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Abstract: In the presence of reinsurance, an insurer may effectively reduce its (aggregated) loss
by partially ceding such a loss to a reinsurer. Stop-loss and quota-share reinsurance contracts are
commonly agreed between these two parties. In this paper, we aim to explore a combination of
these contracts. The survival functions of the ceded loss and the retained loss are firstly investigated.
Optimizing such a reinsurance design is then carried out from the joint perspective of the insurer and
the reinsurer. Specifically, we explicitly derive optimal retentions under a criterion of minimizing
a convex combination of conditional tail expectations of the insurer’s total loss and the reinsurer’s
total loss. In addition, an estimation procedure and more explanations on numerical examples are
also presented to find their estimated values.

Keywords: conditional tail expectation; optimal retention; reinsurance; survival function

1. Introduction

Under a reinsurance contract, a loss faced by an insurer is partially ceded to a reinsurer.
As a consequence, the insurer is liable for the remaining loss, called the retained loss, and a
fixed reinsurance premium, which has to be paid to the reinsurer. Meanwhile, the liability
of the reinsurer is the ceded loss subtracted by the reinsurance premium. However, as noted
by Cai and Tan (2007), there is a classic trade-off between the retained loss and the ceded
loss. When the loss ceded to the reinsurer is too large, the reinsurance premium charged
will also be too high. On the other hand, reducing the reinsurance premium will make the
insurer retain a potentially large loss. Accordingly, the insurer needs a reinsurance with
optimal design.

Optimizing the reinsurance design from the perspective of the insurer has been carried
out by many researchers using various approaches. For instance, Gajek and Zagrodny (2000)
considered an optimization criterion of minimizing the variance of the loss retained by the
insurer. Meanwhile, Kaluszka (2004) obtained optimal reinsurance arrangements through a
mean-variance approach. More recently, Cai and Tan (2007) derived optimal retentions for a
stop-loss reinsurance as the solutions to the minimization of value-at-risk (VaR) and condi-
tional tail expectation (CTE) of the insurer’s total loss. As demonstrated by Cai et al. (2008)
under these two risk measures, the optimal reinsurance can be in the form of stop-loss,
quota-share, or their combination. The optimization on the former two reinsurance contacts
was investigated further by Tan et al. (2009) who also employed the VaR- and CTE-based cri-
teria. Several extensions of the stop-loss reinsurance, such as limited stop-loss and truncated
stop-loss, were derived as the solutions to the optimization problem of Chi and Tan (2011)
under the VaR and conditional VaR (CVaR) risk measures. In particular, optimal param-
eters for the limited stop-loss reinsurance were found by Zhou et al. (2015). Meanwhile,
Zhou et al. (2011) and Putri et al. (2021) investigated the optimality of the combination of
quota-share and stop-loss reinsurance. The other studies on the reinsurance optimization
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from the insurer’s viewpoint under the above risk measures may be found in Lu et al. (2014),
Lu et al. (2016), Du et al. (2019), and Hu et al. (2021). In contrast, optimizing the reinsurance
treaty from the perspective of a reinsurer was undertaken by Tan et al. (2020). Specifically,
they minimized the VaR and the CTE of the reinsurer’s total loss.

An optimal form of reinsurance from the insurer’s perspective, however, may not
meet the reinsurer’s goal, and vice versa. In order to derive the optimal reinsurance
accepted by both the insurer and the reinsurer, another approach is required to optimize
an objective function constructed from their joint perspective. For instance, a criterion
of maximizing the joint survival probability and the joint profitable probability from the
perspective of both the insurer and the reinsurer was proposed by Cai et al. (2013). Based
on the results in Cai et al. (2013), Fang and Qu (2014) derived optimal retentions for a
combination of quota-share and stop-loss reinsurance by maximizing the joint survival
probability. In addition to employing the joint survival probability, other criteria were also
taken into consideration by Zhang et al. (2018) to determine an optimal retention level of a
quota-share reinsurance. Such optimization criteria include minimizing the total variance,
the total VaR, and the total tail-VaR (TVaR) of the insurer’s loss and the reinsurer’s loss.

To ensure that reducing the loss from one party can not be carried out without increas-
ing the loss from another party, a convex combination of the risk measures of the losses for
both parties was recently utilized by several authors instead of just summing them. For in-
stance, Cai et al. (2016) suggested an optimization criterion of minimizing a convex combi-
nation of VaRs of the insurer’s total loss and the reinsurer’s total loss. In particular, Liu and
Fang (2018) implemented this approach on their study to obtain optimal parameters for the
quota-share and stop-loss reinsurance designs. More recently, the above optimization crite-
rion was also adopted by Jiang et al. (2017), Fang et al. (2019), and Chen and Hu (2020) by
using the same VaR risk measure. They found that the combined stop-loss and quota-share
reinsurance is one of the optimal solutions to their optimization problems.

In this paper, we aim to explore the combined stop-loss and quota-share reinsurance.
We study, in Section 2, the survival function of the loss ceded to the reinsurer and that of
the loss retained by the insurer in the presence of this reinsurance contract. In Section 3,
we then optimize the combined stop-loss and quota-share reinsurance from the joint
perspective of the insurer and the reinsurer by developing a new optimization criterion
similar to Jiang et al. (2017), Fang et al. (2019), and Chen and Hu (2020). Instead of using
the probability-based risk measure of VaR, an alternative risk measure of CTE is employed
to overcome its weaknesses by taking into account the magnitude of the losses beyond the
VaR (Syuhada et al. 2021). Specifically, we derive explicit expressions of optimal retentions
for the reinsurance we design by minimizing a convex combination of CTEs of the insurer’s
total loss and the reinsurer’s total loss. An estimation for the resulting optimal retentions
is also presented in Section 4 with numerical examples when the initial loss faced by the
insurer is assumed to follow an exponential or Pareto distribution. Section 5 concludes
our study.

2. Combined Stop-Loss and Quota-Share Reinsurance

Let X be loss or risk transferred from an insured to an insurer. This loss may be an
aggregate of individual losses that form an insurance portfolio. In this paper, the loss X is
assumed to be a non-negative random variable with survival function SX;θ(x) = P(X > x)
determined by a parameter θ ∈ Ω, where Ω denotes a parameter space. We also assume
that SX;θ is continuous and strictly decreasing on the interval (0, ∞) with a possible jump
at x = 0. Consequently, the inverse function S−1

X;θ exists on the interval
(
0, SX;θ(0)

)
. In addi-

tion, the expectation of X, E(X), is assumed to be finite. Its value may be computed from
the survival function SX;θ through integration, i.e.,

E(X) =
∫ ∞

0
SX;θ(x)dx.
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For illustration purposes throughout this paper, we follow a suggestion of
Burnecki et al. (2021) assuming an exponentially distributed loss X ∼ E(θ) with
survival function

SX;θ(x) =

{
1, x < 0,
e−θx, x ≥ 0,

(1)

where θ ∈ (0, ∞), which is equal to the reciprocal of its mean. As a comparison, we may
also assume X to follow a Pareto distribution, P(θ), with a heavier tail. Its survival function
is defined as follows:

SX;θ(x) =

{
1, x < 0,
(1 + x)−θ , x ≥ 0.

(2)

Its parameter, θ, denoting the tail index belongs to (1, ∞). This consideration is to
make sure that its mean, (θ − 1)−1, exists.

