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Abstract: To pursue a healthy lifestyle, people are increasingly concerned about their food ingredi-
ents. Recently, it has become a common practice to use an online recipe to select the ingredients that
match an individual’s meal plan and healthy diet preference. The information from online recipes can
be extracted and used to develop various food-related applications. Named entity recognition (NER)
is often used to extract such information. However, the problem in building an NER system lies in the
massive amount of data needed to train the classifier, especially on a specific domain, such as food.
There are food NER datasets available, but they are still quite limited. Thus, we proposed an iterative
self-training approach called semi-supervised multi-model prediction technique (SMPT) to construct
a food ingredient NER dataset. SMPT is a deep ensemble learning model that employs the concept of
self-training and uses multiple pre-trained language models in the iterative data labeling process,
with a voting mechanism used as the final decision to determine the entity’s label. Utilizing the SMPT,
we have created a new annotated dataset of ingredient entities obtained from the Allrecipes website
named FINER. Finally, this study aims to use the FINER dataset as an alternative resource to support
food computing research and development.

Keywords: data creation; ingredient entity extraction; named entity recognition; self-training;
pre-trained language model; ensemble voting

1. Introduction

In our daily meals, we expect to consume food and beverages with complete nutritional
content, ranging from carbohydrates, proteins, vitamins, fats, and minerals. Meanwhile,
many diseases, such as anemia, sprue, goiter, poor diet, and starvation, are caused by
malnutrition [1]. Therefore, it is necessary to be aware of food nutrition to have an accurate
ingredient profile of food [2]. This ingredient profile will also offer useful information for
people who practice a specific diet or have allergies to some food ingredients [3,4]. One
of the challenges for those people is obtaining food ingredients that match the recipes.
Some ingredients are often difficult to find or expensive in certain areas, depending on
geographic location and season. As a result, we often look for substitute ingredients with
similar taste, nutrition, and texture. For people on a diet or with food allergies, information
about ingredients in food recipes plays a critical role in their health. In recent years, research
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enthusiasm for food computing has become a major focus of various nutrition and health
research efforts [5]. One of the key technologies needed for the development is named
entity recognition (NER) in food of textual recipes [6].

Named entity recognition is an information extraction technique that identifies key-
words or information units dispersed within a text with known labels [7]. A named entity
is a term or expression that uniquely identifies an element among a set of other elements
with similar properties. It provides a piece of rough categorical information related to the
target. Named entities in the text usually play key roles in a sentence both functionally
and semantically. Once such food and nutrition entities are located in the text, we can
further explore important information regarding the relationship between those entities.
Such information can help develop intelligent applications for the food industry [3,8], such
as a personalized recommendation system for individual diets, finding the ingredient
substitutes for individuals with food allergies [4], and calculating nutrient levels in food to
prevent malnutrition [2].

When developing reliable machine learning (ML) models, the biggest challenge comes
from the need for extensive training data. Several studies on food data construction have
been conducted with various approaches and data sources [5]. Table 1 compares the
existing food datasets and the FINER dataset, which is the output of the proposed method.
Among the datasets in Table 1, Recipe1M+ [9] and RecipeNLG [10] are used for multimodal
machine learning tasks, containing both image and text.

Table 1. Comparison of available food dataset to our FINER dataset.

Dataset Method Source Dataset Size
(Recipes) Entities

FoodBase [6] Ruled-based approach AllRecipes 1000 curated;
21,790 uncurated version

Based on Hansard
corpus semantic tags:
AG (food and drink)
AE (animal)
AF (plant)

Recipe1M+ [9] Deep learning approach
Various cooking sites and
image search engines for
image data extension

1 million recipes and
13 million food images -

RecipeDB [11] Ruled-based approach

Food.com
AllRecipes
Tarladalal
The Spruce Eats
Epicurious
Food Network
Taste

118,171

Name
State
Unit
Quantity
Size
Temp
Dry/Fresh

RecipeNLG [10] Deep learning approach
Recipe1M+ and auhtors
private data gathered from
various cooking sites

Over 1 million new data -

TASTEset [12] Deep learning approach

AllRecipes
Food.com
Tasty
Yummly

700

Food
Quantity
Unit
Process
Physical Quality
Color
Taste
Purpose
Part

FINER (Ours) Deep learning approach AllRecipes 64,782

Ingredient
Product
Quantity
Unit
State

However, our study focuses on named entity recognition in food recipe text. There
are datasets available for food entity recognition, but they are usually few regarding the
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availability of training samples [13]. The issue of limited data on food and its attributes has
recently been addressed in several papers with proposals for the construction of food NER
datasets [6,11]. Batra et al. presented RecipeDB [11] while Popovski et al. discussed the
FoodBase corpus, which was developed using a rule-based approach [6]. While publicly
available, it is rather small, with only 1000 recipes for the curated (manually evaluated)
and 21,790 recipes for the uncurated version. Similar to FoodBase, a recently published
dataset called TASTEset [12] has relatively limited data, consisting of 700 recipes. On the
other hand, the RecipeDB dataset, built by Batra et al., [11], is relatively large and covers a
wide range of recipes since it is derived from numerous online food recipe-sharing sites.
However, we cannot directly use the dataset because it is intended for search applications
about recipes or food ingredients.

