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Abstract: (1) One in four hospital readmissions is potentially preventable. Machine learning (ML)
models have been developed to predict hospital readmissions and risk-stratify patients, but thus
far they have been limited in clinical applicability, timeliness, and generalizability. (2) Methods:
Using deidentified clinical data from the University of California, San Francisco (UCSF) between
January 2016 and November 2021, we developed and compared four supervised ML models (logistic
regression, random forest, gradient boosting, and XGBoost) to predict 30-day readmissions for adults
admitted to a UCSF hospital. (3) Results: Of 147,358 inpatient encounters, 20,747 (13.9%) patients
were readmitted within 30 days of discharge. The final model selected was XGBoost, which had an
area under the receiver operating characteristic curve of 0.783 and an area under the precision-recall
curve of 0.434. The most important features by Shapley Additive Explanations were days since last
admission, discharge department, and inpatient length of stay. (4) Conclusions: We developed and
internally validated a supervised ML model to predict 30-day readmissions in a US-based healthcare
system. This model has several advantages including state-of-the-art performance metrics, the use of
clinical data, the use of features available within 24 h of discharge, and generalizability to multiple
disease states.

Keywords: machine learning; hospital readmission; patient readmission; risk assessment

1. Introduction

In the United States, the Centers for Medicare and Medicaid Services (CMS) has effec-
tively mandated a focus on hospital readmission by publicly reporting hospital performance
and reducing payments for unplanned hospital readmissions. To date, CMS includes six
conditions and procedures for 30-day risk-standardized unplanned readmission measures,
including acute myocardial infarction, chronic obstructive pulmonary disease, heart failure,
pneumonia, coronary artery bypass graft surgery, and elective primary total hip arthro-
plasty and/or total knee arthroplasty [1]. For these six conditions and procedures, CMS
calculates payment reductions for hospitals based on their readmission performance [1].
Beyond these conditions and reimbursement implications, it is commonly understood that
unplanned hospital readmissions may indicate poor quality of care, and it has been shown
that one in four readmissions is potentially preventable [2,3].

In order to address readmission risk factors and improve patient outcomes, hospi-
tals perform a variety of interventions to help patients make successful transitions out
of the hospital. Some pre-discharge interventions include patient education, discharge
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planning, medication reconciliation, and appointment scheduling before discharge. Some
post-discharge interventions include timely follow-up, timely primary care provider com-
munication, follow-up telephone calls, access to patient hotlines, and home visits [4]. Some
bridging interventions include transition coaches, patient-centered discharge instructions,
and provider continuity [4]. These interventions can be provided singly or in combina-
tion [4]; however, given that there are often limited institutional resources in deploying
such interventions to patients, there is great interest in predicting patients at highest risk for
readmission to best understand where to devote limited resources and coordination efforts.

In an effort to best allocate resources, much effort has been placed on developing
machine learning models to predict hospital readmission and to risk-stratify patients [5–8].
Prior work has used either administrative data alone or combined with clinical data to
make these predictions. Li et al. built a model using administrative data in Taiwan with a
high area under the receiver operator curve (AUC), but using similar datasets in the United
States for a more specific disease state did not yield promising results [6,7]. This contrast
highlights the variability of administrative data, especially between countries. Furthermore,
these datasets are often compiled weeks or months after a patient’s discharge, limiting their
immediate post-discharge utility. Mišić et al. have applied these models to predict 30-day
readmission for postoperative patients using administrative and clinical data [8]. Others
have demonstrated similarly effective models for predicting readmission when restricted
to a single-use case or disease state, but these models are not generalizable to all discharged
patients. Lo et al. addressed this with a model that predicts 14-day unplanned admissions
using administrative and clinical data, although these results are built using data from
Taiwan. However, the strength of a generalizable readmission model using administrative
and clinical data in the United States is unknown.

We extend these results using state-of-the-art machine learning modeling techniques
including XGBoost to predict 30-day all-cause readmissions in a US-based patient popu-
lation. Our model was built using clinical and administrative data available within 24 h
of hospital discharge to allow for better operationalization and clinical implementation
of the model. We see the development of this model as the first step in a long journey.
Ultimately, we hope to deploy our model within a US healthcare system so that it can
be used to risk-stratify patients after hospital discharge. This risk stratification can then
be used to drive enrollment in targeted post-discharge support interventions in order to
decrease readmission rates.

