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Abstract: Recently, it has proven difficult to make an immediate remote diagnosis of any coronary
illness, including heart disease, diabetes, etc. The drawbacks of cloud computing infrastructures,
such as excessive latency, bandwidth, energy consumption, security, and privacy concerns, have
lately been addressed by Fog computing with IoT applications. In this study, an IoT-Fog-Cloud
integrated system, called a Fog-empowered framework for real-time analysis in heart patients using
ENsemble Deep learning (FRIEND), has been introduced that can instantaneously facilitate remote
diagnosis of heart patients. The proposed system was trained on the combined dataset of Long-Beach,
Cleveland, Switzerland, and Hungarian heart disease datasets. We first tested the model with eight
basic ML approaches, including the decision tree, logistic regression, random forest, naive Bayes,
k-nearest neighbors, support vector machine, AdaBoost, and XGBoost approaches, and then applied
ensemble methods including bagging classifiers, weighted averaging, and soft and hard voting to
achieve enhanced outcomes and a deep neural network, a deep learning approach, with the ensemble
methods. These models were validated using 16 performance and 9 network parameters to justify this
work. The accuracy, PPV, TPR, TNR, and F1 scores of the experiments reached 94.27%, 97.59%, 96.09%,
75.44%, and 96.83%, respectively, which were comparatively higher when the deep neural network
was assembled with bagging and hard-voting classifiers. The user-friendliness and the inclusion
of Fog computing principles, instantaneous remote cardiac patient diagnosis, low latency, and low
energy consumption, etc., are advantages confirmed according to the achieved experimental results.

Keywords: internet of things (IoT); fog computing (FC); cloud computing (CC); ensemble machine
learning (EML); ensemble deep learning (EDL); heart disease diagnosis

1. Introduction

The IoT is indispensable for long-distance connectivity, whereas the Internet is the most
brilliant invention ever. The IoT in smart healthcare schemes, that is, the Internet of Medical
Things (IoMT), allows health specialists to remotely diagnose patients, while patients can
easily use medical services [1]. Fog computing (FC) and its base, cloud computing (CC),
are the key healthcare technologies. Fog-cloud computing nodes provide paid e-healthcare
services for all application classes and types [2]. The most prevalent and complicated
health issue today on Earth is heart disease, which is the second most common cause of
death and results from arterial infections and blood clots [3]. Arrhythmias, coronary artery
disease, and cardiac valve dysfunction increase mortality [4]. To Obesity, aging, depression,
smoking, sugar intake, inactivity, and high blood pressure are risk factors for developing
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cardiovascular diseases [5,6] and must be avoided to live healthily and avoid a heart attack,
heart failure, stroke, and blindness. Machine learning (ML) and its advancement, that
is, deep learning (DL), along with ensemble learning (EL), improve predictive analytical
accuracy and performance [7].

Currently, IoT-enabled smart devices play a crucial role in e-healthcare systems. IoT
engagements have ushered in the notion of CC. CC and its expanded variants, such as FC
and edge computing (EC), have recently played an important role in real-world applica-
tions [8]. The significant delay of CC makes it unsuitable for real-time applications such as
e-healthcare. The FC at the network edge can run applications near data sources and act as
a connection between endpoints and cloud servers [9]. Both FC and CC platforms have
similar intakes, resulting in the advantages of FC with the use of latency reduction in cloud
servers [10]. Concerns regarding readability, scalability, and other aspects of e-healthcare
are addressed by Fog-based systems [11]. The IoT-Fog-Cloud integrated approach aims
to improve communication between nodes, thereby conserving the bandwidth that can
be used in areas such as disease diagnosis and improved prediction accuracies. Figure 1
depicts the IoT-Fog-Cloud integration.
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1.1. Research Gap and Research Questions

A variety of research has been conducted using the combined concepts of IoT, CC, and
FC, especially in smart homes and cities. The integration concept plays a significant role in
e-healthcare systems. It should be noted that these studies are based on hardware but have
an instantaneous impact on the world; however, they may be a single-time investment for
a specific disease. Instantaneous remote diagnosis of any disease has been investigated in
recent years.

The following research questions (RQs) were taken into account for this investigation:
RQ1. What is the main e-healthcare goal of the IoT-Fog-Cloud combined approach?
RQ2. Can the user utilize the suggested work to prevent other parties from accessing

their medical records?
RQ3. What are the benefits of employing this combined approach in e-healthcare systems?
RQ4. What are the major paybacks of ensemble learning procedures for predicting a

particular disease?
RQ5. What are the main results of employing an integrated preprocessed dataset to

diagnose cardiac diseases?
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1.2. Motivations and Objective

The increasing mortality rate due to cardiovascular disease has been threatening
individuals globally in recent years. Another issue in society is getting medical care
close to these individuals in real time. There is a demand for remote and immediate
diagnosis of heart patients. The primary goal of this study was the remote instantaneous
diagnosis of patients with heart disease. In this paper, a Fog-enabled framework for real-
time diagnosis in heart patients using ensemble deep learning (FRIEND) is presented to
improve the accuracy of diagnosis with unexplained data instantaneously concerning the
integrated dataset of the four HDDs taken from the UCIML warehouse. We involved
16 performance parameters on various ensemble machine learning (EML) and ensemble
deep learning (EDL) approaches. In addition, the suggested work was validated with nine
network parameters.

1.3. Contributions

The basic contributions of this study are summarized as follows:

1. Identifying and assessing earlier work in heart disease diagnoses in real time
from abroad;

2. Examining the work using many measures and an integrated heart disease dataset;
3. Constructing a simple, automated, EML- and EDL-based heart patient diagnosis system;
4. Using a variety of IoT-Fog-Cloud frameworks and simulators to perform the most

accurate predictive analytics;
5. Addressing the results and comparing them with the results of earlier studies,
6. Finding crucial areas where this can be combined with Fog computing studies to

promote the application of these methods.