Our study focuses on extracting entities in the recipe texts from the Allrecipes website,
a popular online social media for sharing food recipes. We propose a novel iterative frame-
work called the semi-supervised multi-model prediction technique (SMPT) to construct
a new dataset of annotated ingredient entities from recipes text called food ingredients
named entity recognition (FINER) using ML techniques to address the data limitation issue.
SMPT employs the self-training idea that builds on pre-trained models in the iterative data
labeling process [14]. After a predetermined number of iterations, the resulting dataset is
re-appended to the training set, which quickly expands to the desired size. Self-training is
a semi-supervised learning strategy that repeatedly trains a base classifier and augments
the training set with newly machine-labeled instances [15,16]. Our proposed SMPT is
an iterative algorithm that alternates the following steps until every unlabeled sample is
assigned a label:

1. Train a base classifier on annotated data.
2. Use this classifier to predict labels for unlabeled data and move some of the confident

samples into the labeled set.

Along with self-training, SMPT also uses of pre-trained models such as spaCy NER [17],
BERT [18], and DistilBERT [19], which help improve the label quality. Then finally, a voting
scheme is used to determine the entity’s label.

This study aims to develop a high-quality NER dataset for food and ingredients with
the following main contributions:

1. The SMPT method. It is a deep ensemble learning model that adopts the self-training
concept that builds on pre-trained language model (LM) in the iterative data labeling
process. Then, the voting scheme is used as the final decision to determine the entity’s
label. Furthermore, this approach can be applied to other domains besides food
and nutrients.

2. The FINER dataset. It is an annotated dataset for food ingredient entities. The dataset
is made public and accessible on Figshare [20].

The remaining sections are organized as follows: Section 2 discusses previous works
on data construction and their approaches. Section 3 explains the proposed method, such
as the data construction workflow, data preparation, NER labeling format, and our machine
learning approach for annotating the dataset. Then, Section 4 describes the experimental
results with discussion. Finally, Section 5 concludes the paper.

2. Related Works

Due to recent advancements in food computing [5], the importance of digital text data
in the food domain has just recently gained more attention. It has brought a new dimension
to food information processing. One technology behind many applications and solutions
rests on NER as a keystone for natural language processing (NLP) in text. Vast research
has been conducted to develop NER [21–23], which include rule-based, ML-based, and
hybrid approaches. This section will provide a summary of previous efforts to create food
information processing, including the dataset construction method, transfer learning, the
pre-trained LM, and self-training in NER research development.
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A rule-based approach was developed by Popovski et al. [6] to create a standard
silver dataset in food NER named FoodBase corpus. This relatively new corpus was
compiled from the Allrecipes website. They performed statistical evaluation using mean,
median, mode, and standard deviation to evaluate the dataset and differentiate it into
curated and uncurated versions. In more recent research, Popovski et al. [13] evaluated
four distinct NER techniques using the FoodBase corpus: FoodIE, NCBO (SNOMED CT),
NCBO (OntoFood), and NCBO (FoodON). In addition, Cenikj et al. proposed BuTTER [24]
to enhance the FoodBase corpus’ performance. BuTTER is a NER approach that employs
bidirectional long short-term memory (Bi-LSTM) and conditional random fields (CRFs) to
extract food entities from 1000 annotated recipes.

Similar research in creating the food NER dataset was conducted by Batra et al. [11].
They employed a rule-based approach and k-means clustering to build the RecipeDB
database. In building RecipeDB, they extracted the data from several food sites, such
as Allrecipes [25], Food.com [26], Tarladalal [27], The Spruce Eats [28], Epicurious [29],
Food Network [30], and Taste [31]. Hence, using the newly created RecipeDB dataset,
Diwan et al. [32] performed NER on the dataset using the Stanford NER model with
k-means clustering to group the vectors of ingredients. The groups are formed based
on part-of-speech (POS) tagging through the bag-of-words approach. The decision to
select the number of formed clusters is based on the group formation’s weakness and the
group’s interpretation.

Transfer learning, pre-trained LMs, and self-training have recently become a trend in
NLP research development. Transfer learning enables the rapid development of accurate
models without the need to start the learning process from scratch. We can utilize the
patterns learned by a particular model when solving a different problem. In the case of NER
dataset creation, Kim et al. [33] proposed a method to automatically annotate the unlabeled
data with a bagging-based bootstrapping approach using CRF and transfer learning. The
resulting dataset was then verified by two versions of deep neural network (DNN)-based
NER models: Bi-LSTM-CRF and vanilla BERT. Our proposed SMPT employs an iterative
process similar to that of Kim et al. However, instead of utilizing a bootstrapping strategy
with CRF to annotate the unlabeled data, we implemented self-training and applied it to
pre-trained models during the data-labeling procedure.

Self-training is a part of a semi-supervised learning strategy that repeatedly trains a
base classifier and augments the training set with newly machine-labeled instances [15,16].
It is often used because of its advantages in overcoming the limitations of small labeled data.
SentAugment is one such effort proposed by Du et al. [34] to address the issue of insufficient
unlabeled data for self-training in the language domain. It uses sentence embedding to
extract unlabeled data in the sample domain from a large corpus. It also performs self-
training on the retrieved sentences. SentAugment is a data augmentation technique that
employs a pre-trained model similar to our prior study in [35], but in SentAugment, they
combined it with self-training.

