experiments

Let us introduce notations for different models of the attention-based RFs.

1. RF (ERT): the original RF (the ERT) without applying attention mechanisms;
2. ARF (LARF): the attention-based forest which has the following modifications: εM-

ARF, εM-LARF, εM-w-ARF, and εM-w-LARF.

In all experiments, RFs as well as ERTs consist of 100 trees. To select the best tuning
parameters in numerical experiments, a 3-fold cross-validation on the training set consisting
of ntr = 4n/5 examples with 100 repetitions is performed. The search for the best parameter
τ0 is carried out by considering all its values in a predefined grid. A cross-validation
procedure is subsequently used to select their appropriate values. The testing set for
computing the accuracy measures is comprised of ntest = n/5 examples. In order to obtain
desirable estimates of the vectors Ak(x) and Bk(x), all trees in the experiments are trained
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so that at least 10 examples fall into every leaf of a tree. Value 10 for the number of examples
is taken for two reasons. On the one hand, we have to compute the mean vectors Ak(x)
and Bk(x) and to obtain unbiased estimators. On the other hand, it is difficult to expect that
a large number of examples will fall into every leaf by a small number of training examples.
Therefore, our prior experiments have demonstrated that this parameter should be 10. We
also use all features at each split of decision trees.

We do not consider models ε-ARF, w-ARF, ε-LARF, and w-LARF, because they can
be regarded as special cases of the corresponding models εM-ARF, εM-w-ARF, εM-LARF,
and εM-w-LARF when M = 1. The value of M is an integer tuning parameter, and it is
tuned in the interval from 1 to 20. Set {τ1, ..., τM} of the softmax operation parameters is
defined as

{
10−bM/2c, 10−bM/2c+1, ..., 100, ..., 10bM/2c−1, 10bM/2c

}
. In particular, if M = 1,

then the set of τ consists of one element τ = 1. The parameter of the first-level attention in
the “leaf” τ0 is taken equal to 1.

Numerical results are presented in tables where the best results are shown in bold.
The coefficient of determination denoted R2 and the mean absolute error (MAE) are used
for the regression evaluation. The greater value of the coefficient of determination and the
smaller MAE we have, the better results we achieve.

The proposed approach is studied by applying datasets which are taken from open
sources. The dataset Diabetes is downloaded from the R Packages; datasets Friedman 1, 2
and 3 are retrieved from the site: https://www.stat.berkeley.edu/~breiman/bagging.pdf
(accessed on 20 April 2023); datasets Regression and Sparse are taken from package “Scikit-
Learn”; datasets Wine Red, Boston Housing, Concrete, Yacht Hydrodynamics, Airfoil can
be found in the UCI Machine Learning Repository [44]. These datasets with their numbers
of features m and numbers of examples n are given in Table 2. A more detailed information
can be found from the aforementioned data resources.

Table 2. A brief introduction about the regression data sets.

Data Set Abbreviation m n

Diabetes Diabetes 10 442

Friedman 1 Friedman 1 10 100

Friedman 2 Friedman 2 4 100

Friedman 3 Friedman 3 4 100

Scikit-Learn Regression Regression 100 100

Scikit-Learn Sparse Uncorrelated Sparse 10 100

UCI Wine red Wine 11 1599

UCI Boston Housing Boston 13 506

UCI Concrete Concrete 8 1030

UCI Yacht Hydrodynamics Yacht 6 308

UCI Airfoil Airfoil 5 1503

Values of the measure R2 for several models, including RF, εM-w-ARF, εM-w-LARF,
εM-ARF, and εM-LARF, are shown in Table 3. The results are obtained by training the
RF. The optimal values of τ0 are also given in the table. It can be observed from Table 3
that εM-w-LARF outperforms all models for most datasets. Moreover, Table 3 shows that
the two-level attention models (εM-w-LARF and εM-LARF) provide better results than
models which do not use the “leaf” attention (εM-w-ARF and εM-ARF). It should be also
noted that all attention-based models outperform the original RF. The same relationship
between the models occurs for another accuracy measure (MAE). It is clearly shown
in Table 4.

https://www.stat.berkeley.edu/~breiman/bagging.pdf
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Table 3. Values of R2 for comparison of models based on the RF.

Data Set τ0 RF εM-w-ARF εM-w-LARF εM-ARF εM-LARF

Diabetes 0.01 0.416 0.419 0.434 0.425 0.426

Friedman 1 1 0.459 0.470 0.524 0.438 0.472

Friedman 2 1 0.841 0.887 0.933 0.886 0.916

Friedman 3 1 0.625 0.708 0.749 0.675 0.704

Airfoil 100 0.823 0.844 0.914 0.822 0.917

Boston 1 0.814 0.820 0.870 0.819 0.856

Concrete 10 0.845 0.857 0.896 0.844 0.896

Wine 1 0.433 0.421 0.481 0.421 0.477

Yacht 0.1 0.981 0.989 0.993 0.981 0.982

Regression 0.1 0.380 0.434 0.455 0.361 0.409

Sparse 1 0.470 0.489 0.641 0.535 0.630
The best obtained results on each dataset are shown in bold.

