# The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland

^{1}

^{2}

^{*}

## Abstract

**:**

**JEL:**G01; G32; G33

## 1. Introduction

## 2. Results

## 3. Discussion

## 4. Materials and Methods

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

Model | Mathematical form of the Model | Interpretation of the Z Function |
---|---|---|

Prusak | ${Z}_{P}=1.4383{x}_{1}+0.1878{x}_{2}+5.0229{x}_{3}-1.8713$ ${x}_{1}=\frac{netprofit+depreciationandamortization}{totalliabilities\text{}}$ ${x}_{2}=\frac{operatingcosts}{currentliabilities}$ ${x}_{3}=\frac{grossmargin}{totalassets}\text{}$ | ${Z}_{P}\ge -0.295\text{}\mathrm{safe}\text{}\mathrm{zone}\text{}\left(\mathrm{SZ}\right)$ $-0.7\le {Z}_{BP}\le 0.2\text{}\mathrm{gray}\text{}\mathrm{zone}\text{}\left(\mathrm{GZ}\right)$ ${Z}_{P}<-0.295distresszone\text{}\left(\mathrm{DZ}\right)$ |

Gajdka and Stos | ${Z}_{GS}=-0.0005{x}_{1}+2.0552{x}_{2}+1.726{x}_{3}+0.1155{x}_{4}$ ${x}_{1}=\frac{currentliabilities}{\text{}costofproductionsold}$ ${x}_{2}=\frac{netprofit}{totalassets}$ ${x}_{3}=\frac{grossprofit}{totalrevenue}$ ${x}_{4}=\frac{totalassets}{totalliabilities}$ | ${Z}_{GS}>0\mathrm{safe}\text{}\mathrm{zone}\text{}\left(\mathrm{SZ}\right)$ $-0.49<{Z}_{GS}<0.49\text{}\mathrm{grey}\text{}\mathrm{zone}\text{}\left(\mathrm{GZ}\right)$ ${Z}_{GS}<0\text{}\mathrm{distress}\text{}\mathrm{zone}\text{}\left(\mathrm{DZ}\right)$ |

Altman EM-Score | ${Z}_{A}=6.56{x}_{1}+3.26{x}_{2}+6.72{x}_{3}+1.05{x}_{4}+3.25$ ${x}_{1}=\frac{\left(currentassets-currentliabilities\right)}{totalassets}$ ${x}_{2}=\frac{retainedearnings}{totalassets}$ ${x}_{3}=\frac{EBIT}{totalassets}$ ${x}_{4}=\frac{bookvalueofequity}{totalliabilities}$ | ${Z}_{A}>5.85\text{}\mathrm{safe}\text{}\mathrm{zone}\text{}\left(\mathrm{SZ}\right)$ $5.58>{Z}_{A}>4.15\text{}\mathrm{grey}\text{}\mathrm{zone}\text{}\left(\mathrm{GZ}\right)$ ${Z}_{A}<4.15\mathrm{distress}\text{}\mathrm{zone}\text{}\left(\mathrm{DZ}\right)$ |

Wędzki | ${Z}_{DW}=8.366-9.9{x}_{1}+0.032{x}_{2}$ ${x}_{1}=\frac{currentassets}{currentliabilities}$ ${x}_{2}=\frac{receivables}{totalrevenue}\times time$ | ${Z}_{DW}>0.5\text{}\mathrm{distress}\text{}\mathrm{zone}\text{}\left(\mathrm{DZ}\right)$ ${Z}_{DW}\le 0.5\text{}\mathrm{safe}\text{}\mathrm{zone}\text{}\left(\mathrm{SZ}\right)$ |

Financial Ratio | Calculation Formula | Interpretation |
---|---|---|

Debt ratio (DR) | $DR=\frac{totalliabilities}{totalassets}$ | The indicator should be in the range of 0.57–0.67. A value above 0.67 means a high credit risk. A low value indicates a high share of equity in liabilities. |

Coverage ratio II | $\frac{equity+non-currentliabilities}{non-currentassets}$ | coverage ratio II < 1 means that fixed capital (equity + long-term liabilities) does not cover fixed assets. |

Current liquidity ratio | $\frac{current\text{}assets}{current\text{}liabilities}$ | The correct value of the indicator should be in the range of 1.2–2.0. |