Additionally, pre-trained LM are frequently exploited to develop NLP applications
due to their advantages. One of the commonly used pre-trained LM in NLP is BERT. BERT
uses the encoders of the transformer architecture [18]. It has several advantages, such as
being easy to integrate across various use cases and tasks, achieving high performance
quickly without excessive fine-tuning and avoiding the requirement for massive labeled
datasets for training [36]. In particular, Stojanov et al. [37] introduced FoodNER as a set of
corpus-based food NER. They used BERT-based pre-trained models—BERT and BioBERT
(both standard and large)—to extract the dataset in the FoodBase corpus. Fine-tuning the
three pre-trained BERT models on five semantic resource groups yielded fifteen different
models in FoodNER. Another study by Anna et al. [12] proposed a dataset called TASTEset.
They manually annotated 700 recipe texts and then trained them on two transformer-based
models, BERT and LUKE. Their best model achieved over 90% F1-score on average.

On the other hand, Pellegrini et al. [4] proposed two models for ingredient embedding:
word embedding (Food2Vec) and BERT-based (FoodBERT). These models were used to
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identify ingredient substitutes for cooking recipes. The results of the Recipe1M+ dataset
showed that FoodBERT is better than the BERT model regarding food knowledge.

Moreover, the current data creation trends indicate that combining semi-supervised
learning and pre-training can offer additional benefits [14–16]. Therefore, we attempt to
leverage the benefit of combining the two methods in this research to address the issue of
limited datasets for entity recognition tasks, especially in the food domain.

3. Dataset Construction
3.1. Dataset Construction Workflow

The data construction workflow is comprised of four stages: (i) data preparation; (ii) man-
ual data labeling; (iii) training and automatic data labeling; and (iv) final data evaluation.
Throughout the construction, we utilize several NLP libraries such as spaCy [17], NLTK [38],
and Doccano [39] annotation tools. Figure 1 illustrates the detailed data construction.

Figure 1. FINER dataset construction workflow.

A detailed explanation of each stage is given in the following:

(i) Data preparation. We begin by cleaning the text data collected from the Allrecipes
website, followed by a number of pre-processing steps. The explanation is provided
in detail in Section 3.2.

(ii) Manual data labeling. We manually label 2000 instances and split them in half for
the initial training and evaluation sets. Using the initial training set, a baseline NER
annotator is developed. The evaluation set is preserved for the final evaluation stage
of the complete dataset.

(iii) Training and automatic data labeling. In this stage, a baseline model is developed
utilizing the initial training set from the previous stage. This model is then applied
to a set of unlabeled data to predict its labels. Then, we have a newly created set
of labeled data, some of which have been incorporated into the previous set. This
procedure is repeated until no more unlabeled data are available.

(iv) Final data evaluation. After a number of repetitions, we reside at the dataset named
Food Ingredient NER or FINER. Using several classifiers, including CRF, Bi-LSTM,
and BERT, we indirectly evaluate the quality of the dataset. Their performance is
evaluated using the reserved evaluation set.
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3.2. Data Preparation

The dataset in this study is based on the recipe text scraped from the Allrecipes
website [25]. The recipe text consists of recipe names, ingredients, direction, and nutrition,
as depicted in Figure 2. This study extracts ingredient entities and their properties, such
as quantity, unit, and ingredient status, from the ingredient section. It contains 64,782 raw
recipes containing eight food categories: breakfast and brunch, dinner, main dishes, side
dishes, drinks, dessert, bread, and salad. The data have been cleaned up so that the data
format matches the input requirements. Then, it is followed by the data pre-processing.
Data pre-processing involves multiple steps such as: tokenizing the data, transforming it
into lower-case, eliminating special characters, stop words, punctuation symbols, white
spaces, and then lemmatizing the data.

Ingredient Phrase Ingredient Product Unit Quan�ty State

2 tablespoons vegetable oil vegetable oil tablespoons 2

1 pound beef sirloin, cut into 2-inch 
strips

beef sirloin pound 1 cut into 2-inch strips

1.5 cups fresh broccoli florets broccoli florets cups 1.5 fresh

1 red bell pepper, cut into matchs�cks red bell 
pepper

1 cut into matchs�cks

2 carrots, thinly sliced carrots 2 thinly sliced

1 green onion, chopped green onion 1 chopped

1 teaspoon minced garlic garlic tablespoons 1 minced

2 tablespoons soy sauce soy sauce tablespoons 2

4 tablespoons tabasco brand
chipotle sauce

tabasco brand
chipotle sauce

4

Figure 2. Ingredient data extraction from Allrecipes dataset.

We then define additional rules as follows:

1. Each phrase in the ingredients section is split into individual phrases to simplify
the extraction procedure. Then after preprocessing, the resulting dataset consists of
181,970 phrases.
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2. Standardize the unit and quantity measurements. For example, in the units, all
abbreviations are converted to their true form; thus, “tbsp” becomes “tablespoon”. In
quantity, we convert all fractional numbers to decimal form so that “½” becomes “0.5”.

3. Since our dataset comprises a list of ingredients, stop words and punctuation may
not always be meaningless to the text’s intent, but they could help interpret entities.
Therefore, we have created custom lists of stop words and punctuation. For example,
“1 (2 ounces) package butter” indicates that one package of butter equals 2 ounces.
Although “2 ounces” is enclosed in parentheses, we keep the parentheses since they
provide information for translating the number of ingredients to standard units.