Under a reinsurance designed in a fixed time period, the insurer decides to reduce
the loss X by ceding the part of X, say LR(X) for a function LR : [0, ∞)→ [0, ∞) satisfying
0 ≤ LR(x) ≤ x, for all x ∈ [0, ∞), to a reinsurer. Meanwhile, the remaining loss of size
LI(X), where LI : [0, ∞)→ [0, ∞) with LI(x) = x− LR(x), for all x ∈ [0, ∞), is retained by
the insurer. In other words, in the presence of reinsurance contract, the initial loss X is split
into two parts such that X = LR(X) + LI(X). We then use the notations XR = LR(X) and
XI = LI(X) to denote those parts. We call them ceded loss and retained loss, respectively,
whilst the functions LR(x) and LI(x) are usually known as ceded loss function and retained
loss function, respectively.

When a quota-share reinsurance is designed, the insurer cedes a level c of the initial
loss X, i.e., cX, to the reinsurer. This means that both the insurer and the reinsurer are in-
volved in facing the loss with unlimited liability (Gray and Pitts 2012). However, the insurer
may need to be protected from the potential large loss by retaining the loss up to a limit d
only. An excess of size (X− d)+ is covered by the reinsurer, where a+ = a∨ 0 = max{a, 0}.
This goal may be achieved by designing a stop-loss reinsurance. See Tan et al. (2009) and
Liu and Fang (2018) for a more detailed study on those reinsurance contracts.

In this paper, we consider combining the above two reinsurance contracts by firstly
setting a retention limit d and, then, affixing a retention level c such that the loss ceded to
the reinsurer is given by

XR = c(X− d)+ =

{
0, X < d,
c(X− d), X ≥ d.

(3)

The above ceded loss may also be expressed in the form of c(X− d) I[d,∞)(X), where
IA is an indicator function of a set A. Consequently, the insurer is liable for the retained
loss of size

XI = X− c(X− d)+ =

{
X, X < d,
X− c(X− d), X ≥ d,

(4)

where a ∧ b means min{a, b}. We call this design a combined stop-loss and quota-share
reinsurance. Under this combination, it is obvious that both the ceded loss function
LR(x) = c(x − d)+ and the retained loss function LI(x) = x − c(x − d)+ are increasing
with respect to x on [0, ∞). See Figure 1 to investigate their curves.
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Figure 1. The curves of the ceded loss function LR and the retained loss function LI in the presence
of the combined stop-loss and quota-share reinsurance when d is fixed but c varies (on the left side)
and when c is fixed but d varies (on the right side).

We see that the pure stop-loss reinsurance is a special case of the above contract for
c = 1. Meanwhile, if the retention limit d is set to be zero, we then have the pure quota-share
reinsurance. However, when the value of c is equal to zero, there is no reinsurance and, as a
result, the insurer is liable for all the losses. We, in this paper, assume (d, c) ∈ (0, ∞)× (0, 1]
in order to ensure that the insurer truly shares a portion of loss to the reinsurer, instead
of retaining all the losses. The notation (d, c) for a pair of d and c is considered to remind
us that d is the first retention affixed in designing the combined stop-loss and quota-
share reinsurance.

Since the ceded loss XR = LR(X) and the retained loss XI = LI(X) are the functions
of X, their distribution may be determined based on the distribution of X. By employing
a simple technique, from Equation (3), the survival function of the ceded loss XR may be
derived as follows:

SXR;θ(x) =

1, x < 0,

SX;θ

( x
c
+ d
)

, x ≥ 0.
(5)

Meanwhile, according to Equation (4), the survival function of XI is given by

SXI;θ(x) =


1, x < 0,
SX;θ(x), 0 ≤ x < d,

SX;θ

(
x− cd
1− c

)
, x ≥ d.

(6)

It is obvious that the survival function SXR;θ is always discontinuous at x = 0 whilst
the discontinuity of SXI;θ at x = 0 occurs when the survival function of the initial loss
X is discontinuous at this point. In Figure 2, we present their curves for the cases of
exponential and Pareto random losses with equal mean, i.e., 1. Their comparison to the
curves of the survival functions under the pure stop-loss and pure quota-share reinsurance
is also illustrated in this figure.
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Figure 2. The curves of the survival functions SXR;θ and SXI;θ in the presence of the combined
stop-loss and quota-share reinsurance when d is fixed but c varies (on the left side) and when c is
fixed but d varies (on the middle side). On the right side, they are compared to the curves of the
survival functions under the pure stop-loss and the pure quota-share reinsurance. The yellow curve
represents the survival function of the initial loss X that follows E(1) (on the upper side) or P(2) (on
the lower side).

3. Reinsurance Optimization under CTE Risk Measure

As stated before, in the presence of the (combined stop-loss and quota-share) rein-
surance contract, the insurer cedes the part of the loss to the reinsurer. As a consequence,
the reinsurance premium of size Πd,c;θ(XR) has to be paid by the insurer to the reinsurer.
The insurer is thus liable for the total loss TI defined as the sum of the retained loss XI and
the reinsurance premium Πd,c;θ(XR), i.e.,

TI = XI + Πd,c;θ(XR), (7)

whilst the total loss TR of the reinsurer is given by

TR = XR −Πd,c;θ(XR). (8)

In this paper, the reinsurance premium charged by the reinsurer is assumed to be
determined by the expected value principle, that is Πβ

d,c;θ(XR) = (1 + β)E(XR), where
β ∈ (0, ∞) is a fixed safety loading factor. Note that the expected value of the ceded loss
XR may be represented by E(XR) = cKθ(d), where

Kθ(d) = E[(X− d)+] =
∫ ∞

d
SX;θ(x)dx,

therefore the above reinsurance premium may be expressed as below:

Πβ
d,c;θ(XR) = (1 + β)cKθ(d). (9)
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3.1. CTE of Total Losses

When a reinsurance is agreed between the insurer and the reinsurer, the insurer’s
objective is actually to manage its risk. In addition to making a profit, the reinsurer also
aims to control its own risk ceded from the insurer. A so-called value-at-risk (VaR), widely
used in quantitative risk management, may be taken into consideration to measure the
potential magnitude of such risks. Basically, VaR is a single value denoting the maximum
loss that is likely to occur at a specified α level of significance. For the initial loss X, the
VaR is formally defined by

VaRα
θ (X) = inf

{
x ∈ R : SX;θ(x) ≤ α

}
,

for all α ∈ (0, 1), which means that the VaR is the (1− α)-quantile of the distribution of X.
As stated in Section 2, the survival function SX;θ is assumed to be continuous and strictly
decreasing on the interval

(
0, SX;θ(0)

)
. This assumption implies that the inverse function

of SX;θ exists on this interval and, as a result, we obtain

VaRα
θ (X) = S−1

X;θ(α), (10)

for all α ∈
(
0, SX;θ(0)

)
. Meanwhile, the trivial case, that is VaRα

θ (X) = 0, occurs for each α
belonging to

[
SX;θ(0), 1

)
. It is easy to verify that VaRα

θ (X) is strictly decreasing with respect
to α on

(
0, SX;θ(0)

)
, which means that, for all α1, α2 ∈

(
0, SX;θ(0)

)
, we have

α1 < α2 ⇐⇒ VaRα2
θ (X) < VaRα1

θ (X).

