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Abstract: The aim of this paper is to merge order statistics with natural catastrophe reinsurance
pricing to develop new theoretical and practical insights relevant to market practice and model
development. We present a novel framework to quantify the role that occurrence losses (order
statistics) play in pricing of catastrophe excess of loss (catXL) contracts. Our framework enables
one to analytically quantify the contribution of a given occurrence loss to the mean and covariance
structure, before and after the application of a catXL contract. We demonstrate the utility of our
framework with an application to idealized catastrophe models for a multi-peril and a hurricane-only
case. For the multi-peril case, we show precisely how contributions to so-called lower layers are
dominated by high frequency perils, whereas higher layers are dominated by low-frequency high
severity perils. Our framework enables market practitioners and model developers to assess and
understand the impact of altered model assumptions on the role of occurrence losses in catXL pricing.

Keywords: occurrence losses; catXL pricing; order statistics; catastrophe risk modeling

1. Introduction

Reinsurance companies sell products that allow primary insurers to improve their
portfolio return profiles through risk transfer. Suppose a primary insurer exclusively un-
derwrites homeowner policies in the state of California. Due to a lack of ability to diversify
geographically (say across the United States), over the course of any particular annual insur-
ance cycle, the primary insurer may build up a portfolio with poor risk adjusted returns, and
could lack access to cost efficient capital to cover all potential liabilities. A variety of reinsur-
ance products can be purchased by primary insurers to improve risk/return profiles and
protect against extreme losses. One of the most important products is the so-called catas-
trophe excess of loss (catXL) contract (Cummins et al. 1999; Hurlimann 2005; Mata 2000).
CatXL contracts allow insurers to protect against extreme losses arising from perils such
as hurricane, windstorms, convective storms, earthquakes, flooding, wildfires and storm
surge. CatXL contracts are also used in transferring other types of risk such as life risk
(Ekheden and Hossjer 2014). Reinsurers sell a variety of catXL contracts with the aim of
building a diversified portfolio with attractive returns on capital over the long run. Risk
transfer through catXL contract underwriting plays a fundamental and important role in
the global reinsurance marketplace (Cummins et al. 1999).

Reinsurers use various metrics to decide whether or not any particular catXL contract
should be underwritten. The metrics include loss results obtained from catastrophe simula-
tion models used in technical pricing (defined in the main body), market dynamics that
determine the supply and demand for reinsurance, brokerage fees, metrics which quantify
the diversification benefit of any incremental addition of risk to a portfolio, risk appetite
and capital availability. Underwriting decisions and portfolio construction are functions
of these factors. This paper focuses on catastrophe simulation model output in relation to
technical pricing.
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In the vast majority of cases, catastrophe models are built using complex physical
simulations of natural hazard phenomena (Michel 2018; Mitchell-Wallace et al. 2017).
Physically based simulations of hazard are fed into so-called vulnerability models which
assess the damage arising from any particular event occurrence to a portfolio of phys-
ical risks (Michel 2018; Mitchell-Wallace et al. 2017). The next step is for the physical
damage to be converted into financial loss reported at various levels of aggregation (e.g.,
location and portfolio level). In this paper, we conceptualize catastrophe model output
by working with a so-called timeline simulation of event losses, obtained by running
the model against a portfolio of physical risks. We assume that for a given portfolio
of risks, the timeline simulation can be obtained by simulating from a frequency distri-
bution and a portfolio specific severity distribution (analogous to actuarial applications
(Klugman et al. 2008)). We assume that both frequency and severity are independent
(commonly assumed in actuarial applications (Klugman et al. 2008), although recent stud-
ies explore the relaxation of this assumption (Peng et al. 2015)). In some instances, the
frequency and severity distributions may have exact analytical forms, but this need not be
the case. Most catXL contracts apply to a one-year period (Cummins et al. 1999; Hurlimann
2005; Mata 2000) which is the focus of this paper. Each year of simulation contains what
are commonly referred to as occurrence losses in the catastrophe modeling community
(Michel 2018; Mitchell-Wallace et al. 2017), consisting of the first, second, third and so on
annual maximum losses. In statistics, the occurrence losses are commonly referred to as the
order statistics (David and Nagaraja 2003). We use occurrence losses and order statistics
synonymously in this paper. This paper addresses the role of occurrence losses in pricing
catXL contracts.

The case of interest in this paper is the theory of order statistics with random sample
sizes (drawn from specific frequency distributions), for which the theoretical underpinnings
were established in a series of papers dating back to the 1970s (Barakat and El-Shandidy
2015; Buhrman 1973; Consul 1984; Gupta and Gupta 1984; Raghunandanan and Patil 1976;
Young 1970). Analytical methods for pricing catXL contracts have been extensively studied
in the literature (Cummins et al. 1999; Hurlimann 2005; Mata 2000). The aim of this paper
is to merge order statistics and catXL reinsurance pricing to address a number of practical
and theoretical questions related to the role of occurrence losses in catXL pricing. The types
of questions motivating this work are as follows:

• What is the contribution of the second largest annual hurricane loss to a given catXL
technical price, and how does the contribution depend on catastrophe model assump-
tions?

• How do the contributions from various occurrence losses vary as a function of the
catXL contract specification? Furthermore, how does this inform which perils are
most important for different risk takers in the market?

• How well converged are the occurrence loss contributions (in a finite simulation)
before and after the application of a catXL contract?

• What is the correlation structure of occurrence losses, before and after applying a
catXL contract, and what role does the correlation play in quantifying pricing metrics?