2. Materials and Methods
2.1. Patient Selection

The patient health records were extracted from the University of California, San Fran-
cisco (UCSF) De-Identified Clinical Data Warehouse (DEID CDW) database. This database
collects deidentified demographic and clinical data from patients at UCSF, a tertiary care
academic medical center with 861 staffed beds and 34,105 annual admissions [9]. As part
of the deidentification process, dates associated with individual patients were randomly
date-shifted 1–365 days into the past. For this study, patients who were 18 years old or
older and had an inpatient or observation encounter status between January 2016 and
November 2021 were included. Each patient encounter was treated as a row for modeling
purposes, with columns for each row representing features from the encounter.

2.2. Outcome Variable

The primary study outcome was 30-day all-cause readmission. Readmission was
defined as admission (inpatient or observation status) to a UCSF-affiliated hospital within
30 days of the index discharge. Each index patient encounter was assigned an outcome
value of “1” if it led to a 30-day readmission, or “0” if it did not.
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2.3. Feature Engineering, Selection, and Imputation

After a review of the literature, a multidisciplinary team of clinicians, informaticians,
data scientists, and operational leaders at UCSF created the initial set of features to input in
the model through several steps. The first step included determining what raw features
to include in the dataset (e.g., age, demographics, labs, vitals). The second step was
creating additional engineered features from the raw features. Some of these engineered
features were created to capture information that we suspected was important for the
use case, but not directly captured from the raw features. Other features were created to
reduce the dimensionality of certain data types such as labs and vitals, which can have
numerous values per encounter. Specifically, for each encounter, all lab and vital sign data
were aggregated into mean, minimum, maximum, first, and last values. For raw features
including text, such as diagnosis codes, chief complaint, reason for admission, etc., we tried
two methods. One was using BioSentVec [10,11] to transform the raw text into sentence
embeddings that were then used in modeling. The other was treating the most common
diagnoses as their own categories, while bucketing less common diagnoses into an “other”
category. Features broadly included demographic data, admission metadata, and clinical
data that were extractable within 24 h of discharge from the hospital.

The data were then split into train/validation and test sets (detailed further in next
section). We examined missing values in the processed data. Features with an abundant
number of missing values (>99%) or with only one unique value in the column were
excluded. For features that were not excluded but that still had missing values, we applied
imputation as we believed these data still contained potentially useful information (i.e., the
absence of a specific lab might still be clinically important). Missing values in categorical
features and nonderived numerical features (e.g., labs, vitals) were assigned a “missing”
label of “−1”. Missing values in the derived numeric features (e.g., number of admissions
in the last year) were imputed with the median of the column. Imputation was done
separately within train/validation and test sets.

After feature engineering and missing value imputation, we performed feature selec-
tion from the train/validation set with the drop column feature importance method [12,13].
We used the area under the precision-recall curve (AUC-PR) metric of the model with all
columns as the baseline, and then dropped a column entirely, retrained the model, and
recomputed the AUC-PR. The importance value of a feature is the difference between the
baseline and the score from the model missing that feature. For our study, features that,
when dropped, led to an increase from the baseline AUC-PR were excluded. We chose
AUC-PR because the prevalence of the outcome of interest (readmissions) was relatively
low, and in this situation AUC-PR might be a more practical representation of the usefulness
of a model compared to the AUC [14].

2.4. Modeling Process

To predict the probability of a patient being readmitted within 30 days, we compared
four supervised machine learning models for binary classification, including logistic regres-
sion, random forest, gradient boosting, and XGBoost. The pre-processed data were split
into train/validation and test datasets, respectively. The test set included data from the
most recent year and was used to judge the final performance of our model. The rest of
the data were used for training and validation using the expanding-window-based 3-fold
cross-validation method [15,16].