In fact, the VaR depends only on the probability of the occurrence of the losses and
provides no information about the magnitude of the losses that exceed it and may have
severe impact (Syuhada et al. 2021). Alternatively, conditional tail expectation (CTE) may
be required to correct for these weaknesses. At the α level of significance, the CTE of the
loss X is defined as the conditional expectation of X, given all its values exceeding the
corresponding VaR, that is

CTEα
θ (X) = E[X | X > VaRα

θ (X)].

This indicates that the CTE is more appropriate than the VaR since it takes into account
the magnitude of losses beyond the VaR. Furthermore, the more important advantage of
the CTE over the VaR is that the CTE is coherent under suitable conditions whilst the VaR
is not since it fails to satisfy the axiom of subadditivity. Note that the CTE and the VaR are
related as below:

CTEα
θ (X) = VaRα

θ (X) +E[X−VaRα
θ (X) | X > VaRα

θ (X)]

= VaRα
θ (X) +

1
α

Kθ

[
VaRα

θ (X)
]
. (11)

Since VaRα
θ (X) is strictly decreasing with respect to α on

(
0, SX;θ(0)

)
, CTEα

θ (X) also does.
We assume that the reinsurer and the insurer use the CTE to measure their own

losses, instead of considering the VaR. Hence, our concern is now to implement the CTE
to the reinsurer’s total loss and the insurer’s total loss. By CTEαR;β

d,c;θ(TR) and CTEαI;β
d,c;θ(TI)

we denote the CTEs of the total losses TR and TI at possibly different levels of significance
αR and αI, respectively. From Equations (7)–(9), we employ the translational invariance
property to derive preliminary expressions of such CTEs as follows:

CTEαR;β
d,c;θ(TR) = CTEαR

d,c;θ(XR)− (1 + β)cKθ(d) (12)

and
CTEαI;β

d,c;θ(TI) = CTEαI
d,c;θ(XI) + (1 + β)cKθ(d). (13)
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We have noted, in Section 2, that the survival function SXR;θ always has a jump,
from the point

(
0, SX;θ(d)

)
to the point

(
SX;θ(d), 1

)
, whilst the jump of the survival function

SXI;θ possibly occurs from
(
0, SX;θ(0)

)
to (0, 1). These facts imply that the VaR of the ceded

loss XR is equal to zero at the significance level of αR ∈
(
SX;θ(d), 1

)
and VaRαI

d,c;θ(XI) = 0
for all αI ∈

[
SX;θ(0), 1

)
.

To avoid the above trivial cases, the significance levels used by the reinsurer and the
insurer are assumed to be αR, αI ∈

(
0, SX;θ(0)

)
and the retention limit is then assumed

to satisfy d ≤ VaRαR
θ (X) = S−1

X;θ(αR). We completely consider the pair of retentions (d, c)
belonging to a set D =

(
0, VaRαR

θ (X)
]
× (0, 1]. By combining Equations (3), (4), (11)–(13),

and by employing the axioms of coherence of risk measures, we derive under the above
assumptions the explicit expressions of both CTEαR;β

d,c;θ(TR) and CTEαI;β
d,c;θ(TI) summarized in

the following proposition.

Proposition 1. For given levels of significance αR, αI ∈
(
0, SX;θ(0)

)
, we have

CTEαR;β
d,c;θ(TR) = c

[
CTEαR

θ (X)− d− (1 + β)Kθ(d)
]
, d ≤ VaRαR

θ (X), (14)

and

CTEαI;β
d,c;θ(TI) = CTEαI

θ (X)− c
{

d ∨VaRαI
θ (X) + 1

αI
Kθ

[
d ∨VaRαI

θ (X)
]
− d− (1 + β)Kθ(d)

}
. (15)

Proof. It is known that XR = c(X − d), for X ≥ d. Hence, when d ≤ VaRαR
θ (X), it is

obvious that
VaRαR

d,c;θ(XR) = c
[
VaRαR

θ (X)− d
]

and the event
{

XR > VaRαR
d,c;θ(XR)

}
occurs if and only if the event

{
X > VaRαR

θ (X)
}

occurs.
By using the axioms of coherence, we therefore obtain

CTEαR
d,c;θ(XR) = CTEαR

d,c;θ

[
c(X− d)

]
= c
[
CTEαR

θ (X)− d
]
.

According to Equation (12), the result given in Equation (14) is then derived by
subtracting the above result by the reinsurance premium.

We now see that

XI =

{
X− c(X− d), X ≥ d,
X, X < d.

At the significance level of αI, its VaR may be expressed as below:

VaRαI
d,c;θ(XI) =

{
VaRαI

θ (X)− c
[
VaRαI

θ (X)− d
]
, d ≤ VaRαI

θ (X),
VaRαI

θ (X), d > VaRαI
θ (X).

When d ≤ VaRαI
θ (X), the event

{
XI > VaRαI

d,c;θ(XI)
}

occurs if and only if the event{
X > VaRαI

θ (X)
}

occurs. We then employ the axioms of coherence to compute the CTE of
XI as follows:

CTEαI
d,c;θ(XI) = CTEαI

d,c;θ

[
X− c(X− d)

]
= CTEαI

θ (X)− c
[
CTEαI

θ (X)− d
]

= CTEαI
θ (X)− c

{
VaRαI

θ (X) +
1
αI

Kθ

[
VaRαI

θ (X)
]
− d
}

.



Risks 2021, 9, 125 8 of 21

Meanwhile, for d > VaRαI
θ (X), the event

{
XI > VaRαI

d,c;θ(XI)
}

occurs if and only if the
event

{
d > X > VaRαI

θ (X)
}

or
{

X ≥ d
}

occurs. Consequently,

CTEαI
d,c;θ(XI) =

1
αI
E
[

XI I(VaR
αI
θ (XI),∞)

(XI)
]

=
1
αI

{
E
[

XI I(VaR
αI
θ (XI),d)

(XI)
]
+E

[
XI I[d,∞)(XI)

]}
=

1
αI

{
E
[

X I
(VaR

αI
θ (X),d)(X)

]
+E

[(
X− c(X− d)

)
I[d,∞)(X)

]}
=

1
αI

{
E
[

X I
(VaR

αI
θ (X),d)(X)

]
+E

[
X I[d,∞)(X)

]
− cE

[
(X− d) I[d,∞)(X)

]}
=

1
αI
E
[

X I
(VaR

αI
θ (X),∞)

(X)
]
− c

αI
Kθ(d)

= CTEαI
θ (X)− c

[
d +

1
αI

Kθ(d)− d
]

.

By combining the above results, we may express

CTEαI
d,c;θ(XI) = CTEαI

θ (X)− c
{

d ∨VaRαI
θ (X) +

1
αI

Kθ

[
d ∨VaRαI

θ (X)
]
− d
}

.

Based on Equation (13), the CTE of TI given in Equation (15) is derived when CTEαI
d,c;θ(XI)

is added by the reinsurance premium.