1.4. Paper Organization

The remainder of this paper is organized as follows: Section 2 summarizes the field’s
research. Section 3 presents the datasets and methods used in this study. Section 4 discusses
the architectural aspects of the work, including its design and working principles. Section 5
analyzes the efficiency of the proposed method by comparing it with related efforts, and
Section 6 summarizes the pros and downsides and suggests expansions.

2. Existing Works

Caliskan and Yuksel [12] created a deep neural network (DNN) approach for coronary
artery disease using Cleveland, Hungarian, Switzerland, and LongBeach HDDs, claiming
that the model is cheaper than standard diagnostic methods. Choi et al. [13] introduced a
recurrent neural network (RNN)-based model called GRAM, that is, a graph-based attention
model, based on accuracy, data needs, and interpretability as evaluative parameters on two
datasets from the Sutter Palo Alto Medical Foundation (PAMF) and MIMIC-III and claimed
to have improved performance on low frequency and small datasets. Ali and Ghazal [14]
invented RHAMDS using gesture and voice control for instantaneous data. Their approach
minimized and eliminated automobile collisions by instantaneously recognizing the heart
attacks of drivers. Gupta [15] used KNN and GA on a Hungarian HDD and discovered that
the hybrid strategy is more precise and effective than the alternatives. Mustafa et al. [16]
suggested an ensemble technique by merging five classifiers: SVM, ANN, NB, RF, and
RA, for the diagnosis and prediction of heart disease recurrence. Zhenya and Zhang [17]
presented a cost-effective ensemble technique for the diagnosis of cardiac diseases. On
Cleveland, Statlog, and Hungarian HDDs, recall, precision, specificity, E, G-mean, MC, and
AUC were enhanced. Ali et al. [18] predicted cardiovascular disease using Cleveland and
Hungarian HDDs, considering precision, accuracy, F-measure, recall, RMSE, and MAE,
which achieved enhanced cardiac disease prediction.

Moghadas et al. [19] presented a method for distantly nursing an individual’s health
using an Arduino board and an AD8232 sensor module and found KNN to be the best
cardiac arrhythmia technique among NB, RF, KNN, and SVM linear. Baccouche et al. [20]
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built an EL approach based on a CNN with BiGRU or BiLSTM to classify heart illness data
from Mexico’s Medica Norte Hospital. They stated that the framework avoids imbalanced
HDD classification and offers more accurate findings. Sun et al. [21] introduced FogMed,
a Fog-based system for predicting heart sickness on an ECG dataset, claiming superior
performance compared to earlier CC approaches. Tuli et al. [22] created an EDL-based
smart healthcare system named HealthFog for autonomous cardiac patient analysis in
FC and IoT-integrated environments, considering latency, power consumption, network
bandwidth, accuracy, execution time, and jitter on Cleveland HDD, and found that it
diagnoses cardiac patients remotely in real-time. Sharma and Parmar [23] created a neural
network (NN)-based DL approach, DNN, for predicting cardiovascular disease using
accuracy as the assessing parameter on the Cleveland HDD, providing the best accuracy
compared to previous systems. Uddin and Halder [24] introduced MLDS, an EM-based
multilayer dynamic technique, with feature selection approaches, including IGAE, GAIN,
CAE, lasso, and ETs, and found that this procedure may predict cardiovascular disease
effectively. The studies carried out in this field are summarized in Table 1, which provides
an overview of these studies.

Table 1. A summary of some state-of-the-art works that are deemed to be connected.

Work Materials and Methods Dataset Used Evaluative Measures Findings

[12] Proposed DNN classifier for categorizing
coronary artery disease

Switzerland, LongBeach,
Hungarian, and

Cleveland HDDs

Accuracy, sensitivity,
and specificity

The suggested classifier is affordable
and readily available

[13] Introduced RNN-based model termed
GRAM, i.e., graph-based attention model

Datasets from PAMF and
MIMIC–III

Accuracy, data needs,
and interpretability

The proposed GRAM approach
significantly improves performance

on low-frequency diseases and
small datasets

[14] Introduced RHAMDS, i.e., real-time
heart attack mobile detection service Real-time dataset Voice and

gesture control

The planned RHAMDS reduces and
prevents automobile crashes by

identifying drivers who are having
heart attacks

[15] Introduced a hybrid technique
combining KNN and GA approaches Hungarian HDD Accuracy

The suggested paradigm yields
outcomes that are more precise

and effective

[16]

Proposed an ensemble model with SVM,
ANN, NB, RA, and RF to investigate and

forecast the recurrence of
cardiovascular illness

Hungarian and Cleveland
HDDs

Accuracy, precision,
F-M, ROC, RMSE, and

kappa statistics

This ensemble technique achieves
both high readability and

predictive accuracy

[17]
Proposed a 5-classifier-based affordable

ensemble technique to enhance the
detection of heart disease

Cleveland, Statlog, and
Hungarian HDDs

Precision, AUC
specificity, E, recall,
MC, and G-mean

This ensemble method outperforms
others and offers a
possible alternative

[18] Feature fusion and EDL are used to
predict cardiovascular disease

Cleveland and
Hungarian HDDs

Accuracy, recall, MAE,
precision, F-measure,

and RMSE

This ensemble strategy leads to more
accurate heart disease predictions

[19]

Presented a method for remote
monitoring of a patient utilizing an

Arduino board and an AD8232
sensor module

Tele ECG Accuracy and
macro-F1

The KNN classifier-based system is
ideal for both classification

and validation

[20] Proposed CNN-based EL framework for
heart disease data classification Mexico’s Medica Dataset Accuracy and F1-score The suggested approach classifies

imbalanced HDDs more accurately

[21] Proposed FogMed framework for heart
disease prediction ECG dataset Accuracy and time

efficiency
The proposed framework

outperforms existing CC methods.