Table 4. Values of MAE for comparison of models based on the RF.

Data Set RF εM-w-ARF εM-w-LARF εM-ARF εM-LARF

Diabetes 44.92 44.95 44.61 44.79 44.81

Friedman 1 2.540 2.545 2.411 2.595 2.473

Friedman 2 111.7 95.29 72.71 92.44 74.24

Friedman 3 0.154 0.130 0.135 0.144 0.129

Airfoil 2.203 2.065 1.451 2.217 1.416

Boston 2.539 2.538 2.148 2.489 2.217

Concrete 4.834 4.676 3.496 4.883 3.615

Wine 0.451 0.459 0.411 0.461 0.417

Yacht 1.004 0.787 0.611 1.004 0.971

Regression 109.1 103.6 101.3 111.2 105.8

Sparse 1.908 1.871 1.528 1.772 1.543
The best obtained results on each dataset are shown in bold.

Another important question is how the attention-based models perform when the ERT
is used. The corresponding values of R2 and MAE are shown in Tables 5 and 6, respectively.
Table 5 also contains the optimal values τ0. In contrast to the case of using the RF, it can be
observed from the tables that εM-LARF outperforms εM-w-LARF for several models. It
can be explained by reducing the accuracy due to a larger number of training parameters
(parameters w) and overfitting for small datasets. It is also worth noting that models based
on ERTs provide better results than models based on RFs. However, this improvement is
not significant. This is observed in Table 7, where the best results are collected for models
based on ERTs and RFs. Table 7 shows that the results are identical for several datasets,
namely, for datasets Friedman 1, 2, 3, Concrete, and Yacht. If one is to apply the t-test to
compare the values of R2 obtained for two models, then, according to [45], the t-statistics is
distributed in accordance with the Student distribution with the 11− 1 degrees of freedom
(11 datasets). The obtained p-value is p = 0.071. We can conclude that the outperformance
of the ERT is not statistically significant because p > 0.05.
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Table 5. Values of R2 for comparison of models based on the ERT.

Data Set τ0 ERT εM-w-ARF εM-w-LARF εM-ARF εM-LARF

Diabetes 0.01 0.438 0.441 0.434 0.471 0.444

Friedman 1 1 0.471 0.471 0.524 0.441 0.495

Friedman 2 10 0.813 0.840 0.933 0.840 0.919

Friedman 3 1 0.570 0.569 0.749 0.569 0.637

Airfoil 100 0.802 0.804 0.914 0.804 0.909

Boston 10 0.831 0.834 0.870 0.834 0.882

Concrete 10 0.839 0.838 0.896 0.838 0.895

Wine 1 0.418 0.418 0.481 0.418 0.486

Yacht 1 0.988 0.988 0.993 0.988 0.993

Regression 0.1 0.402 0.429 0.455 0.429 0.464

Sparse 1 0.452 0.522 0.641 0.522 0.663
The best obtained results on each dataset are shown in bold.

Table 6. Values of MAE for comparison of models based on the ERT.

Data Set ERT w-ARF w-LARF εM-ARF εM-LARF

Diabetes 44.549 44.271 44.614 44.271 44.21

Friedman 1 2.502 2.502 2.411 2.502 2.388

Friedman 2 123.0 113.7 72.71 113.7 70.48

Friedman 3 0.179 0.179 0.135 0.179 0.148

Airfoil 2.370 2.360 1.451 2.360 1.471

Boston 2.481 2.451 2.148 2.451 2.023

Concrete 5.119 5.124 3.496 5.124 3.659

Wine 0.464 0.464 0.411 0.464 0.412

Yacht 0.824 0.822 0.611 0.822 0.612

Regression 106.3 103.1 101.3 103.1 100.0

Sparse 1.994 1.820 1.528 1.820 1.519
The best obtained results on each dataset are shown in bold.

Table 7. Comparison of the best results provided by models based on RFs and ERTs.

Data Set RF ERT

Diabetes 0.434 0.471

Friedman 1 0.524 0.524

Friedman 2 0.933 0.933

Friedman 3 0.749 0.749

Airfoil 0.917 0.914

Boston 0.870 0.882

Concrete 0.896 0.896

Wine 0.481 0.486

Yacht 0.993 0.993

Regression 0.455 0.464

Sparse 0.641 0.663
The best obtained results on each dataset are shown in bold.
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We take the number of trees in RFs equal to 100, because our goal is to compare
RFs and the proposed modifications of LARF with the same parameters of numerical
experiments. We also study how values of R2 depend on different numbers of decision
trees for the considered datasets. The corresponding numerical results for the RF and
the ERT are shown in Tables 8 and 9, respectively, by 100, 400, 700, and 1000 trees. It
can be observed in Tables 8 and 9 that R2 insignificantly increases with the number of
trees. However, it is important to point out that the largest values of R2 for RFs and ERTs
obtained by T = 1000 do not exceed the values of R2 for LARF modifications presented
in Tables 3–6.

Table 8. Values of R2 for comparison of RFs by different numbers of decision trees.