For the initial loss X ∼ E(θ) with survival function given in Equation (1), it is easy
to obtain VaRα

θ (X) = 1
θ (− ln α), Kθ(d) = 1

θ e−θd, and CTEα
θ (X) = 1

θ (1− ln α). Accordingly,
both the CTEs of the reinsurer’s total loss and the insurer’s total loss are given by

CTEαR;β
d,c;θ(TR) = c

[
1− ln αR

θ
− d− (1 + β)e−θd

θ

]
, d ≤ − ln αR

θ
,

CTEαI;β
d,c;θ(TI) =

1− ln αI

θ
− c

{
d ∨ − ln αI

θ
+

1
αI
· e−[θd∨(− ln αI)]

θ
− d− (1 + β)e−θd

θ

}
.

On the other hand, if X ∼ P(θ) with survival function provided in Equation (2), we
have VaRα

θ (X) = α−1/θ − 1, Kθ(d) = 1
θ−1 (1 + d)−θ+1, and CTEα

θ (X) = θ
θ−1 α−1/θ − 1. As a

result, the reinsurer’s total loss and the insurer’s total loss have the following CTEs:

CTEαR;β
d,c;θ(TR) = c

[
α−1/θ

R − 1 +
α−1/θ

R
θ − 1

− d− (1 + β)(1 + d)−θ+1

θ − 1

]
, d ≤ α−1/θ

R − 1,

CTEαI;β
d,c;θ(TI) =

θ

θ − 1
α−1/θ

I − 1− c

{
d ∨ (α−1/θ

I − 1) +
1
αI
·
[
1 + d ∨ (α−1/θ

I − 1)
]−θ+1

θ − 1
− d− (1 + β)(1 + d)−θ+1

θ − 1

}
.

The influence of the retention limit d and the retention level c on the values of the
above CTEs is depicted in Figure 3. It may be observed that as the value of d increases,
the value of CTEαI;β

d,c;θ(TI) initially decreases and, then, increases after attaining its minimum.

Meanwhile, the increase of CTEαR;β
d,c;θ(TR) initially occurs and is then followed by the decrease

after reaching a peak. Furthermore, as the value of c increases, the value of CTEαI;β
d,c;θ(TI)

decreases linearly whilst the value of CTEαR;β
d,c;θ(TR) increases linearly. This illustration

indicates that CTEαI;β
d,c;θ(TI) is shown to be inversely proportional to CTEαR;β

d,c;θ(TR), which
means that the CTE of the total loss for one party decreases as the CTE of the total loss
for another party increases. This relationship may noticeably be observed from the other
visualizations provided in Figures 4 and 5.



Risks 2021, 9, 125 9 of 21

E
x
p
o
n
e
n
ti
a
l

P
a
re
to

CTE as function of d

0 1 2 3 4
d

0

1

2

3

4

CTE
d ;
;

0 1 2 3 4
d

0

3

6

9

12

CTE
d ;
;

TI TR
c = 0.25

c = 0.50

c = 0.75

CTE as function of c

0.0 0.2 0.4 0.6 0.8 1.0
c

0

1

2

3

4

CTE
c ;
;

0.0 0.2 0.4 0.6 0.8 1.0
c

0

3

6

9

12

CTE
c ;
;

TI TR
d = 1.00

d = 2.00

d = 3.00

Figure 3. The curves of CTEαI;β
d,c;θ(TI) and CTEαR;β

d,c;θ(TR) as functions of d only (on the left side) and
as functions of c only (on the right side) in the presence of the combined stop-loss and quota-share
reinsurance. They are determined at αI = 0.05, αR = 0.01, and β = 0.20 when the initial loss X
follows E(1) (on the upper side) or P(2) (on the lower side).

Figure 4. The surfaces of CTEαI;β
d,c;θ(TI) (on the left side) and CTEαR;β

d,c;θ(TR) (on the right side) in the
presence of the combined stop-loss and quota-share reinsurance. They are determined at αI = 0.05,
αR = 0.01, and β = 0.20 when the initial loss X follows E(1) (on the upper side) or P(2) (on the
lower side).
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Figure 5. The scatter plots of the pairs of CTEαI;β
d,c;θ(TI) and CTEαR;β

d,c;θ(TR) at the same retention values
in the presence of the combined stop-loss and quota-share reinsurance when d varies (on the left side)
and when c varies (on the right side). They are determined at αI = 0.05, αR = 0.01, and β = 0.20
when the initial loss X follows E(1) (on the upper side) or P(2) (on the lower side).

3.2. Optimization from Joint Perspective of Insurer and Reinsurer

We have assumed that the CTE is utilized by both the insurer and the reinsurer to
measure their own total losses. From the perspective of the insurer, the insurer desires
to buy the combined stop-loss and quota-share reinsurance whose parameters denoting
retentions are solutions to the optimization problem

min
(d,c)∈D

CTEαI;β
d,c;θ(TI). (16)

Meanwhile, from the reinsurer’s viewpoint, the reinsurer prefers to offer the com-
bined stop-loss and quota-share reinsurance whose retentions are solutions to the optimiza-
tion problem

min
(d,c)∈D

CTEαR;β
d,c;θ(TR). (17)

However, the optimal retentions of the combined stop-loss and quota-share reinsur-
ance for one party are different from those for another party and is not optimal from its
perspective. We, therefore, do not consider finding the minimizers of the CTEs of the
insurer’s total loss and the reinsurer’s total loss by solving Problems (16) and (17) sepa-
rately. Since the increase of the total loss faced by one party causes the decrease of the
total loss covered by another party, we, in this paper, aim at carrying out the following
optimization problem:

min
(d,c)∈D

ΨαI,αR;β,ω
d,c;θ (TI, TR), (18)

where
ΨαI,αR;β,ω

d,c;θ (TI, TR) = ωCTEαI;β
d,c;θ(TI) + (1−ω)CTEαR;β

d,c;θ(TR) (19)
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for a specified weighting factor ω ∈ [0, 1]. Minimizing such a convex combination of
CTEαI;β

d,c;θ(TI) and CTEαR;β
d,c;θ(TR) considered as the objective function is expected to produce

optimal retentions that are acceptable to both parties. Note that when ω is set to be one, we
actually do the optimization from the point of view of the insurer. Meanwhile, the optimiza-
tion from the reinsurer’s perspective is for ω = 0. This means that Problems (16) and (17)
are special cases of Problem (18).

For simplicity, we introduce the following additional notations:

ω∗ =
ω

2ω− 1
,

β∗ =
1

1 + β
,

β∗ω =
ω∗ − 1
ω∗
αI
− 1

β∗
,

Gβ
θ (d) = d +

1
β∗

Kθ(d),

HαI,αR;ω
θ (d) = ω∗

{
d ∨VaRαI

θ (X) +
1
αI

Kθ

[
d ∨VaRαI

θ (X)
]}
− (ω∗ − 1)CTEαR

θ (X).

By substituting the CTEs of the total losses for both the insurer and the reinsurer, given
in Equations (14) and (15), to Equation (19), we may formulate the objective function in
terms of the above notations as follows:

ΨαI,αR;β,ω
d,c;θ (TI, TR) = ωCTEαI

θ (X) + (2ω− 1)c
[
Gβ

θ (d)− HαI,αR;ω
θ (d)

]
.

The pair of optimal retentions (dθ , cθ) ∈ D is summarized in the following theorems
whose proofs are explained in Appendix A. Since the value of d depends on both VaRαI

θ (X)
and VaRαR

θ (X), and hence on both the significance levels of αI and αR, the theorems are
provided separately under the condition (1) αI ≤ αR or (2) αR < αI.