After a series of pre-processing steps, the recipe text data are divided into three sets, as
summarized in Table 2. For training and evaluation data, we manually annotated the first
two sets using Doccano annotation tools [39] and left the remaining set unlabeled, which
will be labeled recursively by the proposed method of the NER annotator.

Table 2. The organization of the initial dataset. Initial training data and evaluation data are manu-
ally annotated.

Dataset Total (# of Sentences)

Initial Training Data 1000
Evaluation Data 1000
Unlabeled Data 179,970

Total 181,970

3.3. Named Entity Labeling

Entities usually represent an important chunk of a particular sentence. Named entity
recognition is a technique to detect and classify atomic elements in a text into predefined
categories or classes that vary depending on the domain of interest. People commonly
classify them into names of persons, organizations, events, dates, and many more in the
general domain. The objective of this study is to extract food ingredient entities and their
properties from recipe texts. In this study, we define five entity classes, each associated
with an entity tag explained as follows:

1. INGREDIENT: the name of the food or ingredient. For example, garlic, apple, carrots,
vegetable oil, etc.

2. PRODUCT: the food or ingredient from a specific brand mentioned. Examples include
Archer farms dark chocolate hot cocoa mix, Tabasco brand chipotle pepper sauce, etc.

3. QUANTITY: The amount of the food or ingredient associated with the unit. Examples:
1½, 25, 0.5, etc.

4. STATE: The processing state of the food or ingredient. For example, chopped, grilled,
minced, cut into 2-inch strips, etc.

5. UNIT: a measurement unit, such as pound, gram, fluid ounce, tablespoon, cup, etc.

We used the IOB2 format to chunk the entity word [7]. The main distinction between
the IOB and IOB2 formats is that the IOB2 format includes the “B-tag” at the beginning
of each chunk (all chunks begin with a “B-tag”). The IOB format is described in Table 3.
Tags are prefixed by “B”, “I”, or “O” to indicate their position within the entity. The tag “O”
indicates that a token is not a chunk. For example, in the ingredients entity at the beginning
of a chunk, the “tag” is substituted with a named entity label, such as “B-INGREDIENT”.

Table 3. The IOB tagging format.

Tag Description

B (Begin) Denotes that the tag is the start of a chunk.
I (Inside) denotes that the tag is located inside a chunk.

O (Outside) Identifies a token as non-chunk (outside).
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3.4. Semi-Supervised Multi-Model Prediction Technique (SMPT)

Figure 3 depicts a general procedure of our proposed method. Our SMPT approach is
an iterative step similar to the bootstrapping method used by Kim et al. in [33], but instead
of using CRF for bootstrapping and automatically labeling the unlabeled data. We adopt
the concept of self-training in the data labeling process. Given the small labeled datasets,
we train a baseline classifier based on pre-trained models of spaCy, BERT, or DistilBERT
and use them to increase the labeled set to the final selection of the token (entity) classes
made by majority voting. The resulting labeled dataset is incorporated into the input for
the next iteration. The whole procedure is repeated until the unlabeled sample is labeled.
Thus, we present our proposed method for building the ingredient-named entity dataset in
the following sections.

Figure 3. SMPT method for ingredient entity data extraction.

3.4.1. Models

• spaCy NER [17]: spaCy is a Python and Cython-based open-source library for natural
language processing that provides various NLP tools for tokenization, POS-tagging,
and named entity recognition text.

Figure 4 shows the procedure of spaCy being used to train a custom NER model. It
employs word embedding and a multilayer CNN with residual connections. It supports
pre-trained models in multiple languages and provides a default classifier for a wide range
of named or numerical entities, including person, location, organization, date, and event.
In addition, it allows us to extend the NER model with new classes for novel entities.
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Figure 4. NER custom model training of spaCy.

In this study, we design a neural network with a custom vector layer initialized with
the pre-trained spaCy’s output layer. That layer is then trained using the spaCy library pre-
training command [17,40] on a domain-specific text corpus. Later in the experiment, we also
use the pre-trained spaCy model (en_core_web_lg) and train our custom dynamic embedding
model on our ingredient dataset. We apply this domain-specific word embedding model to
vectorize tokens while conducting transfer learning from the spaCy pre-trained model over
the annotated data.

• BERT: BERT [18] is a language representation model that uses stacked transformer
encoders that learn deep bidirectional representation from a large unlabeled corpus.
An additional output layer is added to fine-tune the representation in downstream
NLP tasks. Fine-tuning slightly modifies the neural network architecture for improved
predictions in target tasks while training the whole network. Pre-trained BERT inherits
the model weights learned during the pre-training, allowing downstream tasks to
benefit from these powerful representations rather than learning from scratch.