Sales cash performance index | $\frac{netcashfromoperatingactivities}{totalrevenue}$ | An increase in the value of the ratio over time means more cash from sales and higher security of maintaining financial liquidity. |

## References

- Agosto, Arianna, and Daniel F. Ahelegbey. 2020. Default count-based network models for credit contagion. Journal of the Operational Research Society, 1476–9360. [Google Scholar] [CrossRef]
- Alaka, Hafiz, Lukomon O. Oyedele, Hakeem A. Owolabi, Vikas Kumar, Saheed O. Ajayi, Olugbenga O. Akinade, and Muhammad Bilal. 2018. Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications 94: 164–84. [Google Scholar] [CrossRef]
- Altman, Edward I. 1968. Financial ratios discriminate analysis and the prediction of corporate bankruptcy. Journal of Finance 23: 589–609. [Google Scholar] [CrossRef]
- Altman, Edward I., and Edith Hotchkiss. 2005. Corporate Financial Distress and Bankruptcy, Predict and Avoid Bankruptcy. Analyze and Invest in Distressed Debt. Hoboken: John Wiley & Sons, Inc. [Google Scholar]
- Altman, Edward I., and Paul Narayanan. 1997. An international survey of business failure classification models. Financial Markets. Institutions and Instruments 6: 1–57. [Google Scholar] [CrossRef]
- Altman, Edward I., Robert G. Haldeman, and Paul Narayanan. 1977. Zeta analysis—A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance 1: 29–54. [Google Scholar]
- Atiya, Amir F. 2001. Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks 7: 929–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaver, William H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research 4: 71–111. [Google Scholar] [CrossRef]
- Cerchiello, Paola, Paolo Giudici, and Nicola Giancarlo. 2020. Twitter data models for bank risk contagion. Neurocomputing 264: 50–56. [Google Scholar] [CrossRef]
- Charitou, Amdreas, Evi Neophytou, and Christakis Charalambou. 2004. Predicting corporate failure: Empirical evidence for the UK. European Accounting Review 13: 465–97. [Google Scholar] [CrossRef] [Green Version]
- Chung, Kim- Choy, Shin Shin Tan, and David K. Holdsworth. 2008. Insolvency prediction model using multivariate discriminant analysis and artificial neural network for the finance industry in New Zealand. International Journal of Business and Management 39: 19–28. [Google Scholar]
- Ezzamel, Mahmoud, Cecilio Mar Molinero, and Alistair Beech. 1987. On the distributional properties of financial ratios. Journal of Business Finance and Accounting 14: 463–81. [Google Scholar] [CrossRef]
- Firth, David. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80: 27–38. [Google Scholar] [CrossRef]
- Fitzpatrick, Paul. J. 1932. A Comparison of ratios of successful industrial enterprises with those of failed firm. Certified Public Accountant 10: 589–605. [Google Scholar]
- Gajdka, Jerzy, and Daniel Stos. 2003. Ocena kondycji finansowej polskich spółek publicznych w okresie 1998–2001. In Zarządzanie Finansami. Mierzenie wyników i wycena przedsiębiorstw. Edited by Zarzecki D. Szczecin. Katowice: Wydawnictwo US, pp. 149–57, Mierzenie wyników i wycena przedsiębiorstw. [Google Scholar]
- Gemar, German, Laura Moniche, and Antonio J. Morales. 2016. Survival analysis of the Spanish hotel industry. Tourism Management 54: 428–38. [Google Scholar] [CrossRef]
- Geng, Rubin, Indranil Bose, and Xi Chen. 2015. Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research 241: 236–47. [Google Scholar] [CrossRef]
- Gilbert, Lisa, Krishnagopal Menon, and Kenneth Schwartz. 1990. Predicting bankruptcy for firms in financial distress. Journal of Business Finance and Accounting 17: 161–71. [Google Scholar] [CrossRef]
- Gołębiowski, Grzegorz, and Agnieszka Pląsek. 2018. Skuteczność wybranych modeli dyskryminacyjnych na przykładzie branży turystycznej. Studia i Prace. Kolegium Zarządzania i Finansów. SGH 164: 9–24. [Google Scholar]
- Grice, John S., and Michael T. Dugan. 2001. The limitations of bankruptcy prediction models: Some cautions for researchers. Review of Quantitative Finance and Accounting 17: 151–66. [Google Scholar] [CrossRef]
- Gu, Zheng. 2000. Analyzing bankruptcy in the restaurant industry: A multiple discriminant model. International Journal of Hospitality Management 21: 25–42. [Google Scholar] [CrossRef]
- Gu, Zheng, and Luyuan Gao. 1999. A multivariate model for predicting business failures of hospitality firms. Tourism and Hospitality Research 2: 37–49. [Google Scholar] [CrossRef]
- Hoque, Ashikul, Farzana Afrin Shikha, Mohammad Waliul Hasanat, Ishtiaque Arif, and Abu Bakar Abdul Hamid. 2020. The effect of Coronavirus (COVID-19) in the tourism industry in China. Asian Journal Multidisciplinary Studies 3: 52–58. [Google Scholar]
- Jagiełło, Robert. 2013. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw. Materiały i Studia. NBP 286: 1–116. [Google Scholar]
- Jamal, Tazim, and Christine Budke. 2020. Tourism in a world with pandemics: Local-global responsibility and action. Journal of Tourism Futures 6: 181–88. [Google Scholar] [CrossRef]