[22]
Introduced EDL-based HealthFog for

automatic cardiac patient analysis in FC
and IoT

Cleveland HDD Accuracy and
network parameters

HealthFog detects cardiac patients
remotely in real-time

[23] Introduced NN-based DL for
cardiovascular disease prediction Cleveland HDD Accuracy This DNN technology outperforms

previous methods

[24]
IGAE, GAIN, CAE, lasso, and ETs were
used to introduce MLDS, an EM-based

multilayer dynamic system
Realistic dataset

from Kaggle
Accuracy, precision,

ROC, and AUC

Cardiovascular disease can be
accurately predicted by the

suggested MLDS
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3. Preliminaries
3.1. Dataset Description, Preparation, and Preprocessing

There are various heart disease datasets (HDDs) accessible worldwide, including
Cleveland, Hungarian, Switzerland, and Long Beach HDDs. All these HDDs’ attributes
are numeric and taken from the UCI-ML warehouse [25]. In this study, an integrated heart
disease dataset (IHDD) was formed by combining these HDDs, as all datasets had the same
instance format, as shown in Table 2.

Table 2. A brief summary of the IHDD Dataset.

Dataset Used Quantity of Attributes Quantity of Instances

IHDD 76 (11 considered in this Work)

303 (Cleveland HDD),
123 (Switzerland HDD),
294 (Hungarian HDD),

and 200 (Long Beach VA HDD)

Although there were 76 raw attributes, only 11 were considered for the investigation
in this study, which are discussed in Table 3. In the raw datasets, 0–4 indicate the disease
severity. Attributes 1, 2, 3, and 4 are considered as 1 for binary classification, indicating
people with heart problems, and 0 as those without. Here, 10 items, including age, sex, rest
ECG, etc., are collected via a mobile app, and the 11th datum, that is, the target, is used
as a prediction. The IHDD is separated into training, test, and validation data in a ratio
of 70:15:15. For better accuracy of the prediction results from the model, the data were
preprocessed and filtered out with data cleaning, and data normalization was performed
before subjecting the dataset to training and testing. Table 4 presents the representation of
a subset of the dataset.

Table 3. Short description of attributes of IHDD dataset.

Sl. Attributes Meaning Values

1 Age Patient’s age in years A number value (between 29 and 79)

2 Sex Patient’s gender 0: female; 1: male

3 Chest pain Type of chest pains 1: typical angina; 2: atypical angina;
3: non-anginal pain; 4: asymptomatic

4 Blood pressure Resting blood pressure level (in mm
Hg on admission to the hospital) A numeric value (between 94 and 200)

5 Smoking years Years that a person has smoked A numeric value (between 5 and 45)

6 Fasting blood sugar Level of fasting blood sugar 0: false, if FBS is less than or equal to 120 mg/dL;
1: true, if FBS is greater than 120 mg/dL

7 Diabetes history Prior diabetic history 0: no history of diabetes; 1: history of diabetes

8 Family cornory history Coronary disease in the family 0: no; 1: yes

9 Rest ECG Electrocardiographic readings
while at rest

0: normal; 1: having ST-T wave abnormality
(T wave inversions and/or ST elevation or

depression of >0.05 mV); 2: showing probable or
definite left ventricular hypertrophy by

Estes’ criteria

10 Pulse rate Reached maximum heart rate A numeric value (between 71 and 202)

11 Target Heart disease diagnosis 0: for <50% diameter narrowing;
1: >50% diameter narrowing
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Table 4. Samples from pre-processed IHDD Dataset.

Sl. Age Sex Chest
Pain

Blood
Pressure

Smoking
Years

Fasting
Blood
Sugar

Diabetes
History

Family
Cornory
History

Rest
ECG

Pulse
Rate Target

0 63 1 1 145.0 20.0 1.0 1.0 1.0 2.0 150.0 0

1 67 1 4 160.0 40.0 0.0 1.0 1.0 2.0 108.0 0

2 67 1 4 120.0 35.0 0.0 1.0 1.0 2.0 129.0 0

3 37 1 3 130.0 0.0 0.0 1.0 1.0 0.0 187.0 0

4 41 0 2 130.0 0.0 0.0 1.0 1.0 2.0 172.0 0

5 56 1 2 120.0 20.0 0.0 1.0 1.0 0.0 178.0 0

6 62 0 4 140.0 0.0 0.0 1.0 1.0 2.0 160.0 1

7 57 0 4 120.0 0.0 0.0 1.0 1.0 0.0 163.0 0

8 63 1 4 130.0 0.0 0.0 1.0 0.0 2.0 147.0 0

9 53 1 4 140.0 25.0 1.0 1.0 1.0 2.0 155.0 0

3.2. Materials and Methods

This study used AWS to produce virtual machines (VMs) and Aneka for cloud re-
sources, while iFogSim and FogBus simulated Fog resources. iFogSim explored fog and
cloud scheduling and tested resource management and scheduling principles by simulat-
ing FC situations [26]. FogBus includes blockchain concepts to protect data, privacy, and
communication and combines IoT, CC, and FC [27]. It allows developers to build apps, cus-
tomers to execute apps, and service providers to manage resources. AWS delivers excellent
cloud security and web services, that is, demand-based services [28]. Aneka is a cloud-
based API creation platform [29] that is designed using a service-oriented architecture and
can create programming models that abstract program execution logic.

Owing to the difficulty in diagnosing and predicting illnesses, artificial intelligence (AI)
and its extensions, such as machine learning (ML) and deep learning (DL), are essential tools
for empowering diabetic patients and doctors in their daily lives [30]. Logistic regression
(LR) is a statistical method for predicting the link between a binary dependent variable
and at least one of the independent variables, such as probabilities and sigmoid function.
A decision tree (DT) creates a set of rules that can be used to classify data using the idea
of decision making. Random forest (RF) is applied to reduce overfitting and improve
prediction accuracy. Naive Bayes (NB) performs well under many actual circumstances,
including document classification and spam filtering. K-Nearest Neighbors (KNN) is a
technique for finding solutions to classification and regression problems; however, in the
business sector, it is most typically used for classification challenges. In multidimensional
space, a support vector machine (SVM) is used to classify data points using the proper
hyperplane. AdaBoost, or adaptive boosting, is a statistical data classification algorithm.
Extreme gradient boosting (XGBoost) is an ensemble machine-learning technique based
on gradient boosting that uses decision trees. XGBoost performed better than AdaBoost
because of system upgrades.