The Transformer is equipped with multi-head attention that concatenates h different
attention layers with different initializations [18,41,42]. The multi-head attention function
can be calculated as follows:

Multihead(Q, K, V) = Concat(head1, .., headh)WO (1)

where, headi is ith attention head which is given by:

headi = Attention(QWQ
i , KWK

i , VWV
i ) (2)

which is computed using these projection matrix parameters WK
i ∈ Rdemb×dk , WV

i ∈
Rdemb×dV , WQ

i ∈ Rdemb×dk , and WO ∈ Rhdv×demb where Q, K, and V are input matrices
for query, key, and values, respectively. The input matrix X is used for all three matrices at
the beginning. Then their projections XWQ

i , XWK
i , and XWV

i become Qi, Ki, and Vi. These
matrices are used to calculate the scaled dot-product attention for each head as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk
V
)

(3)

For the initialization of the ingredient recognition task, we use the weights of a pre-
trained BERT model (bert-base-uncased) as shown in Figure 5. The BERT architecture is kept,
but the input and output are adapted to our task.



Informatics 2023, 10, 10 10 of 19

Figure 5. Fine-tuned BERT for FINER.

• DistilBERT: DistilBERT [19] is a compact version of BERT and is claimed to be lighter
and faster than BERT with roughly comparable performance. It has 40% lesser pa-
rameters compared to bert-base-uncased and performs 60% faster with over 95% of the
performance of BERT, as evaluated on the GLUE language understanding benchmark
in this study [19]. To reduce the computational requirements of modern large neural
networks, DistilBERT uses a knowledge distillation technique known as teacher-
student learning. Knowledge distillation is a compression technique that entails training
a small model to replicate the behavior of a larger model. As shown in Figure 6,
the masked language model (MLM) loss is used to train the student model and the
cross-entropy loss between the teacher and the student. This mechanism encourages
the student model to generate a probability distribution over the predicted tokens as
close to that of the teachers as possible.

Figure 6. Knowledge distillation from BERT with the combination of cross entropy and the masked
LM objectives.
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In teacher–student training, a student network is trained to replicate the distribution of
a teacher network’s complete output or its knowledge. This procedure helps to generalize
the student model in the same way as the teacher. We use cross-entropy over the soft targets
(probability of the teacher) to transfer knowledge from the teacher to the student rather
than training with a cross-entropy over hard targets (one-hot encoding of the gold class).
Thus, the training loss becomes

L = −∑
i

ti log(si), (4)

where t represents the logits of the teacher and s represents the student’s logits. This
loss provides a richer training signal since a single example imposes significantly more
constraints than a single hard target. To further expose the mass of the distribution over
the classes, Hinton et al. introduce a softmax temperature [43].

pi =
exp(zi/T)

∑j exp(zj/T)
. (5)

When T tends to 0, the distribution becomes a Kronecker (equivalent to the one-
hot target vector), whereas it becomes a uniform distribution when T −→ +∞. During
training, the same temperature parameter is applied to both the student and the teacher,
revealing more signals for each training example. In inference, T is set to 1, and the standard
Softmax is recovered. Therefore, using teacher signals allows us to train a smaller LM
later called DistilBERT. In the implementation, we utilize the pre-trained DistilBERT model
(distilbert-base-uncased) in the same way that we implement the BERT model.

3.4.2. Training and Labeling Methods

The key component of the proposed method is training the classifiers that will be
developed in this subsection. The SMPT training process comprises two main compo-
nents: the training process and the dataset labeling scheme with the dataset growth factor.
Therefore, we will describe these two components in the following parts.

A. Training

The core tasks of classifier training and data labeling in SMPT consist of three steps:

1. In the first step, we develop a set of C baseline classifiers using our initial training set
(1000 manually annotated instances). In our experiment, the classifiers include spaCy
NER, BERT, and DistilBERT.

2. In the second step, each classifier C makes its own predictions for the test set. However,
the final decisions on the unlabeled tokens are made by the majority voting scheme:

m̄ = arg max
m≤M

C

∑
c=1

dc,m (6)

where m̄ is the final prediction label (class), M is number of classes, C =| C | the
number of classifiers, and dc,m denotes the vote given to class m by classifier c. If the
max vote is not unique, the token will be given “O” label representing that the token
is not a chunk.

3. Finally, the above machine-labeled tokens with unanimous votes are considered
reliable and promoted into the training set of labeled instances for the next generation
of classifiers. These procedures were repeated until all tokens were labeled.

B. Dataset Building Scheme

Following the iteration procedure described in the previous section, we build an NER
dataset of labeled tokens. In each iteration, we add up a fixed amount of newly labeled
samples to the current training set. We define s as the growth factor. Here, each time, the
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amount of addition is set to be s times that of the current training set t where s > 0. The
number of employed schemes may vary. However, in this implementation, we decide to
use the following three schemes:

• Scheme 1: s = 2
• Scheme 2: s = 5
• Scheme 3: s = 10

In each scheme, the labeled set grows at a different pace. Table 4 explain the data
size growth procedure for data training and labeling using scheme 1 with growth factor 2
as an example. According to Table 4, we have an initial training set that we prepared in
Section 3.2 with the size of t1 and use it to create a set of baseline models or voting classifiers
VC. Then we start the iteration process using VC1. We assign labels to the unlabeled data
from which we pick up u1 = s× t1 for a promotion to the training set of size t2 = t1 + s× t1
for the next round. Therefore, the size of the unlabeled data that we will annotate will
constantly increase by two times the size of the training data used to train the models. The
procedure is repeated until all data are assigned and labeled.

Table 4. The size of the sets and additions over iterations. tn is the training set size, un is the size of
increments, s is growth factor, while n = 1, 2, . . . , n.