Theorem 1. Under the condition αI ≤ αR, the optimal retentions as the solutions to Problem (18)
are derived for ω > 1

2 with the following values:

1. (dθ , cθ) =
(
VaRβ∗

θ (X), 1
)

when αR < β∗ < SX;θ(0) and Gβ
θ (dθ) < HαI,αR;ω

θ (dθ);

2. (dθ , cθ) =
(
VaRβ∗

θ (X), u
)

for any constant u ∈ (0, 1] when αR < β∗ < SX;θ(0) and

Gβ
θ (dθ) = HαI,αR;ω

θ (dθ);

3. (dθ , cθ) =
(
VaRαR

θ (X), 1
)

when β∗ ≤ αR and Gβ
θ (dθ) < HαI,αR;ω

θ (dθ);

4. (dθ , cθ) =
(
VaRαR

θ (X), u
)

for any constant u ∈ (0, 1] when β∗ ≤ αR and Gβ
θ (dθ) =

HαI,αR;ω
θ (dθ).

Theorem 2. Under the condition αR < αI, the optimal retentions as the solutions to Problem (18)
are derived for ω > 1

2 with the following values:

1. (dθ , cθ) =
(
VaRβ∗

θ (X), 1
)

when β∗ω ≤ αR, αI < β∗ < SX;θ(0), and Gβ
θ (dθ) < HαI,αR;ω

θ (dθ);

2. (dθ , cθ) =
(
VaRβ∗

θ (X), u
)

for any constant u ∈ (0, 1] when β∗ω ≤ αR, αI < β∗ < SX;θ(0),

and Gβ
θ (dθ) = HαI,αR;ω

θ (dθ);

3. (dθ , cθ) =
(
VaRαR

θ (X), 1
)

when β∗ < ω∗β∗ < αI and Gβ
θ (dθ) < HαI,αR;ω

θ (dθ);
4. (dθ , cθ) =

(
VaRαR

θ (X), u
)

for any constant u ∈ (0, 1] when β∗ < ω∗β∗ < αI and

Gβ
θ (dθ) = HαI,αR;ω

θ (dθ).

Theorems 1 and 2 above tell us important results of optimizing the combined stop-loss
and quota-share reinsurance as follows. First, when the loading factor β is chosen such
that the value of β∗ is higher than the significance levels used by both the insurer and the
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reinsurer, the optimal retention limit dθ may be found to be equal to the VaR of the initial
loss at the probability level of β∗. The value of this optimal retention limit is lower than
both VaRαI

θ (X) and VaRαR
θ (X). Meanwhile, if β∗ is too small and, as a result, VaRβ∗

θ (X) is
too large, then we may set the VaR of X at the αR level as the optimal retention limit. This
is because the possible value of d is bounded above by this VaR. The optimality of the
retention limit is achieved when the other criteria involving the weighting factor ω and the
parameter θ of the distribution of X are satisfied.

Second, the optimal retention level cθ is determined based on the condition whether
the values of Gβ

θ and HαI,αR;ω
θ evaluated at the retention limit dθ are equal. If the former is

lower than the latter, we obtain cθ = 1, which means that the objective function ΨαI,αR;β,ω
d,c;θ

employed in the optimization problem attains its minimum at the unique point (dθ , cθ).
Meanwhile, the equality Gβ

θ (dθ) = HαI,αR;ω
θ (dθ) makes the minimum value of ΨαI,αR;β,ω

d,c;θ
attained at each point (d, c) ∈ {dθ} × (0, 1]. This situation allows us to choose any number
in (0, 1] as the optimal retention level cθ .

In Figures 6 and 7, we illustrate the surfaces of ΨαI,αR;β,ω
d,c;θ when the initial loss X

is assumed to follow an exponential distribution E(θ) and a Pareto distribution P(θ),
respectively. Such surfaces are provided according to the results in Parts 3 and 4 of
Theorem 1 and Parts 1 and 2 of Theorem 2. These illustrations are respectively denoted
into four cases as follows.

Case A: αI ≤ αR where ΨαI,αR;β,ω
d,c;θ is uniquely minimized (see row 1 and column 1).

Case B: αI ≤ αR where ΨαI,αR;β,ω
d,c;θ is non-uniquely minimized (see row 1 and column 2).

Case C: αR < αI where ΨαI,αR;β,ω
d,c;θ is uniquely minimized (see row 2 and column 1).

Case D: αR < αI where ΨαI,αR;β,ω
d,c;θ is non-uniquely minimized (see row 2 and column 2).

When X ∼ E(θ), the pair of optimal retentions for the combined stop-loss and quota-
share reinsurance are given by

(dθ , cθ) =



(
1
θ (− ln αR), 1

)
, for Case A,(

1
θ (− ln αR), u

)
, u ∈ (0, 1], for Case B,(

1
θ (− ln β∗), 1

)
, for Case C,(

1
θ (− ln β∗), u

)
, u ∈ (0, 1], for Case D.

(20)

Meanwhile, below we express the pair of optimal retentions when X follows P(θ):

(dθ , cθ) =



(
α−1/θ

R − 1, 1
)

, for Case A,(
α−1/θ

R − 1, u
)

, u ∈ (0, 1], for Case B,(
(β∗)−1/θ − 1, 1

)
, for Case C,(

(β∗)−1/θ − 1, u
)

, u ∈ (0, 1], for Case D.

(21)
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Figure 6. The surfaces of the objective function ΨαI,αR;β,ω
d,c;θ when the initial loss X follows E(1). They

are determined when αI(=0.05) < αR(=0.07) (on the upper side) and when αR(=0.03) < αI(=0.05) (on
the lower side). On the left side, ΨαI,αR;β,ω

d,c;θ is uniquely minimized. Meanwhile, ΨαI,αR;β,ω
d,c;θ on the right

side non-uniquely attains its minimum.

Figure 7. The surfaces of the objective function ΨαI,αR;β,ω
d,c;θ when the initial loss X follows P(2). They

are determined when αI(=0.05) < αR(=0.07) (on the upper side) and when αR(=0.03) < αI(=0.05)
(on the lower side). On the left side, ΨαI,αR;β,ω

d,c;θ is uniquely minimized. Meanwhile, ΨαI,αR;β,ω
d,c;θ on the

right side non-uniquely attains its minimum.
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4. Estimation for Optimal Retentions with Numerical Examples

We see that the optimal retentions dθ and cθ for the combined stop-loss and quota-share
reinsurance, which have been derived in Section 3, depend on an unknown parameter, θ,
of the loss distribution and may be viewed as functions of θ. Their explicit expressions have
been found when, for instance, the loss X is assumed to follow an exponential distribution
E(θ), θ ∈ (0, ∞), or a Pareto distribution P(θ), θ ∈ (1, ∞). In this section, we now consider
finding the estimate for θ, θ̂. When the parameter θ in the optimal retentions dθ and cθ is
replaced by θ̂, we then obtain a pair

(
d̂θ̂ , ĉθ̂

)
of the estimated optimal retentions.