- Kim, Hyunjoon, and Zheng Gu. 2006. A logistic regression analysis for predicting bankruptcy in the hospitality industry. The Journal of Hospitality Financial Management 14: 17–34. [Google Scholar] [CrossRef]
- Kim, Hyunjoon, and Zheng Gu. 2006. Predicting restaurant bankruptcy: A logit model in comparison with a discriminant model. Journal of Hospitality & Tourism Research 30: 474–93. [Google Scholar]
- Kliestik, Tomas, Maria Misankova, Katarina Valaskova, and Lucia Svabova. 2018. Bankruptcy prevention: New effort to reflect on legal and social changes. Science and Engineering Ethics 24. [Google Scholar] [CrossRef]
- Lado-Sestayo, Ruben, Milagros Vivel-Búa, and Luis Otero-González. 2016. Survival in the lodging sector: And analysis at the firm and location levels. International Journal of Hospitality Management 59: 19–30. [Google Scholar] [CrossRef]
- Laitinen, Erkki K., and Teija Laitinen. 2000. Bankruptcy prediction: Application of the taylor’s expansion in logistic regression. International Review of Financial Analysis 9: 327–49. [Google Scholar] [CrossRef]
- Li, June, and Reza Ragozar. 2012. Application of the Z- score model with consideration of total assets volatility in predicting corporate financial failures from 2000–2010. Journal of Accounting and Finance 12: 11–19. [Google Scholar]
- Li, Hui, Jia Li, Pei-Chann Chang, and Jie Sun. 2013. Parametric prediction on default risk of Chinese listed tourism companies by using random oversampling, isomap, and locally linear embeddings on imbalanced samples. International Journal of Hospitality Management 35: 141–51. [Google Scholar] [CrossRef]
- Mackevičius, Jonas, Ruta Šneidere, and Daiva Tamulevičienė. 2018. The waves of enterprises bankruptcy and the factors that determine them: The case of Latvia and Lithuania. Entrepreneurship and Sustainability Issues 6: 100–14. [Google Scholar] [CrossRef]
- Mandru, Lidia 2010. The diagnosis of bankruptcy risk using score function. In Proceedings of the 9th WSEAS international Conference on Artificial Intelligence, Knowledge Engineering and Database. Cambridge: University of Cambridge, Athens: World Scientific and Engineering Academy and Society Press, pp. 83–87.
- Cho, Min-ho. 1994. Predicting Business Failure in the Hospitality Industry: An Application of Logit Model. Doctoral Dissertation, Virginia Polytechnic Institute and State University Blacksburg, Blacksburg.
- Narkunienė, Judita, and Aurelija Ulbinaitė. 2018. Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues 6: 125–38. [Google Scholar] [CrossRef]
- Olsen, Michael, Carl Bellas, and Lynn Ventrice Kish. 1983. Improving the prediction of restaurant failure through ratio analysis. International Journal of Hospitality Management 2: 187–193. [Google Scholar] [CrossRef]
- Pitrova, Katerina. 2011. Possibilities of the Altman Zeta model application to Czech Firms. E&M Economics and Management 3. [Google Scholar]
- PMR. 2019. HoReCa market in Poland 2019. In Analysis and Development Forecasts until 2024, 11th ed. Warsaw: PMR. [Google Scholar]
- Podstawka, Marian, ed. 2017. Finanse. Instytucje, Instrumenty, Podmioty, Rynki, Regulacje. Warszawa: PWN. [Google Scholar]
- Prusak, Błażej. 2005. Nowoczesne Metody Prognozowania Zagrożenia Finansowego Przedsiębiorstw. Warszawa: Difin. [Google Scholar]
- Ravisankar, Padmapriyadarshini, Vadlamani Ravi, and Indranil Bose. 2010. Failure prediction of dotcom companies using neural network genetic programming hybrids. European Journal of Operational Research 180: 1257–67. [Google Scholar] [CrossRef]
- Rodríguez-Antón Jose Miguel, Maria del Mar Alonso-Almeida. 2020. Business Organization, COVID-19 Impacts and Recovery Strategies: The Case of the Hospitality Industry in Spain. Sustainability 12: 8599. [Google Scholar] [CrossRef]
- Satish, Ym Rajput, and Bala Janakiram. 2011. Turnaround strategy using Altman model as a tool in solar water heater industry in Karnataka. In International Journal of Business and Management. vol. 6. [Google Scholar] [CrossRef] [Green Version]
- Sierpińska Maria, Tomasz Jachna. 2020. Metody Podejmowania Decyzji Finansowych. Analiza Przykładów i Przypadków. Wyd. 1. Warszawa: PWN. [Google Scholar]
- Sierpińska, Maria, and Dariusz Wędzki. 2010. Zarządzanie Płynnością Finansową. Warszawa: PWN. [Google Scholar]
- Sun, Jie, Hamido Fujita, Peng Chen, and Hui Li. 2017. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble. Knowledge-Based Systems 120: 4–14. [Google Scholar] [CrossRef]
- Sung, Tae Kyung, Namsik Chang, and Gunhee Lee. 1999. Dynamics of modelling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems 16: 63–85. [Google Scholar] [CrossRef]
- Wędzki, Dariusz. 2005. Wielowymiarowa analiza bankructwa na przykładzie budownictwa. Badania Operacyjne i Decyzje. Oficyna Wydawnicza Politechniki Wrocławskiej 2: 59–81. [Google Scholar]
- Wu, Yanhui, Clive Gaunt, and Stephen Gray. 2010. A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting and Economics 6. [Google Scholar] [CrossRef]
- Zhou, Ligang. 2013. Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods. Knowledge-Based Systems 41: 16–25. [Google Scholar] [CrossRef]