Deep learning (DL) is gaining popularity in data classification; its major types include
deep neural networks (DNN), recurrent neural networks (RNN), convolutional neural
networks (CNN), and artificial neural networks (ANN). DNN uses a layered neural network
with many layers, where each layer can be turned on or off, and its output is the input for
the following layer. Unlike other NNs, DNNs have fewer hidden layers and are used to
train datasets [31]. Mathematically, a DNN is, as depicted in Equations (1) and (2), where
each pre-activation function Pl

a(x) is typically a linear procedure involving the matrix W l
s(x)

and the bias Bl
s, which can be cohesive into a parameter Pl

r . In Equation (3), the x̂ denotes



Informatics 2023, 10, 21 7 of 21

the addition of 1 to the vector x. The form of the hidden-layer activation function Hl(x) is
often identical at each level; however, this is not always the case.

Pl
a(x) = W l

s(x) + Bl
s (1)

Pl
a(x̂) = Pl

r(x̂), l = 1 (2)

Pl
a

(
Ĥl−1

)
= Pl

r

(
Ĥl−1

)
, l > 1 (3)

To determine neural activation and nonlinearize a neuron’s output, the activation
function (AF) adds bias to a weighted sum. A rectified linear unit (ReLU) is a typical AF in
DL that yields decent results; it was developed to address vanishing gradient problems.
The most frequent AF in the DL group was the sigmoid. The sigmoid function transforms
small and large values into values close to zero and one, respectively. The most widely
used AF is ReLU, whereas binary classification uses the sigmoid, which is defined in
Equations (4) and (5), respectively [32], where Rel(x) is for the ReLU activation function
and Sigm(x) is the sigmoid activation function, whereas the Max() function finds the
maximum value.

Rel (x) = Max (0, x) (4)

Sigm (x) =
1

1 + e−x (5)

Ensemble learning (EL) improves the predictive analysis performance and accu-
racy [33]. The ML and DNN use ensemble approaches, such as bagging, voting, and
averaging, to distribute data to worker nodes and obtain insights, as shown in Figure 2. The
bootstrap aggregator, commonly known as the bagging meta-estimator, is an EL approach
that may be used for classification and regression (BaggingClassifier and BaggingRegres-
sor), whereas averaging averages, as in Equation (6), where WA() is a function representing
weighted averaging on p number of initial predictions xp and weights assigned wp, all
predictions for a final predictive result and voting use an ensemble of various models to
train and predict an output based on the class that has the highest likelihood of becoming
the output.

WAP =
∑m

1 xpwp

wp
(6)
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4. Proposed Work: FRIEND

The architecture, design, and operation of the proposed method, called FRIEND, are
described in this section.
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4.1. Architecture of FRIEND

The architecture of FRIEND, shown in Figure 3, incorporates numerous hardware and
software elements, as shown below. The hardware parts that are part of the suggested work
include IoMT Health Sensors (IHSs), Gateway devices (GTDs), Master/Broker PC (MBP),
Fog Worker Nodes (FWNs), and Cloud Data Center Nodes (CCNs), to name just a few.
Through IHSs, data from patients with heart disease are sensed and transmitted to GTDs.
Through GTDs, such as smartphones, tablets, and computers, patient data are accepted
and transferred to either MBP or FWNs. These GDTs work in a manner akin to that of Fog
gadgets. The MBP receives job requests from GTDs and either assigns FWNs to process
them using an information manager (IM) or processes them using a learned DNN-based
model (DBM) to produce results.
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The MBP transfers the traffic to CCNs that employ a cloud manager (CM) when it
detects that there are inadequate resources available, that is, when the MBP and FWNs are
burdened and the MBP transforms into a GTD. In response to queries from GTDs or MBPs,
FWN processes the data and produces results using the trained DBM, and then delivers the
results back. In this study, Raspberry Pi devices were used as FWNs. If needed, the CCN
is used to access cloud resources. The MBP functions as a GTD and forwards it to CCNs
when it detects a lack of resources, that is when the MBP and FWNs are overloaded. Some
of the software elements included in the suggested work are the information manager
(IM), service manager (SM), privacy and security supervisor (PPS), cloud manager (CM),
service observer (SO), and DNN-based model (DBM). The IM takes data from the IHSs that
have been found and analyzed. Additionally, reliant on the circumstance, it can mix data
from several sources and modify the occurrence of data transfers. The data’s subsequent
communications, or which FWNs will communicate with the next, are managed by the IM.
The selection of sufficient resources for program implementation is under the purview of
SM. Each MBP and FWN resource condition was determined by the SO of the computing
server. To determine the needs of various applications, it leverages the directory of the
warehouse service applications. After gathering the required data, the SM creates resources
on the FWNs and the cloud for implementation. The MBP-PPS verifies user authentication
credentials after obtaining them from a GTD, and the FWN-PPS manages seamlessly
protected contacts of an FWN with others while performing computing operations. The
CM warns the framework of cloud-based occurrences, such as containers and virtual
devices, by sending storage and resource-providing requests to the cloud, that is, to the
virtual devices. The SO allocates resources to various programs and monitors how well they
can meet their implementation requirements in real time. It notifies the SM when resource
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usage exceeds a provision-provider-defined threshold, or when something surprisingly
tricky occurs. The dataset is used by the DL component to train the DBM to classify feature
vectors, that is, vector points produced by data preprocessing from IHSs, which are feature
vectors. Additionally, based on the tasks assigned to the SM, it anticipates and provides
results for the data acquired via GTDs.

4.2. Design of FRIEND

FRIEND’s design discusses the Android application and experimental setup along
with the implementation of this research.