Suppose that {X1, X2, ..., Xn} is a sample of size n randomly drawn from X. From this
random sample, the estimate θ̂ may be found by employing the well-known maximum
likelihood method. If x1, x2, ..., xn denote the realizations of X1, X2, ..., Xn, respectively, such
θ̂ is a solution to the optimization problem

max
θ∈Ω

`(θ; x1, x2, ..., xn),

where `(θ; x1, x2, ..., xn) is the log-likelihood function evaluated at x1, x2, ..., xn. Such an ob-
jective function is given by `(θ; x1, x2, ..., xn) = ∑n

i=1 ln fX;θ(xi), where fX;θ is the probability
function of X.

When the random sample is drawn from the exponential distribution E(θ), a statistic
θ̂ = 1/X̄ may be found to be an estimate for θ, where X̄ = ∑n

i=1 Xi/n is the mean of the
random sample. By substituting such θ̂ to the optimal retentions given in Equation (20),
we derive their estimate as follows:

d̂θ̂ =
1
θ̂
(− ln δ) = X̄(− ln δ),

where δ represents αR or β∗, whilst ĉθ̂ is a constant in (0, 1]. By taking their expected value,
we find that

E
(

d̂θ̂

)
= E

(
X̄
)
(− ln δ) =

1
θ
(− ln δ) = dθ

and E
(
ĉθ̂

)
= cθ . This shows that when the initial loss is exponentially distributed, the pair(

d̂θ̂ , ĉθ̂

)
is an unbiased estimate for the pair (dθ , cθ) of the optimal retentions for the com-

bined stop-loss and quota-share reinsurance.
On the other hand, if the random sample from P(θ) is taken into consideration, we

derive the following statistic for estimating θ:

θ̂ =
1

∑n
i=1 ln(1 + Xi)/n

.

Consequently, based on Equation (21), the estimate for the retention limit is given by

d̂θ̂ = δ−1/θ̂ − 1 = δ−∑n
i=1 ln(1+Xi)/n − 1,

where δ ∈ {αR, β∗}, whilst ĉθ̂ is a constant in (0, 1]. It is easy to verify that ln(1+Xi) ∼ E(θ),
for all i ∈ {1, 2, ..., n}, and, hence, the statistic Y = ∑n

i=1 ln(1 + Xi)/n has a gamma
distribution G(n, nθ) with probability function fY;n,θ(y) = (nθ)nyn−1e−nθy/(n− 1)!, y > 0.
As a result, E

(
ĉθ̂

)
= cθ whilst

E
(

d̂θ̂

)
= E

(
δ−Y

)
− 1 =

(
1 +

ln δ

nθ

)−n
− 1

that differs from δ−1/θ − 1, for all n ∈ N. If its limit is taken as n→ ∞, we then obtain

lim
n→∞

E
(

d̂θ̂

)
= e−(ln δ)/θ − 1 = δ−1/θ − 1 = dθ .
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This indicates that the pair
(
d̂θ̂ , ĉθ̂

)
is a biased estimate for the pair (dθ , cθ) if the initial

loss follows the Pareto distribution. However, such an estimate is expected to be close to
the actual value of the optimal retention when the sample size n is large enough.

To investigate the impact of the sample size n on the estimated parameter θ̂ as well as
on the pair

(
d̂θ̂ , ĉθ̂

)
of the estimated optimal retentions and the corresponding value of the

objective function minimized at such
(
d̂θ̂ , ĉθ̂

)
, we provide numerical examples. Specifically,

we conducted numerical simulations for various values of θ and n through a Monte Carlo
approach with m = 10,000 runs. The accuracy of those estimates is assessed by using
root-mean-square error (RMSE) defined by

RMSE(ϑ) =

√√√√ m

∑
j=1

(ϑ̂j − ϑ)2

m
,

where ϑ denotes an actual value of the parameter θ, the optimal retention, or the minimized
objective function whilst ϑ̂j is its estimate computed at the jth run, for all j ∈ {1, 2, ..., m}.

The results of the numerical simulations are provided in Table 1 with four panels
based on four cases (A, B, C, and D) stated at the end of Section 3. Each row at each panel
compares the exponential and Pareto random losses with equal mean. We find that as
the sample size increases, the estimates for the parameter, the optimal retention, and the
minimized objective function tend to be more accurate with small RMSE. When the actual
parameter decreases indicating that the mean of the initial loss increases, the RMSE of
the parameter estimate decreases. However, the accuracy of the estimates for the optimal
retention and the minimized objective function appears to decrease due to the increase
of their RMSE. Furthermore, the Pareto distribution produces less accurate estimates
than the exponential loss. This is in line with the theoretical explanation discussed above.
The accuracy is extremely poor when the actual parameter of the Pareto distribution is close
to 1. This is because its tail is heavier with evidence of having extreme simulated losses.

To illustrate a more complete overview of our theoretical findings, we employ a real data set
consisting of total economic losses or claims (in ten thousand dollars) from n = 1340 claimants.
Such claims arise from automobile bodily injury insurance coverages; see Frees (2010). Statistics,
including four (central) moments of these empirical data, are given in Table 2. An extremely
high empirical kurtosis, that is found to be equal to 794.67, leads us to employ a heavy-tailed
loss model for such data. In addition to the exponential and Pareto distributions, we also
consider the gamma and Weibull distributions in our modeling. Table 2 compares the values of
their maximized log-likelihood function `(θ̂) and Akaike information criterion (AIC) defined by
AIC = −2`(θ̂) + 2k, where k is the dimension of their parameter space. From the comparison
of their goodness-of-fit, the Pareto distribution seems to fit well to the empirical data with the
highest log-likelihood function and the lowest AIC value. The value of its estimated parameter
(about 3.65) indicates the existence of its moments up to an order of 3. The goodness of the
Pareto distribution in fitting the empirical distribution of the data may also be observed in
Figure 8.

According to the estimated Pareto distribution for the claim data, we compute the
estimates for the optimal retention limit and the objective function denoting the convex
combination of the CTEs when the combined stop-loss and quota-share reinsurance is
agreed between an insurer and a reinsurer. The estimation is carried out when the loading
factor β varies and when the weighting factor ω ranges on (0.5, 1]. The results presented
in Figure 9 show that, for a fixed ω, the larger the loading factor, the higher the estimated
optimal retention limit. This is because the reinsurance premium paid to the reinsurer
increases. This increase is followed by the increase of the minimized convex combination of
the CTEs of the total losses for both parties. However, the increase of the optimal retention
limit is not affected by the weighting factor. The weight is found to give an impact on its
existence only. On the other hand, the minimized objective function appears to vary as the
weight used varies.
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Table 1. The estimated optimal retentions for the combined stop-loss and quota-share reinsurance and the corresponding
value of the minimized objective function when the initial loss follows an exponential or Pareto distribution. The RMSE of
each estimate is given in parenthesis.