Expanding-window cross-validation applies a cross-validation logic that accounts for
the sequenced nature of the dataset. In this study, we created three iterations, each with a
split of the training and validation sets. Each validation set consists of records from the
most recent one-year period. The corresponding training set consists only of records that
occurred before the time of the validation set (Figure 1). All models were trained using the
training set of each cross-validation iteration, and performance metrics were obtained from
the respective validation set. The performance of each model was evaluated by averaging
AUC-PR scores over the three validation sets.



Informatics 2023, 10, 33 4 of 16

Figure 1. Expanding window 3-fold cross-validation. Data were split into training/validation and
test datasets. Data between 2021 and 2022 were used as the final test set. The remaining data were split
into 3 iterations of training and validation sets using the expanding-window 3-fold cross-validation
method, in which the most recent 1-year period was treated as the validation set and the remaining
data in that iteration was used for training. Model performance was evaluated using average AUC-PR
of all 3 iterations.

The best-performing model from the above process would be selected as our final
model, and it would be applied to the test set to determine its performance. Important out-
come metrics to be measured from the test set include AUC-PR, AUC, accuracy, precision,
recall, and F1-score [14]. We also used the SHAP Shapley Additive exPlanations (SHAP)
Feature Importance method [17] to examine the significance of features included in the final
model. SHAP feature importance connects local interpretable model-agnostic (LIME) [18]
and Shapley value [19] and calculates a kernel-based estimation of the Shapley value on
each instance of a feature. The Shapley value of a feature gives the average marginal
contribution of a feature value across all the possible combinations of features. This main
property of the Shapley value, the efficiency property, distinguishes the Shapley value from
other feature-importance methods. It provides a fair contribution of features with mathe-
matically proven theory. Each feature’s final SHAP value was calculated by averaging the
SHAP values obtained from each training set from the cross-validation iterations. Features
with larger SHAP values are considered more important [17,20,21].

3. Results

The development cohort consisted of 147,358 patients, of which 20,747 (13.9%) were
readmitted within 30 days of discharge. Their baseline characteristics are summarized in
Table 1.

Table 1. Baseline patient characteristics.

Characteristics Total Cohort Patients Readmitted Patients Not
Readmitted

Age
Mean (SD) 54.02 (18.56) 53.41 (18.73) 54.12 (18.53)

Gender
Male 66,482 (45.12%) 10,405 (50.15%) 56,077 (44.29%)

Female 80,827 (54.85%) 10,332 (49.80%) 70,495 (55.68%)
Nonbinary 28 (0.02%) 7 (0.03%) 21 (0.02%)
Unknown 21 (0.01%) 3 (0.01%) 18 (0.01%)

Ethnicity
Hispanic or Latino 23,487 (15.94%) 3980 (19.18%) 19,507 (15.41%)

Not Hispanic or
Latino 120,426 (81.72%) 16,505 (79.55%) 103,921 (82.08%)

Unknown 3445 (2.34%) 262 (1.26%) 3183 (2.51%)
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Table 1. Cont.

Characteristics Total Cohort Patients Readmitted Patients Not
Readmitted

Race
American Indian or

Alaska Native 1390 (0.94%) 230 (1.11%) 1160 (0.92%)

Asian 23,871 (16.20%) 3528 (17.00%) 20,343 (16.07%)
Black or African

American 13,128 (8.91%) 2278 (10.98%) 10,850 (8.57%)

Native Hawaiian 65 (0.04%) 13 (0.06%) 52 (0.04%)
White or Caucasian 79,816 (54.17%) 10,330 (49.79%) 69,486 (54.89%)

Other Pacific
Islander 1605 (1.09%) 212 (1.02%) 1393 (1.10%)

Other 27,469 (18.64%) 4156 (20.03%) 23,313 (18.42%)
Admission Type

Emergency/Urgent 90,564 (61.88%) 14,278 (68.80%) 76,286 (60.73%)
Routine/Elective 54,241 (37.06%) 6270 (30.22%) 47,971 (38.19%)

Other 1553 (1.06%) 203 (0.98%) 1350 (1.08%)
Insurance

Commercial 51,388 (34.82%) 6031 (29.05%) 45,357 (35.77%)
Medi-Cal 38,464 (26.06%) 6646 (32.01%) 31,818 (25.09%)
Medicare 56,235 (38.11%) 7922 (38.16%) 48,313 (38.1%)