**Figure 1.**The classification of companies according to the discriminant models in the first half of 2019.

**Figure 2.**The classification of companies according to the discriminant models in the first half of 2019.

Company | Prusak | Gajdka and Stos | Altman EM-Score | |||
---|---|---|---|---|---|---|

Z | Classification Rule | Z | Classification Rule | Z | Classification Rule | |

Novaturas AB | −0.285 | GZ | 0.208 | GZ | 4.153 | GZ |

Rainbow Tours SA | −0.698 | GZ | 0.171 | GZ | 4.563 | GZ |

AmRest Holdings | −1.350 | DZ | 0.180 | GZ | 3.473 | DZ |

CFI Holdings SA | −1.649 | DZ | 1.111 | SZ | 4.438 | SZ |

Interferie SA | −1.173 | DZ | 0.875 | SZ | 11.267 | SZ |

Mex Polska SA | 0.471 | SZ | 0.268 | GZ | 2.611 | DZ |

Sfinks Polska SA | −1.037 | DZ | −1.069 | DZ | 0.428 | DZ |

Tatry Mountain Resorts | −1.409 | DZ | 0.414 | GZ | 4.407 | GZ |

Benefit Systems SA | −1.090 | DZ | 0.391 | GZ | 3.290 | DZ |

Company | Prusak | Gajdka and Stos | Altman EM-Score | |||
---|---|---|---|---|---|---|