Case Exponential Pareto
θ n θ̂ d̂θ̂ ĉθ̂ Ψ̂

αI,αR;β,ω
d̂θ̂,ĉθ̂;θ̂

θ n θ̂ d̂θ̂ ĉθ̂ Ψ̂
αI,αR;β,ω
d̂θ̂,ĉθ̂;θ̂

A 2.00 10 2.23 (0.84) 1.33 (0.43) 1 1.17 (0.11) 3.00 10 3.27 (1.23) 1.61 (0.95) 1 1.70 (0.23)
100 2.02 (0.21) 1.33 (0.13) 1 1.15 (0.02) 100 3.02 (0.32) 1.44 (0.23) 1 1.70 (0.03)
1000 2.00 (0.06) 1.33 (0.04) 1 1.15 (0.00) 1000 3.00 (0.10) 1.43 (0.07) 1 1.70 (0.01)

1.00 10 1.10 (0.40) 2.68 (0.85) 1 2.34 (0.22) 2.00 10 2.18 (0.82) 3.56 (3.42) 1 4.19 (0.99)
100 1.01 (0.10) 2.66 (0.26) 1 2.30 (0.03) 100 2.01 (0.22) 2.84 (0.56) 1 4.30 (0.06)
1000 1.00 (0.03) 2.66 (0.08) 1 2.29 (0.01) 1000 2.00 (0.07) 2.79 (0.17) 1 4.29 (0.02)

0.50 10 0.56 (0.20) 5.32 (1.68) 1 4.69 (0.44) 1.50 10 1.63 (0.63) 7.66 (13.60) 1 10.53 (4.68)
100 0.51 (0.05) 5.31 (0.53) 1 4.60 (0.06) 100 1.51 (0.17) 5.06 (1.24) 1 11.13 (0.13)
1000 0.50 (0.02) 5.32 (0.17) 1 4.58 (0.02) 1000 1.50 (0.05) 4.90 (0.36) 1 11.11 (0.03)

B 2.00 10 2.23 (0.84) 1.33 (0.43) (0,1] 1.67 (0.27) 3.00 10 3.27 (1.23) 1.61 (0.95) (0,1] 2.61 (0.38)
100 2.02 (0.21) 1.33 (0.13) (0,1] 1.57 (0.05) 100 3.02 (0.32) 1.44 (0.23) (0,1] 2.49 (0.08)
1000 2.00 (0.06) 1.33 (0.04) (0,1] 1.56 (0.01) 1000 3.00 (0.10) 1.43 (0.07) (0,1] 2.47 (0.02)

1.00 10 1.10 (0.40) 2.68 (0.85) (0,1] 3.33 (0.54) 2.00 10 2.18 (0.82) 3.56 (3.42) (0,1] 6.76 (0.91)
100 1.01 (0.10) 2.66 (0.26) (0,1] 3.14 (0.09) 100 2.01 (0.22) 2.84 (0.56) (0,1] 6.56 (0.18)
1000 1.00 (0.03) 2.66 (0.08) (0,1] 3.11 (0.02) 1000 2.00 (0.07) 2.79 (0.17) (0,1] 6.52 (0.05)

0.50 10 0.56 (0.20) 5.32 (1.68) (0,1] 6.68 (1.11) 1.50 10 1.63 (0.63) 7.66 (13.60) (0,1] 17.97 (2.52)
100 0.51 (0.05) 5.31 (0.53) (0,1] 6.28 (0.17) 100 1.51 (0.17) 5.06 (1.24) (0,1] 17.73 (0.39)
1000 0.50 (0.02) 5.32 (0.17) (0,1] 6.23 (0.04) 1000 1.50 (0.05) 4.90 (0.36) (0,1] 17.64 (0.11)

C 2.00 10 2.23 (0.84) 1.39 (0.44) 1 1.85 (0.24) 3.00 10 3.27 (1.23) 1.73 (1.05) 1 2.75 (0.27)
100 2.02 (0.21) 1.39 (0.14) 1 1.75 (0.02) 100 3.02 (0.32) 1.54 (0.25) 1 2.63 (0.04)
1000 2.00 (0.06) 1.39 (0.04) 1 1.74 (0.00) 1000 3.00 (0.10) 1.52 (0.08) 1 2.61 (0.00)

1.00 10 1.10 (0.40) 2.79 (0.89) 1 3.68 (0.44) 2.00 10 2.18 (0.82) 3.90 (3.95) 1 6.95 (0.59)
100 1.01 (0.10) 2.77 (0.28) 1 3.50 (0.04) 100 2.01 (0.22) 3.07 (0.62) 1 6.71 (0.09)
1000 1.00 (0.03) 2.77 (0.09) 1 3.47 (0.01) 1000 2.00 (0.07) 3.01 (0.19) 1 6.66 (0.01)

0.50 10 0.56 (0.20) 5.55 (1.75) 1 7.37 (0.91) 1.50 10 1.63 (0.63) 8.67 (16.88) 1 17.93 (1.65)
100 0.51 (0.05) 5.54 (0.55) 1 6.99 (0.09) 100 1.51 (0.17) 5.55 (1.40) 1 17.57 (0.19)
1000 0.50 (0.02) 5.55 (0.17) 1 6.94 (0.01) 1000 1.50 (0.05) 5.37 (0.41) 1 17.46 (0.03)

D 2.00 10 2.23 (0.84) 1.39 (0.44) (0,1] 1.60 (0.16) 3.00 10 3.27 (1.23) 1.73 (1.05) (0,1] 2.48 (0.21)
100 2.02 (0.21) 1.39 (0.14) (0,1] 1.54 (0.02) 100 3.02 (0.32) 1.54 (0.25) (0,1] 2.42 (0.03)
1000 2.00 (0.06) 1.39 (0.04) (0,1] 1.53 (0.00) 1000 3.00 (0.10) 1.52 (0.08) (0,1] 2.40 (0.00)

1.00 10 1.10 (0.40) 2.79 (0.89) (0,1] 3.19 (0.29) 2.00 10 2.18 (0.82) 3.90 (3.95) (0,1] 6.39 (0.67)
100 1.01 (0.10) 2.77 (0.28) (0,1] 3.08 (0.03) 100 2.01 (0.22) 3.07 (0.62) (0,1] 6.31 (0.06)
1000 1.00 (0.03) 2.77 (0.09) (0,1] 3.07 (0.00) 1000 2.00 (0.07) 3.01 (0.19) (0,1] 6.28 (0.01)

0.50 10 0.56 (0.20) 5.55 (1.75) (0,1] 6.39 (0.61) 1.50 10 1.63 (0.63) 8.67 (16.88) (0,1] 16.86 (2.95)
100 0.51 (0.05) 5.54 (0.55) (0,1] 6.16 (0.06) 100 1.51 (0.17) 5.55 (1.40) (0,1] 16.91 (0.13)
1000 0.50 (0.02) 5.55 (0.17) (0,1] 6.13 (0.01) 1000 1.50 (0.05) 5.37 (0.41) (0,1] 16.84 (0.02)

Table 2. The parameter estimates for several parametric distributions based on the empirical claim data along with the
comparison of the estimates for their four (central) moments.

Distribution Parameter Log-Likelihood AIC Mean Variance Skewness Kurtosis

Empiric 0.60 10.98 25.69 794.67
Exponential (θ) 1.68 −645.06 1292.12 0.60 0.35 2.00 9.00
Pareto (θ) 3.65 −94.28 190.55 0.38 0.32 9.62 -
Gamma (θ1, θ2) (0.52, 0.87) −383.76 771.52 0.60 0.69 2.79 14.65
Weibull (θ1, θ2) (0.65, 0.36) −208.65 421.30 0.49 0.62 3.98 30.32
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Figure 8. The goodness-of-fit of several parametric distributions to the empirical distribution of the
claim data.
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Figure 9. The estimates for the optimal retention limit (red line) and the minimized objective function
(blue line) for the combined stop-loss and quota-share reinsurance when β varies (on the left side) and
when ω varies (on the right side). They are determined according to the estimated Pareto distribution
for the claim data when αI(=0.05) < αR(=0.07) (on the upper side) and when αR(=0.03) < αI(=0.05)
(on the lower side).