Iteration The Set Scheme 1 (s = 2)

1 t1 = 1000 u1 = 2 ∗ t1
2 t2 = t1 + 2t1 u2 = 2 ∗ t2
3 t3 = t2 + 2t2 u3 = 2 ∗ t3
4 t4 = t3 + 2t3 u4 = 2 ∗ t4
. . .
n tn = tn−1 + 2tn−1 un = s ∗ tn

In the following experiments, we explore the three schemes and compare the quality
of machine-labeled data in term of the performance and computation time of tester models.

3.5. Evaluation

The built dataset is then used for the tasks that require entity recognition. Therefore, it
is natural to evaluate it in similar contexts. We first build classifiers for NER and evaluate
their performance with an indirect measure of the dataset quality. We compute three
different metrics as follows [44,45]:

1. Recall is the fraction of correctly predicted positive samples (TP) in their classes:

Recall =
TP

TP + FP
(7)

2. Precision is the proportion of correctly predicted positive samples among the total
positive predictions:

Precision =
TP

TP + FN
(8)

3. F1-score is a metric that measures the model’s accuracy on a dataset, defined as the
harmonic mean of precision and recall:

F1-score = 2 × Precision × Recall
Precision + Recall

(9)

where TP, FP, TN, and FN are:

• TP (True Positive), occurs when the outputs of the NER for input tokens exactly match
the same ingredient entity in the ground truth dataset.

• FP (False Positive), falsely predicted positive occurs when something that is not an
ingredient entity is classified as being one.
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• TN (True Negative), the correct negative prediction occurs when the NER method
correctly predicts that the token is not an ingredient entity in the ground truth dataset.

• FN (False Negative), occurs when a specific annotation is omitted when the entity
should be classified as an ingredient entity. It happens when the ingredient entity is
not properly extracted using the NER method.

4. Experimental Results and Data Analysis

In this section, we construct a dataset for NER in food recipes based on data drawn
from Allrecipes [25]. We gather 64,782 recipes and divide them into 181,970 sentences.
Then we apply the proposed SMTP method, carrying out the incremental process of NER
extraction to obtain the FINER dataset. The detailed specification of the dataset is shown in
Table 5, and the distribution of the dataset over entities is presented in Table 6. The FINER
dataset consists of 1,397,960 words in total. Among them, 220,300 words are out of chunk
entities (O tag), and the rest of the 1,177,660 words are ingredient entities divided into ten
classes. The objective of the experiments here is to verify the effectiveness of the SMTP
method in generating the FINER dataset and assess the dataset’s quality using the existing
NER models. In addition, our dataset of this study is available in [20].

Table 5. The detailed specification of dataset.

Total number of words 1,397,960
Total number of sentences 181,970

Total number of entities (without O tags) 1,177,660
Total number of tags tags (without O tag) 10

Table 6. The dataset distribution for named entities.

Entity Type Count Ratio (%)

B-INGREDIENT 210,082 15.03
B-PRODUCT 17,325 1.24
B-QUANTITY 209,867 15.01

B-STATE 135,315 9.68
B-UNIT 174,993 12.52

I-INGREDIENT 240,436 17.20
I-PRODUCT 55,212 3.95
I-QUANTITY 1919 0.14

I-STATE 130,158 9.31
I-UNIT 2.353 0.17

O 220,300 15.76
Total 1,397,960 100

4.1. Test Results with Training Scheme

The SMPT grows the labeled dataset by multiplying the set by a certain factor. This
paper considers three typical growth schemes to show the effect of the amount of training
data with respect to data quality and process efficiency. Figure 7 gives a detailed picture
of the performance of the three schemes with factors 2, 5, and 10. Panels (a), (b), and (c)
show that the annotators’ performances increase as the dataset grows over iterations. These
results match our expectation that the models improve with more training data, which
strongly indicates the dataset quality. The last panel (d) compares the three schemes in
terms of the best F-1 scores for each.

Table 7 shows the computation time spent in each iteration to label the data for each
scheme. When training time is included, scheme 1 is the slowest due to the increased
number of iterations, which is five. Scheme 2 is faster but has the lowest performance
among the three schemes, according to Figure 7d. On the other hand, scheme 3 takes a
similar amount of time but with fewer iterations and shows superior performance to the
other two. Hence, scheme 3 is the preferred method for time efficiency and performance.
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(a)

(b)

(c)

(d)

Figure 7. The performance results from 3 different schemes. Each scheme has a different total number
of data processing for each iteration: (a) scheme 1, s = 2; (b) scheme 2, s = 5; (c) scheme 3 s = 10;
and (d) best performance in each scheme.

Table 7. Computation time and their aspect of the proposed method. As the training set grows, the
labeling time increases. Note that the three schemes increase the labeled set differently.