Z | Classification Rule | Z | Classification Rule | Z | Classification Rule | |

Novaturas AB | −1.5438 | DZ | −0.099 | GZ | 0.904 | DZ |

Rainbow Tours SA | −1.3438 | DZ | −0.012 | GZ | 3.725 | DZ |

AmRest Holdings | −1.9475 | DZ | −0.446 | GZ | 1.011 | DZ |

CFI Holdings SA | −1.7167 | DZ | 0.514 | SZ | 5.959 | SZ |

Interferie SA | −1.9276 | DZ | −0.769 | DZ | 7.083 | SZ |

Mex Polska SA | −1.9155 | DZ | −0.205 | GZ | 1.919 | DZ |

Sfinks Polska SA | −1.8202 | DZ | −1.469 | DZ | −1.857 | DZ |

Tatry Mountain Resorts | −1.3795 | DZ | 0.352 | GZ | 4.305 | GZ |

Benefit System SA | −1.4219 | DZ | 0.027 | SZ | 2.571 | DZ |

**Table 3.**Dynamics of EBIT and fixed assets for the audited companies (First half of 2019–first half of 2020).

Company | EBIT Growth (+) Decrease (−) | Fixed Assets Growth (+) Decrease (−) |
---|---|---|

in % | in % | |

Novaturas AB | (−) 260.57 | (+) 2.88 |

Rainbow Tours SA | (−) 150.95 | (+)27.30 |

AmRest Holdings | (−) 125.12 | (+) 3.25 |

CFI Holdings SA | (−) 23.60 | (+) 15.75 |

Interferie SA | (−) 115.54 | (+) 20.37 |

Mex Polska SA | (−) 149.71 | (−) 2.0 |

Sfinks Polska SA | (−) 105.89 | (−) 32.8 |

Tatry Mountain Resorts | (+) 24.32 | (+) 10.7 |

Benefit Systems SA | (−) 87.0 | (−) 1.0 |

Company | Current Liquidity | Debt Ratio | Coverage Ratio II | Sales Cash Performance Index | ||||
---|---|---|---|---|---|---|---|---|

2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |

Novaturas AB | 0.77 | 0.72 | 0.69 | 0.68 | 0.80 | 0.73 | −0.022 | −0.284 |

Rainbow Tours SA | 1.05 | 0.95 | 0.75 | 0.80 | 1.11 | 0.93 | 0.063 | −0.320 |

AmRest Holdings | 0.59 | 0.30 | 0.80 | 0.87 | 0.91 | 0.61 | 0.159 | 0.148 |

CFI Holdings SA | 1.90 | 1.71 | 0.28 | 0.31 | 1.05 | 1.04 | 0.337 | 0.125 |

Interferie SA | 2.63 | 0.45 | 0.14 | 0.22 | 1.13 | 0.90 | 0.098 | −0.009 |

Mex Polska SA | 0.41 | 0.57 | 0.80 | 0.87 | 0.80 | 0.84 | 0.153 | 0.051 |

Sfinks Polska SA | 0.20 | 0.15 | 1.02 ^{1} | 1.22 ^{1} | 0.60 | 0.38 | 0.262 | 0.232 |

Tatry Mountain Resorts | 1.73 | 1.65 | 0.79 | 0.78 | 1.08 | 1.05 | 0.339 | 0.138 |

Benefit Systems SA | 0.53 | 0.60 | 0.69 | 0.71 | 0.89 | 0.89 | 0.201 | 0.257 |

^{1}The value of liabilities, in both 2019 and 2020, exceeds the balance sheet total. This is due to the negative value of equity, which is affected by the amount of net loss and losses from previous years.

Company | Z | Classification Rule | Z | Classification Rule |
---|---|---|---|---|

First Half of 2019 | First Half of 2020 | |||

Novaturas AB | 0.963 | DZ | 1.518 | DZ |

Rainbow Tours SA | 0.332 | SZ | 3.482 | DZ |

AmRest Holdings | 3.023 | DZ | 5.959 | DZ |

CFI Holdings SA | −7.334 | SZ | −5.737 | SZ |

Interferie SA | −17.704 | SZ | 4.146 | DZ |

Mex Polska SA | 4.647 | DZ | 3.295 | DZ |

Sfinks Polska SA | 8.089 | DZ | 8.797 | DZ |

Tatry Mountain Resorts | −8.301 | SZ | −7.563 | SZ |

Benefit Systems SA | 4.322 | DZ | 3.906 | DZ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wieprow, J.; Gawlik, A.
The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland. *Risks* **2021**, *9*, 78.
https://doi.org/10.3390/risks9040078

**AMA Style**

Wieprow J, Gawlik A.
The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland. *Risks*. 2021; 9(4):78.
https://doi.org/10.3390/risks9040078

**Chicago/Turabian Style**

Wieprow, Joanna, and Agnieszka Gawlik.
2021. "The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland" *Risks* 9, no. 4: 78.
https://doi.org/10.3390/risks9040078