Other 1488 (1.01%) 163 (0.79%) 1325 (1.04%)
Length of Stay

Mean (SD) 6.13 (9.45) 7.53 (9.94) 5.89 (9.35)

Most characteristics such as age, gender, race, ethnicity, etc., were similar between
readmitted and not readmitted patients. Readmitted patients, however, seemed to have
a higher average hospital length of stay and were more likely to be admitted as “emer-
gency/urgent” admission type. Thirty-seven raw features were initially extracted from
the De-ID CDW that included information on patient demographic information, medical
history, ancillary orders, procedures, flowsheet values, lab tests, and patient utilization.
We created 3796 engineered features based on the original data, including 3500 sentence-
embedded features from five textual columns including patient admission and discharge
diagnoses. A total of 230 aggregation type features were derived from lab and flowsheet
values, and 66 features were created based on physician insight. Table 2 summarizes the
features at a macro level.

Table 2. Features used for modeling.

Type of Feature Examples of Features Created for Model(s)

Patient utilization

Binary target variable: readmission status within 30 days
(0 = No, 1 = Yes);Number of days since last admission;

Number of admissions in the past 90 days, 180 days, 1 year,
and 2 years;

Number of emergency visits in the past 90 days, 180 days,
1 year, and 2 years;

Demographic information Age; sex; race; ethnicity; marital status; preferred language;
financial class; postal code; smoking status; BMI

Procedure information
Number of procedures performed during encounter;

Binary indicator for if any procedure was performed (0 = No,
1 = Yes)
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Table 2. Cont.

Type of Feature Examples of Features Created for Model(s)

Lab tests

Mean, minimum, maximum, the first and last value of each
unique type of lab test (e.g., creatinine, hemoglobin) that was

resulted during the encounter;
Binary indicators for if amphetamine, barbiturates, benzo,

cocaine, opiates, THC, and Utox was ordered (0 = No, 1 = Yes);
Binary indicators for if amphetamine, barbiturates, benzo,

cocaine, opiates, THC, and Utox were positive (0 = No,
1 = Yes);

Flowsheet values

Mean, minimum, maximum, the first and last value of each
unique type of flowsheet value (e.g., heart rate, respiratory
rate, nursing mobility scores) that was recorded during the

encounter

Ancillary orders
Binary indicators for if each given ancillary order (e.g.,

palliative care consult, DNR/DNI order, social work) was
placed (0 = No, 1 = Yes)

Textual information such as
diagnosis and primary chief

complaints

Sentence-embedded vectors generated from textual columns,
categorical features that treat unique diagnoses as their own

categories

Other features that have
remained the same as in EHR

Admission source; admission type; inpatient length of stay in
days; discharge disposition; department; hospital service;

admitting provider type; admitting provider primary
specialty; arrival method; acuity level

We assessed the 3500 sentence-embedded columns with drop-column feature im-
portance and found that the improvement in AUC-PR added by the sentence-embedded
columns was not significant (0.01 increase) compared to the extra computational burden
and complexity in model interpretation they added. Thus, we excluded diagnosis-related
features that were created using word embeddings. However, these diagnosis-related
features were still included in the final model as categorical features described in Sec-
tion 2.3. Of the remaining 296 features, 50 features were determined to be unimportant by
drop-column importance, and thus were also excluded. After this process, 246 features
were included in the final model. This full process can be seen in Figure 2. A list of all 246
of our features can be found in Appendix A.

Only 1 feature had more than 99% missing values and was dropped; 25 features had
no missing values. The rest of the features had between 0.007 and 95.63% missing values,
with only 42 features having more than 80% missing values.

Data from January 2016 to December 2020 was used to perform expanding-window
3-fold cross-validation for model selection (Figure 1). We evaluated four classification
models (parameters found in Appendix B), and Table 3 shows each model’s average AUC-
PR score and running time. Gradient boosting reached the highest average AUC-PR score
of 0.444, but we chose XGBoost as the final model considering its comparative performance
(AUPRC = 0.434) and lower computational complexity (running time = 305.9 s).
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Figure 2. Cohort selection and model selection. UCSF: University of California, San Francisco. DEID
CDW: Deidentified clinical data warehouse.