5. Conclusions

This paper discusses the combined stop-loss and quota-share reinsurance designed
by firstly setting a retention limit and, then, affixing a retention level. For various values
of these retentions, the survival functions of the loss retained by the insurer and the loss
covered by the reinsurer are investigated. We further apply the risk measure of CTE to
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quantify the total loss of each party after a fixed reinsurance premium formulated by the
expected value principle is included. It is found that the CTE of one party’s total loss
decreases as the CTE of another party’s total loss increases, and vice versa. We, therefore,
develop a convex combination of these CTEs, at possibly different significance levels, as an
objective function in the optimization framework. The retentions that are optimal from
both the insurer’s and the reinsurer’s perspectives are shown to have explicit expressions
under several optimality criteria depending on the loading factor, the significance levels,
the weight, and the parameter of the initial loss distribution. These theoretical findings
are then supported by an estimation with numerical examples which shows that the larger
the mean of the initial loss, the poorer the accuracy of the estimated optimal retentions.
The loading and weighting factors play vital roles in determining the existence of these
optimal retentions. In addition, the loading factor also affects their magnitude.

For further research, the reinsurance optimization may be studied under general
model settings by taking several constraints into account as in the works of Cai et al. (2017)
and Chen (2021). Furthermore, we may also use a more general risk measure, such as a
distortion risk measure, to quantify the total loss covered by each party; see, e.g., Lo (2017),
Jiang et al. (2018), Lo and Tang (2019), and Jiang et al. (2021).
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Appendix A

Proof of Theorem 1. When αI ≤ αR or, equivalently, VaRαR
θ (X) ≤ VaRαI

θ (X), we find

HαI,αR;ω
θ (d) = ω∗CTEαI

θ (X)− (ω∗ − 1)CTEαR
θ (X)

which is constant with respect to d for all d ≤ VaRαR
θ (X). In order to minimize the objective

function ΨαI,αR;β,ω
d,c;θ , we firstly take its derivative with respect to d and obtain

∂ΨαI,αR;β,ω
d,c;θ

∂d
= (2ω− 1)c

[
1− 1

β∗
SX;θ(d)

]
which is increasing with respect to d for all d < VaRαR

θ (X) and ω > 1
2 . This implies that

ΨαI,αR;β,ω
d,c;θ is convex with respect to d for all d ≤ VaRαR

θ (X).

When αR < β∗ < SX;θ(0) or, equivalently, VaRβ∗

θ (X) < VaRαR
θ (X), ∂ΨαI,αR;β,ω

d,c;θ /∂d is

negative (positive) for all d below (above) the point dθ = VaRβ∗

θ (X) and is equal to zero at

this point. If the objective function ΨαI,αR;β,ω
d,c;θ is evaluated at d = dθ , we then have two cases

for which it attains its minimum at dθ .

https://cran.r-project.org/package=insuranceData
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• When Gβ
θ (dθ) < HαI,αR;ω

θ (dθ), ΨαI,αR;β,ω
dθ ,c;θ is decreasing with respect to c for all c ∈ (0, 1]

and, consequently, is minimized at cθ = 1. In other words, ΨαI,αR;β,ω
d,c;θ attains its

minimum at a unique point (d, c) = (dθ , 1), which means that Part 1 is proven.
• When Gβ

θ (dθ) = HαI,αR;ω
θ (dθ), ΨαI,αR;β,ω

dθ ,c;θ is constant with respect to c for all c ∈ (0, 1]

which means that ΨαI,αR;β,ω
d,c;θ attains its minimum at (d, c) = (dθ , u) for any constant

u ∈ (0, 1]. We, therefore, have proven Part 2.

We now take into consideration another condition, that is β∗ ≤ αR or, equivalently,
VaRαR

θ (X) ≤ VaRβ∗

θ (X). When this condition is satisfied, ∂ΨαI,αR;β,ω
d,c;θ /∂d is negative for

all d ≤ VaRαR
θ (X). This means that the objective function ΨαI,αR;β,ω

d,c;θ is decreasing with
respect to d for all d ≤ VaRαR

θ (X) and, hence, attains its minimum at dθ = VaRαR
θ (X).

By considering an additional condition Gβ
θ (dθ) < HαI,αR;ω

θ (dθ) (respectively, Gβ
θ (dθ) =

HαI,αR;ω
θ (dθ)), we may easily prove Part 3 (respectively, Part 4).

Proof of Theorem 2. When αR < αI or, equivalently, VaRαI
θ (X) < VaRαR

θ (X), the term
HαI,αR;ω

θ (d) may be expressed as

HαI,αR;ω
θ (d) =


ω∗CTEαI

θ (X)− (ω∗ − 1)CTEαR
θ (X), d ≤ VaRαI

θ (X),

ω∗
[

d +
1
αI

Kθ(d)
]
− (ω∗ − 1)CTEαR

θ (X), VaRαI
θ (X) < d ≤ VaRαR

θ (X).

This implies that the first derivative of the objective function ΨαI,αR;β,ω
d,c;θ with respect to

d is given by

∂ΨαI,αR;β,ω
d,c;θ

∂d
=


(2ω− 1)c

[
1− 1

β∗
SX;θ(d)

]
, d < VaRαI

θ (X),

(2ω− 1)c
[(

ω∗

αI
− 1

β∗

)
SX;θ(d)− (ω∗ − 1)

]
, VaRαI

θ (X) < d < VaRαR
θ (X),

which is not defined at d = VaRαI
θ (X).

When ω > 1
2 and when β∗ω ≤ αR < αI < β∗ < SX;θ(0) or, equivalently,

VaRβ∗

θ (X) < VaRαI
θ (X) < VaRαR

θ (X) ≤ VaRβ∗ω
θ (X),

∂ΨαI,αR;β,ω
d,c;θ /∂d is equal to zero at dθ = VaRβ∗

θ (X). In addition, this partial derivative has a

negative (positive) value at each d < VaRβ∗

θ (X) (d > VaRβ∗

θ (X)). This makes the objective

function ΨαI,αR;β,ω
d,c;θ attain its minimum at dθ . We completely obtain the pair of optimal reten-

tions (dθ , cθ) given in Part 1 (respectively, Part 2) when the condition Gβ
θ (dθ) < HαI,αR;ω

θ (dθ)

(respectively, Gβ
θ (dθ) = HαI,αR;ω

θ (dθ)) is added as similarly explained in the proof of
Theorem 1.

If another condition β∗ < ω∗β∗ < αI or, equivalently,

VaRαI
θ (X) < VaRω∗β∗

θ (X) < VaRβ∗

θ (X)

is considered, we find that ∂ΨαI,αR;β,ω
d,c;θ /∂d is negative for all d < VaRαR

θ (X). This indicates

ΨαI,αR;β,ω
d,c;θ is decreasing with respect to d until its minimum is attained at dθ = VaRαR

θ (X).
The rest of the proof of Parts 3 and 4 is similar to the proof of Theorem 1.
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