4.2.1. Android Application and Experimental Setup

The FRIEND.apk, an Android interface created for this effort using MIT’s AppInventor,
will be employed in a diversity of Android-compatible GTDs to gather sensed data from
individuals [34]. It acts as an interface for the MBP, FWNs, and IHSs. The data input
from the patients was sent to either the MBP, FWNs or CCNs, respectively, as depicted
in Figure 4. A setup with various hardware configurations as evaluation hardware was
implemented for the trials in this study. These configurations included an MBP (Dell with
Windows 10 64-bit OS, Core i3, and 6 GB RAM) and a gateway device (Android Xiaomi
A2 with Ver. 10), FWNs (four records of 4 GB SDRAM-based Raspberry Pi 4), and a public
cloud (Aneka platform and AWS with Windows server). Additionally, the scalability of the
proposed methodology was evaluated using 50 smartphones from various individuals in
various configurations.
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4.2.2. Implementation

This section describes the execution of these components. In this study, we first
considered eight basic ML approaches, namely, LR, DT, RF, NB, KNN, SVM, AdaBoost, and
XGBoost, and initial predictions were made. Then, ensemble techniques, namely, weighted
averaging and soft and hard voting, were applied to the initial predictions received. It
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seems to be good to implement a DNN when the number of instances is higher along
with the bagging classifier with these ensemble approaches, which were then subjected to
various experiments to implement the proposed DBM model. Python was used for data
pre-processing and training of the DBM model. The DNN and BaggingClassifier were
used during model training for predictive binary classification and improved prediction
accuracy. This model uses averaging and voting ensemble approaches to forecast important
results by averaging all predictions from the assembled models. The ReLU is utilized in
both the input and hidden layers, whereas the sigmoid is employed at the output layer. In
this study, the input layer, hidden layer, and output layer are 10, 3, and 2, respectively, as
10 traits are inputs, and the result is binary as to whether the patient has heart disease. The
learning rate in this study was 0.12. This study was modeled using the Adam optimizer.
Table 5 summarizes the proposed DBM setup. The Android app in this work was made
with MIT’s AppInventor, and web communications were performed using PHP. The data
attributes were supplied to the MBP via HTTP Post in an Excel file. The MBP Data Manager
communicates the data received. After any node processes patient data, a response is sent
to the patient’s GTD through the MBP.

Table 5. Samples from pre-processed IHDD dataset.

Dataset Model Input Layers
Numbers

Hidden Layers
Numbers

Output Layers
Numbers

Optimizer
Used

Learning
Rate

Input
Layers AF

Hidden
Layers AF

Output
Layers AF

IHDD DNN 10 3 2 Adam 0.12 ReLU ReLU Sigmoid

4.3. Working of FRIEND

The operating principle of the proposed FRIEND was described using algorithmic
steps and a flowchart. In the proposed work, the MBP is the master and FWNs are the slaves.
The MBP, FWNs, and GTDs were on the same network. The three types of communication
include: (1) MBP, (2) MBP with FWNs, and (3) Cloud. The MBP attempts to perform the
job request or requests any of the FWNs and returns the result. When the MBP and FWNs
are overwhelmed, they forward to CCNs and become a GTD. Algorithm 1 explains how to
build the suggested model, whereas Algorithm 2 explains how to train it utilizing various
ML, DL, and EL ideas. The communication sequence of the proposed method is shown
in Figure 5.

Algorithm 1: Detailed working of FRIEND

Notations:
PAD: Patients’ data
GTD: Gateway device
ITD: IoT device
ATR: Attribute
FWN: Fog computational node
CCN: Cloud Data center node
MBP: Master/broker node
RES: Result
Input:
Patients’ data, PADi = {PAD1, PAD2, PAD3. . . }
Gateway devices, GTDi = {GTD1, GTD2, GTD3. . . }
IoT devices, ITDi = {ITD1, ITD2, ITD3. . . }
Attributes, ATRi = {ATR1 for age, ATR2 for sex, ATR3 for chest pain type, ATR4 for blood pressure, ATR5 for
smoking years, ATR6 for fasting blood sugar level, ATR7 for diabetes history, ATR8 for family history coronary,
ATR9 for ECG, ATR10 for pulse rate, ATR11 for target}
Fog computational nodes, FWNi = {FWN1, FWN2, FWN3. . . }
Output:
Results, RESi = {RES0 when value of target is 0, RES1 when value of target is 1}
Steps of Algorithm:
Obtain ATR3, ATR4, ATR6, ATR9 and ATR10 using ITDi.
Submit PADi obtained using ITDi adding ATR1, ATR2, ATR5, ATR7, and ATR8 to MBP using GTDi.
if MBP = = available (), then

if target = = 1, then
return RES1

else
return RES0

end if
end if
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if FWNi = = available (), then
if target = = 1, then

return RES1
else

return RES0
end if

end if
if CCN = = available () then

if target = = 1 then
return RES1

else
return RES0

end if
end if
Return RESi to MBP.
Transfer RESi to the corresponding GTDi.
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Algorithm 2: Pseudocode of EDL algorithm employed in FRIEND

Notations:
S: Samples
B: Bagging algorithm
M: ML algorithm
D: DL algorithm
E: EL algorithm
P: Total number of iterations
R: Result
Input:
Training samples, Si = {S1, S2, S3. . . }
Bagging algorithms, Bi = {B1, B2, B3. . . }
ML algorithms, Mi = {M1, M2, M3. . . }
DL algorithms, Di = {D1, D2, D3. . . }
EL algorithms, Ei = {E1 for weighted averaging, E2 for soft voting, E3 for hard voting}
Output:
Results, R
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Steps of Algorithm:
Begin
for i = 1 to P do

Obtain Si
if Algorithm == Di then

Training Di on Si
Bootstrap Di using Bi

else
Training Mi on Si

end if
end for
Get R, Applying Ei
Assign R to the nearest {0,1}
End.