Table 3. Model performance from cross-validation.

Machine Learning Model Average Area under the
Precision-Recall Curve

Average Training Time
(Seconds)

Logistic Regression 0.2403 81.522
Random Forest 0.4116 106.875

Gradient Boosting 0.4435 489.752
XGBoost 0.434 305.884

We tested the XGBoost classifier on the test dataset between January 2021 and Novem-
ber 2021, and Table 4 summarizes the performance. The XGBoost classifier had an AUC-PR
score of 0.434 on the test set, which is the same as in the validation set. This gives us
confidence that our model is capturing the important relationships in the data rather
than overfitting to random noise. The AUC was 0.783. The exact precision (positive pre-
dictive value) and recall (sensitivity) of the model can be tuned based on the needs of
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the user. We have highlighted that at a set recall of 0.701, our model had a precision of
0.283. The overall ROC and PR curves can be seen in Figure 3. These results are highly
favorable when compared to results from other papers [22], especially when compared to
US-based datasets.

Table 4. Performance of XGBoost classifier on test set.

Test Characteristic Value

AUC 0.783
AUC-PR 0.434
Accuracy 0.713
Precision 0.283

Recall 0.701
F1 0.403

Threshold 0.486
True positives 903
True negatives 5738
False positives 2286
False negatives 384

Figure 3. Receiver operator characteristic and precision-recall curves: (a) receiver operator character-
istic curve for XGBoost classifier; (b) precision-recall curve for XGBoost classifier.

We also applied SHAP feature importance to highlight the top 20 importance features
in our training data. The plot can be seen in Figure 4. These include a mix of utilization
(e.g., length of stay, number of admissions in the past year), disposition (e.g., discharge
disposition, admitting department or hospital service), laboratory (e.g., last albumin or
sodium value, first prothrombin time), and vitals-based features (e.g., average respiratory
rate, last heart rate).
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Figure 4. Shapley features importance. Top 20 most important features by Shapley Additive Explanations.

4. Discussion

We developed a ML model using clinical and administrative data from a US-based
healthcare system to predict 30-day all-cause readmissions with an AUC of 0.783 and
AUC-PR of 0.434. These AUCs and AUC-PRs were consistent between our validation
and test sets, which gives us confidence that our model did not overfit to either dataset.
Our work is novel in several ways. First, we incorporate a range of clinical features from
nursing-based risk scores, to vital signs and lab data, to relevant admission metadata
rather than using administrative or billing data alone. To maximize operational utility, we
purposefully selected features for the model that are available within 24 h of discharge, so
that the model could be used to generate predictions the day after patient discharge. Claims
data, while often used to develop ML models, are not ideal for time-sensitive predictions
such as readmissions, as there is a delay between when the patient is discharged and when
the data might become available [23]. Predictions that are made after a patient has already
been readmitted, even if accurate, offer little operational utility.

Second, our model achieves a higher AUC than other US-based readmission prediction
models, which have had AUCs between 0.62 and 0.76 [22,24–26]. Of these, the model
described by Ko et al. has the best performance for general readmissions, although they
incorporated administrative score data that may not be available at the time of discharge
for operationalization [25]. We do acknowledge that there are non-US-based readmission
prediction models that cite similar or better results in terms of AUC [5,6,26]. However,
there may be significant differences in the patient populations, healthcare delivery systems,
societal priorities, cultures, resources, etc., between the US and other countries [27]. Thus
ML models built on non-US populations might not generalize well to the US setting.

An important question to ask when evaluating the utility of ML models is not just
the AUC, but whether or not that AUC can translate to recall (sensitivity) and precision
(positive prediction values) levels that are clinically useful [13]. At a set recall of 0.70,
our model achieves a precision of 0.283. We choose to highlight this threshold, as we
believe it does pass the “eye test” in terms of meeting meaningful levels for recall and
precision to be considered for operationalization. The exact model threshold, and hence the
resulting precision and recall, that should be used varies based on the intended intervention,
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resources available, and institution. For example, if the model is used to determine which
patients will receive automated phone calls after discharge, higher recall might be preferred.
If the model is used to determine which patients will receive personal case management
outreach, a higher precision might be preferred.