Iteration
Scheme 1 (s = 2) Scheme 2 (s = 5) Scheme 3 (s = 10)

Data Time
(second) Data Time

(second) Data Time
(second)

1 2000 146 5000 268 10,000 914
2 6000 392 30,000 1.757 110,000 10.134
3 18,000 1.365 144,970 12.099 59,970 5.018
4 54,000 4.916 - - - -
5 99,970 9.436 - - - -

Total 179,970 16.255 179,970 14.124 179,970 16.066

Meanwhile, as for the scenario of the sample generated by Scheme 3 over three
iterations, see Figure 8 in particular. The sample input was the sentence: “1 pound mixed
domestic and wild mushrooms such as shiitake oyster or cremini, trimmed and quartered, salt
and freshly ground pepper”. In the first iteration, all three models over-generated entities,
some with wrong labels as highlighted in the red squares, and the correct prediction is
highlighted in the blue squares. For instance, the model returned several “O” tags for
non-entity words. Then in the second iteration, the model began to learn. However, in
the spaCy NER model, one error is still found in classifying “shiitake oyster”, which is an
“INGREDIENT”, as a “PRODUCT” class. However, in the last iteration, all models managed
to detect all entities correctly in the sentence.
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Figure 8. An NER sample generated in scheme 3. Blue and red squares indicate correct and incorrect
labeling, respectively.

4.2. Evaluation on Machine Learning Models

To demonstrate the quality of the FINER dataset generated by the SMPT, we indirectly
evaluate this dataset using three popular NER models to infer the dataset’s quality. Those
models are CRF [46–48], BiLSTM-CRF [24,49–53], and BERT [3,19,33]. They have proven
effective for token classification tasks, such as NER [21–23].

The three models were trained on our FINER dataset, and we utilized the reserved
evaluation set of 1000 annotated samples, which we prepared in Section 3.2. Table 8
summarizes the performance of the models on the evaluation dataset in terms of precision,
recall, and F1 score. BERT achieved the best performance in both micro and macro averages.
The BERT micro-average yields precision, recall, and F1-score of 0.978, 0.980, and 0.979,
respectively. Its macro-average metrics are slightly lower than the micro-averages. We
attribute this to the imbalanced data among classes where only a few inside tags are
observed for some classes in the training set. The macro-average takes the mean of the
score of classes, whereas the micro-average takes the class proportion into account. As a
consequence, the poor performance of a small class has a disproportionate impact on the
overall performance when using the macro versions.
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Table 8. Performance of NER models. The best performance is highlighted in bold.

CRF BiLSTM-CRF BERT

micro-avg macro-avg micro-avg macro-avg micro-avg macro-avg

Precision 0.953 0.950 0.973 0.956 0.978 0.961
Recall 0.964 0.957 0.974 0.962 0.980 0.971

F1-score 0.958 0.953 0.973 0.959 0.979 0.966

Additionally, the CRF model used in this experiment achieved the scores listed in
Tables 8 and 9 with an appropriate hyperparameter tuning as the CRF contained a number
of parameters that need fine-tuning to improve performance. However, when compared
to BiLSTM-CRF and BERT, the CRF performed the poorest, which is expected given that
BiLSTM-CRF has a more complex architecture than CRF and has been demonstrated to be
superior due to the use of a bidirectional (forward and backward) LSTM for learning the
hidden text representation and a CRF for tag decoding. Along with the FINER evaluation
of the three models, we compare the results of our study with similar studies, such as
RecipeDB and TASTEset. We choose RecipeDB and TASTEset for our comparison because
of the similar entities and data source description to our FINER dataset.

Table 9. The classification report for each models and the best performance is emphasized in bold.

Class
CRF BiLSTM-CRF BERT

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

B-INGREDIENT 0.948 0.951 0.949 0.969 0.974 0.972 0.979 0.981 0.980
B-PRODUCT 0.909 0.896 0.902 0.932 0.959 0.946 0.963 0.972 0.967
B-QUANTITY 0.998 0.998 0.998 0.999 0.999 0.999 1.000 0.999 0.999

B-STATE 0.955 0.947 0.951 0.969 0.971 0.970 0.981 0.979 0.980
B-UNIT 0.994 0.994 0.994 0.996 0.997 0.997 0.999 0.998 0.998

I-INGREDIENT 0.929 0.956 0.942 0.958 0.975 0.967 0.979 0.976 0.977
I-PRODUCT 0.846 0.923 0.883 0.918 0.973 0.945 0.927 0.986 0.956
I-QUANTITY 0.992 0.958 0.975 0.982 0.985 0.989 0.992 0.994 0.993

I-STATE 0.929 0.951 0.940 0.952 0.978 0.965 0.964 0.983 0.974
I-UNIT 1.000 1.000 1.000 0.999 0.998 0.999 1.000 1.000 1.000

Compared to them, the FINER dataset outperformed both performances by an F1
score of 97.9%, as shown in Table 10.

Table 10. Comparative analysis of the FINER dataset with other similar datasets from previous work
with the best performance is emphasized in bold.

Dataset Model Performance
(F1 Score)

RecipeDB [11,32] K-Means Clustering 0.961
TASTEset [12] BERT 0.935
FINER (Ours) BERT 0.979

For further analysis and verification, we present a detailed evaluation of each entity
tag of these models in Table 9. Classes such as UNIT and QUANTITY were recognized
with very high performance for both beginning (B) and inside (I) chunks due to their
distinct morphological characteristics and the inclusion of numerical characters. Moreover,
UNIT has a high possibility of appearing shortly after QUANTITY, making their prediction
relatively straightforward. Overall, BERT performed better than other models in most cases.
The BERT was pre-trained on a massive corpus, and it preserves powerful representations
of the language, so it is not surprising that it performs best in most downstream tasks, such
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as NER. Based on these experiments, we conclude that our method is helpful and beneficial
in building a reasonably good dataset for typical NER tasks.