5. Experimental Results and Discussion

First, a brief discussion of various network parameters and evaluative measures is
provided. Next, the results obtained by experiments on these parameters are discussed,
which leads to a discussion of the results obtained by the proposed method named FRIEND.
A summary of comparisons with related studies is included in this section.

5.1. Analysis of Results Based on Performance Parameters

Empirical analysis of the results obtained is a major part of any proposed work.
Performance measures aim to establish a real-to-anticipated class confusion matrix with a
set of evaluation standards. For true and false positives, the confusion matrix is abbreviated
as TRPos and FLPos, whereas for true and false negatives, it is abbreviated as TRNeg and FLNeg,
respectively. In this study, classification can be performed using a variety of performance
metrics, including precision or positive predictive value (PPV), accuracy (ACC), specificity
or selectivity or true negative rate (TNR), recall or sensitivity or true positive rate (TPR),
f1-score (F1S), misclassification rate (MCR), miss rate or false-negative rate (FNR), fall-out
or false-positive rate (FPR), negative predictive value (NPV), false discovery rate (FDR),
false omission rate (FOR), prevalence threshold (PT), balanced accuracy (BA), prevalence
(PRV), threat score (TS), critical success index (CSI), and phi coefficient (φc) or Mathew’s
correlation coefficient (MCC), which can be formulated as in Equations (7)–(22).

ACC =
TRPos + TRNeg

TRPos + TRNeg + FLPos + FLNeg
(7)

PPV =
TRPos

TRPos + FLPos
= 1− FDR (8)

TPR =
TRPos

TRPos + FLNeg
= 1− FNR (9)

TNR =
TRNeg

TRNeg + FLPos
= 1− FPR (10)

F1S =
2× PPV × TPR

PPV + TPR
=

2× TRPos
2× TRPos + FLPos + FLNeg

(11)

MCR =
FLPos + FLNeg

TRPos + TRNeg + FLPos + FLNeg
(12)

FNR =
FLNeg

TRPos + FLNeg
= 1− TPR (13)

FPR =
FLPos

TRNeg + FLPos
= 1− TNR (14)

NPV =
TRNeg

TRNeg + FLNeg
= 1− FOR (15)
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FDR =
FLPos

TRPos + FLPos
= 1− PPV (16)

FOR =
FLNeg

TRNeg + FLNeg
= 1− NPV (17)

PT =

√
FPR√

TPR +
√

FPR
(18)

CSI =
TRPos

TRPos + FLPos + FLNeg
(19)

PRV =
TRPos + FLNeg

TRPos + TRNeg + FLPos + FLNeg
(20)

BA =
TPR + TNR

2
(21)

MCC =

(
TRPos + TRNeg

)
−
(

FLPos + FLNeg
)√

(TRPos + FLPos)
(
TRPos + FLNeg

)(
TRNeg + FLPos

)(
TRNeg + FLNeg

) (22)

In this study, we first considered eight fundamental ML techniques: LR, DT, RF, NB,
KNN, SVM, AdaBoost, and XGBoost. Initial predictions were created, and they are listed
in Table 6 and displayed in Figure 6. However, the highest accuracy achieved among the
ML techniques (i.e., with RF) was only 90.53%, which can be improved by combining these
results using weighted averaging, soft voting, and hard voting, which are models known
as M1, M2, and M3, respectively. When there are more instances in the datasets, it seems
wise to use the DL approach, DNN, and bagging classifiers with weighted averaging and
hard voting ensemble techniques, whose models, known as M4 and M5, respectively, are
used in numerous experiments. According to reports based on performance measurements,
model M5, that is, the DNN with bagging and hard voting classifiers, as shown in Table 7
and Figure 7, surpasses all other recommended models and is deemed to be the proposed
DBM approach.

Table 6. Recorded results of various performance parameters based on various ML approaches.

ML
Approaches

Recorded Performance Measures (in %)

ACC PPV TPR TNR F1S MCR FNR FPR NPV FDR FOR PT CSI PRV BA MCC

LR 84.01 91.59 89.03 58.49 90.29 15.99 10.97 41.51 51.24 8.41 48.76 0.41 82.31 83.54 73.76 45.11
DT 89.91 94.88 93.35 68.18 94.11 10.09 6.65 31.82 61.86 5.12 38.14 0.37 88.87 86.34 80.76 59.08
RF 90.53 95.41 93.53 71.59 94.46 9.47 6.48 28.41 63.64 4.59 36.36 0.36 89.49 86.34 82.56 62.01
NB 88.04 94.56 91.31 68.48 92.91 11.96 8.69 31.52 56.76 5.44 43.24 0.37 86.75 85.71 79.89 55.39

KNN 87.42 93.90 91.37 62.49 92.62 12.58 8.63 37.51 53.51 6.09 46.59 0.39 86.25 86.34 76.93 50.48
SVM 87.73 94.11 91.58 62.79 92.82 12.27 8.42 37.21 53.47 5.89 46.53 0.39 86.61 86.65 77.18 50.86

AdaBoost 86.49 93.37 90.86 58.14 92.11 13.51 9.14 41.86 49.51 6.63 50.51 0.41 85.35 86.65 74.49 45.84
XGBoost 88.35 94.45 91.91 65.91 93.16 11.65 8.09 39.09 56.31 5.55 43.69 0.38 87.21 86.34 78.91 54.18

Table 7. Recorded results of performance parameters based on various proposed approaches.