Data Set
Numbers of Trees

100 400 700 1000

Diabetes 0.416 0.418 0.418 0.419

Friedman 1 0.459 0.465 0.465 0.465

Friedman 2 0.841 0.836 0.838 0.839

Friedman 3 0.625 0.625 0.626 0.627

Airfoil 0.823 0.824 0.824 0.824

Boston 0.814 0.815 0.816 0.816

Concrete 0.845 0.847 0.847 0.847

Wine 0.433 0.434 0.434 0.434

Yacht 0.981 0.982 0.982 0.982

Regression 0.380 0.397 0.398 0.399

Sparse 0.470 0.470 0.471 0.473

Table 9. Values of R2 for comparison of ERTs by different numbers of decision trees.

Data Set
Numbers of Trees

100 400 700 1000

Diabetes 0.438 0.439 0.439 0.439

Friedman 1 0.471 0.475 0.474 0.475

Friedman 2 0.813 0.813 0.814 0.815

Friedman 3 0.570 0.565 0.567 0.568

Airfoil 0.802 0.803 0.803 0.803

Boston 0.831 0.831 0.832 0.833

Concrete 0.839 0.840 0.840 0.840

Wine 0.418 0.418 0.418 0.418

Yacht 0.988 0.988 0.988 0.988

Regression 0.402 0.390 0.387 0.390

Sparse 0.452 0.455 0.455 0.456

It should be pointed out that the proposed models can be regarded as extensions of
the attention-based RF (ε-ABRF) presented in [8]. Therefore, it is also worth comparing the
two-level attention models with ε-ABRF. Table 10 shows the values of R2 obtained by using
ε-ABRF and the best values of the proposed models when the RF and the ERT are used.

If we compare the results presented in Table 10 by applying the t-tests in accordance
with [45], then tests for the proposed models and ε-ABRF based on the RF and the ERT
provide p-values equal to p = 0.00067 and p = 0.00029, respectively. The tests demonstrate
the clear outperformance of the proposed models in comparison with ε-ABRF.
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Table 10. Comparison of ε-ABRF and the proposed models by using the measure R2 when RFs and
ERTs are the basis.

Data Set
RF ERT

ε-ABRF LARF ε-ABRF LARF

Diabetes 0.424 0.434 0.441 0.471

Friedman 1 0.470 0.524 0.513 0.524

Friedman 2 0.877 0.933 0.930 0.933

Friedman 3 0.686 0.749 0.739 0.749

Airfoil 0.843 0.917 0.837 0.914

Boston 0.823 0.870 0.838 0.882

Concrete 0.857 0.896 0.863 0.896

Wine 0.423 0.481 0.416 0.486

Yacht 0.989 0.993 0.988 0.993

Regression 0.450 0.455 0.447 0.464

Sparse 0.529 0.641 0.536 0.663
The best obtained results on each dataset are shown in bold.

It is obvious that the tuning parameters of the proposed modifications, for exam-
ple, τ0, are not optimal due to the validation procedure and due to the grid of values
used in experiments. However, we can observe from the numerical results that the
proposed modifications outperform RFs or ε-ABRF even with suboptimal values of the
tuning parameters.

7. Conclusions

The new attention-based RF models proposed in the paper have supplemented the
class attention models incorporated into machine learning models, differently from neural
networks [7,8]. Moreover, the proposed models do not use gradient-based algorithms
to learn attention parameters, and their training is based on solving the quadratic op-
timization problem with linear constraints. This peculiarity significantly simplifies the
training process.

It is notable to point out that computing the attention weights in leaves of trees is
a very simple task from the computational point of view. At the same time, this simple
modification leads to the crucial improvement of the RF models. Numerical results with real
data have demonstrated this improvement. This fact motivates us to continue developing
attention-based modifications of machine learning models in different directions. First
of all, the same approach can be applied to the gradient boosting machine [10]. The first
successful attempt to use the attention mechanism in the gradient boosting machine with
decision trees as base learners has been carried out in [7]. This attempt has confirmed that
the boosting model can be improved by adding the attention component. The idea of the
“leaf” attention and the optimization over parameters of kernels can be directly transferred
to the gradient boosting machine. This is a direction for further research.

One of the important results presented in this paper is using a specific mixture of
contamination models, which can be regarded as a variant of the well-known multi-head
attention [16], where each “head” is defined by the kernel parameter. However, values of
the parameter are selected in accordance with a predefined set. Therefore, the next direction
is to consider randomized procedures to select the values of the parameter.

The proposed models consider only a single leaf of a tree for every example and
implement the “leaf” attention in this leaf. However, they do not take into account neighbor
leaves, which may also provide useful information for improving the models and should
be studied.
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It has been demonstrated in [8] that attention-based RFs allow us to interpret predic-
tions by using the attention weights. The introduced two-level attention mechanisms may
also improve the interpretability of RFs by taking into account additional factors.

Finally, we have developed the proposed modifications by using Huber’s ε-contamination
model and the mixture of the models. Another notable problem is to consider different avail-
able statistical models [46] and their mixtures. A proper choice of the mixture components
may significantly improve the whole attention-based RF.
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