5. Conclusions

This study proposed a semi-supervised method for building a NER dataset iteratively
by incorporating the concept of self-training applied to pre-trained models, such as spaCy
NER, BERT, and DistilBERT, under a voting scheme mechanism for improved prediction.
We call this proposed method the semi-supervised multi-model prediction technique or
SMPT. In the set of experiments, a new dataset named FINER was constructed for food
entity recognition and tested to verify its quality. The FINER dataset of this study is
presented as a public dataset for named entity recognition in the food domain and can be
accessed at Figshare [20].

The construction of FINER aims to address a small dataset with limited informa-
tion, such as food and its attributes. Thus, it facilitates the future development of an
integrated information system about food. To investigate the proposed method and its
generated dataset performance, first, we tried and compared three schemes in annotat-
ing the unlabeled dataset iteratively, and later we evaluated the quality of our FINER
dataset using three different NER models, namely CRF, BiLSTM-CRF, and BERT. They all
returned significantly good performance results with precision, recall, and F1-score of
over 90%. Furthermore, we compared FINER with other similar datasets from previous
works, and it turned out that FINER outperformed them with the highest F1 score. These
evaluation results suggest that the proposed method can help to build a useful dataset
with reasonable quality.

Author Contributions: This work was realized through the collaboration of all authors. Concep-
tualization, K.S.K., A.T.P. and B.-K.S.; methodology, K.S.K., A.T.P. and B.-K.S.; investigation, K.S.K.
and B.-K.S.; resources, B.-K.S.; data curation, K.S.K.; writing—original draft preparation, K.S.K.;
writing—review and editing, A.S.; visualization, A.S.; supervision, B.-K.S.; project administration,
B.-K.S.; funding acquisition, B.-K.S., A.S., M.O.H. and C.S. All authors have read and agreed to the
published version of the manuscript.

Funding: The study was part of the “Future Fisheries Food Research Center Project” funded by the
Ministry of Oceans and Fisheries, Republic of Korea (grant no. 201803932). The article processing
charge was funded by the School of Electrical Engineering and Informatics, Institut Teknologi
Bandung; the School of Electrical Engineering, Telkom University; and the Faculty of Engineering
and Technology, Sampoerna University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available and can be
accessed at Figshare [20]: https://doi.org/10.6084/m9.figshare.20222361.v3 (accessed on 7 April 2022).

Acknowledgments: The authors would like to thank Taek-Jeong Nam from Future Fisheries Food
Research Center for the project funding support. We also thank Ahmad Wisnu Mulyadi from the
Department of Brain and Cognitive Engineering, Korea University, for his advice during the revision
process of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
CRF Conditional Random Fields
FINER Food Ingredient Named Entity Recognition

https://doi.org/10.6084/m9.figshare.20222361.v3


Informatics 2023, 10, 10 18 of 19

LM Language Model
LSTM Long Short-Term Memory
ML Machine Learning
MLM Masked Language Model
NER Named Entity Recognition
NLP Natural Language Processing
SMPT Semi-Supervised Multi-Model Prediction Technique

References
1. Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. 2010, 10, 624–627. [CrossRef]
2. Kalra, J.; Batra, D.; Diwan, N.; Bagler, G. Nutritional profile estimation in cooking recipes. In Proceedings of the 2020 IEEE 36th

International Conference on Data Engineering Workshops (ICDEW), Dallas, TX, USA, 20–24 April 2020; pp. 82–87.
3. Syed, M.H.; Chung, S.T. MenuNER: Domain-adapted BERT based NER approach for a domain with limited dataset and its

application to food menu domain. Appl. Sci. 2021, 11, 6007. [CrossRef]
4. Pellegrini, C.; Ozsoy, E.; Wintergerst, M.; Groh, G. Exploiting Food Embeddings for Ingredient Substitution. In Proceedings of

the 14th International Joint Conference on Biomedical Engineering Systems and Technologies—HEALTHINF, Vienna, Austria,
11–13 February 2021; SciTePress: Setúbal, Portugal, 2021; pp. 67–77.

5. Min, W.; Jiang, S.; Liu, L.; Rui, Y.; Jain, R. A survey on food computing. ACM Comput. Surv. (CSUR) 2019, 52, 92. [CrossRef]
6. Popovski, G.; Seljak, B.K.; Eftimov, T. FoodBase corpus: A new resource of annotated food entities. Database 2019, 2019. [CrossRef]

[PubMed]
7. Krishnan, V.; Ganapathy, V. Named Entity Recognition. Stanford Lecture CS229. 2005. Available online: http://cs229.stanford.

edu/2005/KrishnanGanapathy-NamedEntityRecognition.pdf (accessed on 4 February 2021).
8. Komariah, K.S.; Shin, B.K. Nutrition-Based Food Recommendation System for Prediabetic Person. In Proceedings of the Korea

Software Congress 2020 (KSC 2020), Seoul, Republic of Korea, 21–23 December 2020; pp. 660–662.
9. Marin, J.; Biswas, A.; Ofli, F.; Hynes, N.; Salvador, A.; Aytar, Y.; Weber, I.; Torralba, A. Recipe1m+: A dataset for learning

cross-modal embeddings for cooking recipes and food images. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 187–203. [CrossRef]
[PubMed]
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