Proposed
Approaches

Recorded Performance Measures (in %)

ACC PPV TPR TNR F1S MCR FNR FPR NPV FDR FOR PT CSI PRV BA MCC

M1 90.84 96.04 93.05 78.35 94.52 9.16 6.95 21.65 66.67 3.96 33.33 0.33 89.61 84.94 87.69 66.91
M2 91.46 96.45 93.48 79.35 94.94 8.54 6.52 20.65 66.97 3.55 33.03 0.32 90.37 85.71 86.41 67.96
M3 92.08 96.67 94.05 79.78 95.34 7.92 5.95 20.22 68.27 3.33 31.73 0.32 91.09 86.18 86.91 69.24
M4 92.39 97.14 94.28 76.12 95.59 7.61 5.72 23.88 60.71 2.86 39.29 0.33 91.74 89.61 85.21 63.82
M5 94.27 97.59 96.09 75.44 96.83 5.73 3.91 24.56 65.15 2.41 34.85 0.34 93.86 81.18 85.77 66.99
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5.2. Analysis of Results Based on Network Parameters

The network parameters latency, arbitration time, total processing time, throughput,
energy consumption, bandwidth, jitter, network utilization, and scalability were used to
validate the proposed task. The various configurations considered for measuring network
characteristics are Config-1 for the MBP only, Config-2 for the MBP with one FWN, Config-3
for the MBP with two FWNs, Config-4 for the MBP with three FWNs, Config-5 for the MBP
with four FWNs, and Config-6 for the CCN only. Equation (23) can be used to express
“latency (LT),” which is the length of time it consumes for data to move through a network
and for a packet to be received, transmitted, and decoded at its destination. Arbitration
time (AT) is the window of time during which the MBP must respond to GTDs, which
may change according to the setup. The processing time (PT), which varies depending on
the setup, is the period of time between starting a job, processing it, and returning user
responses. The temporal time delay of a signal’s time change is known as the jitter (JT).
Task response times may vary, and this is known as jitter. It is a crucial measurement that
may be expressed in Equation (24) for many real-world applications, such as the analysis
of data from e-healthcare. The quantity processed in a given time, such as the number of
HTTP communications per day or bits transported per second, is known as throughput
(TP). It can be calculated using Equation (25) to regulate the rate at which data packets
are effectively transferred from any node to end nodes. The average data transfer rate
over a communication path is known as network consumption or NC. Compared to cloud
computing, Fog computing requires fewer networks. The system’s overall energy use was
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measured as energy consumption (EC). Energy is used by the sensors, Fog nodes, and other
components. Equation (26) and the physical theorem both measure and compute this in
terms of Watt (W). Table 8 presents the observed findings for various network parameters
corresponding to various setups.

LTa = TimeResa − TimeReqa (23)

JTa =
∑m

1 |Di f fa|
m

(24)

TPa =
m

ETAggra

= TimeResa − TimeReqa (25)

ECa = pow(Xa)× TimeProca (26)

Here, TimeResa is the response time, TimeReqa is the request time, Di f fa is the difference
in latencies, ETAggra is the aggregated execution time of m occurrences, pow() acts as the
function between power and characteristic parameters, and TimeProca is the processing time
of a job, where X is the parameter set that affects the power.

Table 8. Recorded results of network parameters based on various proposed approaches.

Network Parameters
Recorded Network Measures

Config-1 Config-2 Config-3 Config-4 Config-5 Config-6

Latency (in ms) 29.8 38.9 37.4 36.5 44.6 2156.3
Arbitration time (in ms) 145.4 987.3 1388.9 1911.5 2334.7 134.1
Processing time (in ms) 2065.5 3124.3 2785.9 3454.9 3572.4 922.8

Jitter (in ms) 4.25 2.75 3.25 6.50 7.75 62.25
Throughput (in Mbps) 18.9 25.3 28.8 32.7 43.8 21.4
Bandwidth (in Kbps) 3.4 5.3 8.1 12.8 17.5 14.6

Network consumption (in secs) 8.2 11.8 13.7 18.5 19.1 28.6
Energy consumption (in Watt) 1.89 2.24 3.16 5.61 6.72 14.39

Figure 8 displays the observed latencies versus arbitration time over the configu-
rations, where the latency is determined by adding the transmission and queue times.
Every job submitted to the MBP or FWNs uses single-hop data transmissions; hence, the
latency is the same. Owing to multi-hop data transmission outside the network, cloud
latency is considerable; hence, FC is required. However, arbitration time is shorter when
jobs are routed to the MBP or CCNs. In other instances, the load balancing affects the
arbitration rate. Owing to enhanced processing, cloud processing is fast. Figure 9 shows
the observed processing time versus jitter for the configurations. The amount of time it
takes to begin, complete, and return a job to the users is known as the processing time. It is
possible to observe that the overall processing time is significantly reduced when using
cloud communications since cloud processing is extraordinarily quick owing to its higher
capabilities. Because the nodes in FWNs have less processing power and a lower clock
frequency, processing takes longer in cases when Fog computing infrastructures are used,
whereas cloud communication has a shorter processing time. It shows a jitter with different
settings, as shown in Figure 9. Jitter is stronger in the MBP-alone condition than when
tasks are transferred to FWNs because the MBP handles arbitration, security checking, and
resource management, whereas jitter is higher when jobs are supplied to the CCN.
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Figure 10 shows the throughput versus bandwidth usage for various configurations.
As shown in the figure, the throughput variance was Mbps for various settings. The MBP
with FWNs has a better throughput than the CCN. As the number of FWNs and bandwidth
utilization increases, security risks and data transmission (with clouds) must be checked.
The figure depicts how bandwidth usage varies across all FCNs in various setups. Because
of the maximum packets of heartbeats, checking of security issues and transmission of data
(with cloud) are necessary as the number of FCNs grows, and bandwidth usage grows as
well. Figure 11 shows the network usage versus energy consumption for various config-
urations. The figure shows that the MBP and/or FWNs have less network consumption
time than CCNs because the fog environment reduces cloud user queries. In compari-
son with the MBP or FWNs, the CCN consumes a large amount of energy, as shown in
Figure 11. As the number of FWNs increased, the energy consumption of the suggested
work also increased.