A third area of innovation in our work is the focus on all types of patients, rather
than only specific patient populations. There are numerous ML models to predict hospital
readmission for specific patient populations, such as postoperative patients [8,28–30],
stroke patients [31,32], hypertensive disorders of pregnancy [33], heart failure [33–35], and
more [36,37]. However, by focusing on a single disease state of interest, these models
are able to use highly disease-specific features that may not be applicable for a broader
population, limiting the generalizability of these models. Furthermore, from a health
system perspective, it might be preferred to implement and maintain one general model as
opposed to numerous models specific to different populations.

Finally, our model uses SHAP feature importance to provide some insight into how
our model makes its predictions at the global level. One of the biggest concerns for using
ML in medicine is the lack of interpretability of some models [38], especially compared
to traditional statistical models such as linear or logistic regression. However, tree-based
models such as random forests, gradient boosting, and XGboosting do have methods to
explain how they work [39–44], such as SHAP feature importance. Using this method, we
were able to highlight the top 20 most influential features in our model. These include
a mix of utilization, disposition, laboratory, and vitals-based features. The relevance of
utilization and disposition-related features are well described in the literature [45,46],
and it is reassuring that our model highlighted the importance of these features as well.
Our model also picked up on less well-described risk factors for readmission, such as
nutrition [47], DNR/DNI code status, last heart rate value during hospitalization, average
respiratory rate during hospitalization, last serum sodium value, number of procedures
performed during the hospitalization, and average hospital hemoglobin. Methods such as
SHAP do not prove causation and suffer from collinearity, confounding and other biases.
Despite these limitations, it is reassuring to see that the features that our model identified as
important seem to pass the clinical “sniff test.” The ability to understand how a model made
its predictions may go a long way toward improving clinicians’ trust in ML models and,
ultimately, improve buy-in for using these models for patients. We have demonstrated that
this can be accomplished at the global ML model level using methods such as SHAP. Future
work will focus on explaining how ML models make their predictions at the individual
prediction level.

It is worth noting that we attempted to incorporate diagnostic information by using
word embeddings in addition to treating diagnoses as categorical features. We chose to try
word embeddings because we wanted to include as much information as possible from
the diagnostic text [48]. We found that doing so did not significantly increase our model
performance compared to treating diagnostic information as categorical features only. As a
result, we decided to omit word embedding features from our final model, as the negligible
increase in performance was not worth the increased complexity and loss of interpretability.
In future work, we can try incorporating diagnostic groupers such as Clinical Classification
Software [23] or try other word embedding frameworks such as BERT.

Our study has several limitations. First, our data were pulled from a single center,
which limits generalizability of our model to other organizations. However, given the
relative ubiquity of our most significant features, this may be a blueprint for training
similar models at other centers. Second, our data come from a tertiary care academic
medical center, which may not generalize to private or county hospital systems. Third,
although we attempted to use broad categories of features in our dataset, it does not include
unstructured clinical note data, which may contain key information. Fourth, our current
model was trained and tested on retrospective data, which may not be applicable to current
practice, although we mitigate this limitation by using the most recent admission data
as the test set. Fifth, the random date-shift method used to deidentify the dataset makes



Informatics 2023, 10, 33 11 of 16

it impossible to determine exactly when events related to COVID-19 started. Sixth, we
did not exclude encounters with an AMA discharge disposition (<1% of the encounters).
Seventh, we did not use LASSO or ElasticNet when comparing logistical regression to
tree-based ML models.

Future work will focus on prospectively validating our model at our local institution.
Our original work was conducted on deidentified data, which limited the availability of
some data types. We are already in the process of retraining our model on live EHR data,
which will give us the ability to differentiate between planned and unplanned readmissions
as well as incorporate more data on social determinants of health and discharge metadata
(e.g., discharge on weekend or holiday, month of year). Once implemented, we plan to use
the model to risk-stratify patients based on their readmission risk after hospital discharge
and enroll high-risk patients into targeted post-discharge support programs. Our hope
is that this will lead to significant decreases in 30-day hospital readmissions and act as a
template for other health systems in the US.

5. Conclusions

Accurately predicting the risk of readmissions for hospitalized patients can enable tar-
geting of post-discharge interventions to reduce readmissions and improve quality of care,
patient experience, and hospital reimbursement. We developed and internally validated a
supervised ML model using XGBoost to predict 30-day readmissions in a US healthcare
system. Our model achieves a higher AUC than other US-based readmission prediction
models. Major advantages of the model include the use of clinical and administrative
data rather than administrative data alone, selection of features available within 24 h of
discharge, generalizability to multiple disease states, and high level of interpretability
based on SHAP feature importance. These unique strengths make our model clinically
relevant and feasible to operationalize within a health system to reduce readmissions.
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Appendix A

Table A1. Features Included in the Final Model.

Features

patientage PT_first_val venous_last_val
financialclass PT_last_val Amphetamine
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Table A1. Cont.

Features

postalcode PaCO2_min_val Benzo
sex PaCO2_max_val SBP_min_val

firstrace PaCO2_avg_val SBP_max_val
ethnicity PaCO2_first_val SBP_avg_val

maritalstatus PaCO2_last_val SBP_first_val
preferredlanguage PaO2_min_val SBP_last_val

smokingstatus PaO2_max_val DBP_min_val
Readmission PaO2_avg_val DBP_max_val

admissionsource PaO2_first_val DBP_avg_val
dischargetimeofdaykey PaO2_last_val DBP_first_val

admissiontype PvCO2_min_val DBP_last_val
inpatientlengthofstayindays PvCO2_max_val oxygen_amt_min_val

dischargedisposition PvCO2_avg_val oxygen_amt_max_val
departmentkey PvCO2_first_val oxygen_amt_avg_val
hospitalservice PvCO2_last_val oxygen_amt_first_val

admittingprovidertype Urea_min_val oxygen_amt_last_val
admittingproviderprimaryspecialty Urea_max_val 5_class_oxygen_device_min_val
principalproblemdiagnosisname Urea_avg_val 5_class_oxygen_device_avg_val

cnt_procedure Urea_first_val oxygen_device_min_val
days_since_last_admission Urea_last_val oxygen_device_max_val
admissions_previous_year WBC_min_val oxygen_device_avg_val

admissions_previous_2_years WBC_max_val oxygen_device_first_val
admissions_previous_90 days WBC_avg_val oxygen_device_last_val
admissions_previous_180_days WBC_first_val SP_O2_min_val

arrivalmethod WBC_last_val SP_O2_max_val
acuitylevel arterial_min_val SP_O2_avg_val

primarychiefcomplaintname arterial_max_val SP_O2_first_val
primaryeddiagnosisname arterial_avg_val SP_O2_last_val

edvisits_last_year arterial_first_val pulse_min_val
edvisits_last_2_years arterial_last_val pulse_max_val
edvisits_last_90_days creatinie_min_val pulse_avg_val

SLP consult creatinie_max_val pulse_first_val
Nutrition consult creatinie_avg_val pulse_last_val

SLP plan order creatinie_first_val r_number_ppl_assist_min_val
Observation status creatinie_last_val r_number_ppl_assist_max_val

Palliative care consult eGFRhigh_min_val r_number_ppl_assist_avg_val
5150 order eGFRhigh_avg_val r_number_ppl_assist_first_val

Psych consult eGFRhigh_first_val r_number_ppl_assist_last_val

Social work consult eGFRhigh_last_val R ED RISK OF FALL ADULT
SCORE_min_val

DNR/DNI order eGFRlow_min_val R ED RISK OF FALL ADULT
SCORE_first_val

Home health order eGFRlow_max_val R IP STRATIFY MOBILITY
SCORE_avg_val

Cardiology consult eGFRlow_avg_val R IP STRATIFY MOBILITY
SCORE_first_val

SNF discharge order eGFRlow_first_val R IP STRATIFY TOTAL
SCORE_max_val

Inpatient psychiatry order eGFRlow_last_val R IP STRATIFY TOTAL
SCORE_avg_val

SNF discharge attending
contact glucose_min_val R IP STRATIFY TOTAL

SCORE_first_val

ALP_min_val glucose_max_val
R IP STRATIFY TRANSFER

AND MOBILITY
SUM_min_val

ALP_max_val glucose_avg_val
R IP STRATIFY TRANSFER

AND MOBILITY
SUM_avg_val
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Table A1. Cont.