Scalability is the IoT-Fog-Cloud system’s ability to increase software service delivery
by augmenting software service resources when demand varies [35,36]. As shown in
Figure 12, our key concern is whether the system can grow in quantity (scalability) over a
long period when customers require it. The average response time increased in proportion
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to the number of queries sent, although this increase was not exponential. The research is
scalable because response times do not fluctuate with an increase in queries.
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5.3. Comparative Analysis

The proposed framework, FRIEND, is contrasted with several recent studies that
have taken into account other networks and performance metrics. Table 9 compares
several state-of-the-art studies with the recommended technique, FRIEND, taking into
account comparative characteristics such as methodology, types of data employed, and
performance parameters. Based on the results of the experiments, it can be said that the
suggested approach FRIEND performs better in certain situations while simultaneously
falling short in others. Additionally, sixteen performance factors are included in this work
to support its innovation since including more performance parameters would increase the
suggested work’s appropriateness and application.

Table 9. Comparison of FRIEND with some considered state-of-the-art works based on performance
parameters findings.

Work Methodologies Dataset Employed
Findings (in %)

ACC PPV TPR TNR F1S

[12] CNN Switzerland, LongBeach,
Hungarian, and Cleveland HDDs 89.74 NA 97.67 82.71 NA

[13] RNN Datasets from PAMF and MIMIC–III 63.87 NA NA NA NA
[14] SDN and VANET Real-time dataset NA NA NA NA NA
[15] KNN and GA Hungarian HDD 96.25 NA NA NA NA
[16] NB, ANN, SVM, RF, and LR Hungarian and Cleveland HDDs 98.14 98.10 98.10 NA 98.10
[17] RF, LR, SVM, ELM, KNN, and Relief Cleveland, Statlog, and Hungarian HDDs NA 92.59 92.15 93.21 NA
[18] ML and DL Methods Cleveland and Hungarian HDDs 98.50 98.20 96.40 NA 97.20
[19] NB, RF, KNN and SVM-Linear Tele ECG 69.90 NA NA NA 62.30
[20] CNN with BiLSTM or BiGRU Mexico’s Medica Datasets 98.00 99.00 96.00 NA 98.00
[21] RNN, LSTM, and SLAP ECG dataset 92.00 NA 92.00 NA 92.00
[22] ANN and EL Approaches Cleveland HDD 94.00 NA NA NA NA
[23] LR, KNN, SVM, NB, RF, and HPO Cleveland HDD 90.78 NA NA NA NA
[24] MLDS and ML Methods Realistic dataset from Kaggle 94.16 97.00 91.11 97.19 NA

FRIEND
[Proposed]

DNN, ML, and EL
Approaches IHDD 94.27 97.59 96.09 75.44 96.83

We took into account previously unconsidered elements including throughput, net-
work consumption, and scalability to emphasize the novelty of our study. It can be seen
that we have added eight network metrics, which illustrate how important the fog com-
puting idea is for real-time health concerns such as heart disease. Table 10 contrasts the
recommended work, FRIEND, with a number of other cutting-edge studies that were taken
into account for this study and are relevant to the proposed work. “P” denotes the existence
of ideas and/or parameter involvement, while “A” denotes their absence.

Table 10. Comparison of FRIEND with some considered state-of-the-art works based on the consid-
ered approaches and network parameters.

Work ML DL EL IoT FC
Performance Parameters

AT LT PT TP EC BW JT NC ACC

[12] A P A A A A A A A A A A A P
[13] A P A A A A A A A A A A A P
[14] A A A P A A A A A A A A A A
[15] P A A A A A A A A A A A A P
[16] P A P A A A A A A A A A A P
[17] P A P A A A A A A A A A A A
[18] A P P A A A A A A A A A A P
[19] P A A P P A P A A A A A A P
[20] A P P A A A A A A A A A A P
[21] A P A P P A P A A A A A A P
[22] A P P P P P P P A P P P A P
[23] P P A A A A A A A A A A A P
[24] P A P A A A A A A A A A A P

FRIEND
[Proposed] P P P P P P P P P P P P P P



Informatics 2023, 10, 21 19 of 21

6. Conclusions

E-healthcare systems are simple and consistent for individuals when the FC is used
with IoT installations. Remote self-diagnosis is successful because heart disease-related
mortality is high. Formal IoT implications only use CC methods, which have several
drawbacks that can be resolved by combining FC, IoT, and CC in this suggested work. In
this instance, we first tested the model using eight fundamental machine learning models:
logistic regression, decision tree, random forest, naive Bayes, support vector machine,
AdaBoost, and XGBoost. We then applied ensemble methods such as bagging classifiers,
weighted averaging, and soft and hard voting to achieve enhanced results and, finally,
used the DNN with the ensemble methods. To support this effort, these models were
validated using 9 network parameters and 16 performance parameters. When the deep
neural network was combined with bagging and hard voting classifiers, the accuracy, PPV,
TPR, TNR, and F1 scores of the trials reached 94.27%, 97.59%, 96.09%, 75.44%, and 96.83%,
which are significantly higher results. User-friendliness, FC-based design, instantaneous
remote cardiac patient diagnosis, low latency, minimal energy consumption, etc., all of
which are supported by trials, validate its name. FRIEND uses EDL techniques on the IHDD
dataset to provide real-time, affordable, and enhanced cardiac diagnostics swiftly. Studies
have revealed that it is a quick, user-friendly platform for cardiac remote diagnostics based
on many considered performance and network criteria.

The results support the benefits of FC over CC In terms of latency, network, energy
use, security, and privacy, as well as real-time remote cardiac diagnostics. For instantaneous
distant cardiac patient diagnosis employing smartphones with sensors and apps that can
diagnose heart patients whenever and wherever possible, integrating IoT, FC, and CC
decreases latency and improves accuracy. The limitations of this study include its high cost,
the use of a dataset with only 920 instances, which is not encouraging for DL trials, and the
use of a single-platform-based approach. The aforementioned restrictions may be addressed
by further studies using more DL approaches for various chronic conditions. This paradigm
can be further enhanced by utilizing the concepts of edge, mist, and surge computing.
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