Features

ALP_avg_val glucose_first_val
R IP STRATIFY TRANSFER

AND MOBILITY
SUM_first_val

ALP_first_val glucose_last_val R IP STRATIFY TRANSFER
SCORE_min_val

ALP_last_val hemoglobin_min_val R IP STRATIFY TRANSFER
SCORE_max_val

ALT_min_val hemoglobin_max_val R IP STRATIFY TRANSFER
SCORE_avg_val

ALT_max_val hemoglobin_avg_val R IP STRATIFY TRANSFER
SCORE_first_val

ALT_avg_val hemoglobin_first_val R NU-DESC
DISORIENTATION_max_val

ALT_first_val hemoglobin_last_val R NU-DESC
DISORIENTATION_avg_val

ALT_last_val pH_min_val R NU-DESC
DISORIENTATION_first_val

AST_min_val pH_max_val R NU-DESC
DISORIENTATION_last_val

AST_max_val pH_avg_val
R NU-DESC

INAPPROPRIATE
BEHAVIOR_avg_val

AST_avg_val pH_first_val
R NU-DESC

INAPPROPRIATE
BEHAVIOR_last_val

AST_first_val pH_last_val
R NU-DESC

INAPPROPRIATE COMMU-
NICATION_max_val

AST_last_val platelets_min_val
R NU-DESC

INAPPROPRIATE COMMU-
NICATION_avg_val

Albumin_min_val platelets_max_val
R NU-DESC

PSYCHOMOTOR
RETARDATION_avg_val

Albumin_max_val platelets_avg_val
R NU-DESC

PSYCHOMOTOR
RETARDATION_first_val

Albumin_avg_val platelets_first_val R NU-DESC SCORE
V2_max_val

Albumin_first_val platelets_last_val R NU-DESC SCORE
V2_avg_val

Albumin_last_val potassium_min_val R NU-DESC SCORE
V2_first_val

BNP_min_val potassium_max_val R NU-DESC SCORE
V2_last_val

BNP_max_val potassium_avg_val RESPIRATIONS_min_val
BNP_avg_val potassium_first_val RESPIRATIONS_max_val
BNP_first_val potassium_last_val RESPIRATIONS_avg_val

Bicarb_min_val sodium_min_val RESPIRATIONS_first_val
Bicarb_max_val sodium_max_val RESPIRATIONS_last_val
Bicarb_avg_val sodium_avg_val TEMPERATURE_min_val
Bicarb_first_val sodium_first_val TEMPERATURE_max_val
Bicarb_last_val sodium_last_val TEMPERATURE_avg_val

Bilirubin_min_val troponin_min_val TEMPERATURE_first_val
Bilirubin_max_val troponin_max_val TEMPERATURE_last_val
Bilirubin_avg_val troponin_avg_val year_discharge_date
Bilirubin_first_val troponin_first_val
Bilirubin_last_val venous_min_val
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Table A1. Cont.

Features

PT_min_val venous_max_val
PT_max_val venous_avg_val
PT_avg_val venous_first_val

Appendix B

XGBoost model parameters:

- Learning objective: ‘binary:logistic’
- Learning rate: 0.1
- Maximum depth: 5
- Number of trees: 100
- Scale_pos_weight: 6.08
- Evaluation Metric: AUC-PR

Gradient boosting model parameters:

- Minimum sample leafs: 98
- Maximum features: 0.152
- Maximum depth: 8
- Number of trees: 100
- Learning rate: 0.1

Random forest parameters:

- n_estimators: 250
- min_samples_leaf: 98
- max_features: 0.152
- max_depth: 8

Logistic regression parameters:

- default parameters from sklearn library, LogisticRegression module.
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