In this paper, we develop a novel mathematical framework that enables one to ana-
lytically decompose various technical catXL pricing metrics into contributions from the
occurrence losses. We are not aware of any similar studies in the literature. We demonstrate
the utility of our framework numerically using two idealized catastrophe models for US
nationwide multi-peril losses and hurricane-only losses. In particular for the multi-peril
case: We demonstrate, in a precise way, how so-called lower layers (oftentimes retained by
primary insurers) are dominated by high-frequency perils, whereas higher layers (typically
covered by reinsurers) are dominated by low-frequency high severity perils. Such insights
are useful for both market practitioners and catastrophe model developers alike.

This paper is organized as follows. In Section 2, we present analytical results for
occurrence losses and catXL pricing. We show the general expression for the distribution
of occurrence losses (for discrete frequency and continuous severity), and show the appli-



Risks 2021, 9, 52 3 of 38

cation of this to the Poisson and Negative Binomial frequency cases (both of which are
frequently used in applications). We demonstrate how mean losses, both before (pre) and
after (post) the application of a catXL contract, can be decomposed into the sum of integrals
on the individual occurrence loss distributions. We also provide expressions which can
be used to quantify the covariance structure of the occurrence losses for the pre and post
catXL perspectives. Finally, we show how to quantify convergence errors (arising from
finite simulation sets used in practical settings) associated with various occurrence loss
metrics (mean, standard deviation, correlation) pre and post catXL. In Section 3, we apply
our mathematical framework to a representative US nationwide portfolio comprised of
hurricane, wildfire, severe convective storm, winter storm and earthquake risks, enabling
us to address the questions raised in this paper. In Section 4, we provide a sensitivity study
for a US hurricane-only model to address questions related to model adequacy that arise in
practice. Section 5 provides a summary, draws conclusions, and discusses new avenues of
suggested research.

2. A Mathematical Framework for Occurrence Losses in Reinsurance Pricing

We begin this section with a mathematical formulation of a catastrophe model char-
acterized by a frequency and severity distribution. The catastrophe model is used to
generate what we refer to as a ‘timeline simulation’, which is the typical starting point for
pricing reinsurance contracts. We assume the timeline simulation has periods of one-year
in length. We provide the mathematical definition of occurrence loss random variables
(corresponding to the ordered maxima in each one-year period). Two cases are of interest:
Before (pre) and after (post) the application of a catXL reinsurance contract. We define
Zpre as a random variable corresponding to the annual sum of occurrence losses before
the application of a catXL. Zpost is defined as the annual sum of occurrence losses after the
application of a catXL. Market practitioners use functions of the mean and variance of Zpost
as inputs to a catXL pricing formula. Motivated by market practice, and to address the
types of questions which are central to this paper, we demonstrate how to decompose the
mean and variance of Zpost into contributions from the various occurrence losses. We also
do the same for the mean and variance of Zpre to gain additional insights. The required
mathematical results are provided in what follows. We end this section by addressing how
to quantify convergence errors that arise in practical applications.

2.1. Preliminaries

We first provide all the necessary mathematical definitions and notation that are used
throughout this work.

2.1.1. Frequency

Let N be a discrete random variable representing the annual number of events for a
catastrophe model. N is drawn from PN(N = k) where k ∈ [0, 1, 2, 3, ...], and ∑∞

k=0 PN(N =
k) = 1. We make use of two particular frequency distributions due to their common
application in catastrophe modeling (Michel 2018; Mitchell-Wallace et al. 2017).

The first is the Negative Binomial distribution given by,

Pnb,N(N = k) =
Γ(k + r)
k!Γ(r)

pr(1− p)k (1)

where r = µ2

σ2−µ
> 0, Γ(r) is the gamma function Γ(r) =

∫ ∞
0 sr−1e−sds (for r > 0)

(Bahnemann 2015), p = µ

σ2 , with mean EN [N] = µ and variance VarN [N] = σ2 (Klug-
man et al. 2008). Subscript nb is used to indicate Negative Binomial. The Negative Binomial
distribution is ‘over-dispersive’ with σ2

µ > 1.
A special case of the Negative Binomial is given by the limit as r → ∞, yielding the

Poisson distribution,
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Ppois,N(N = k) =
e−λλk

k!
(2)

with expectation EN [N] = λ and variance VarN [N] = λ (Klugman et al. 2008). Subscript
pois makes clear the Poisson case. The over-dispersion, defined as the ratio of the variance
to the mean, is 1.

2.1.2. Severity

In this paper, we discuss losses to a portfolio of physical asset risks insured by a
primary insurer. Given an event occurrence, the primary insurer portfolio level financial
loss (in $) due to the event is assumed to be drawn from a continuous severity distribution
with density fX(x) and cumulative probability FX(x).

2.1.3. Independence Assumptions for Single and Multi-Peril Models

We assume that samples from the frequency PN(N = k) and severity fX(x) are
generated independently. Typically, in practical applications, PN(N = k) and fX(x) is
used to represent one particular peril (e.g., US hurricane) against one specific primary
insurer portfolio.

We can also represent multiple perils (causing losses on the same portfolio) as follows.
Let P represent the number of perils. For each of the p = 1, 2, ..., P perils, the severity
distribution is given by fXp(x). We assume that the severity distribution for all perils
combined is given by the mixture fX(x) = ∑P

p=1 wp fXp(x), where ∑P
p=1 wp = 1. Each of

the perils has its own frequency distribution PNp(Np = kp), and we assume the multi-peril
frequency random variable is given by N = ∑P

p=1 Np. Frequency and severity are also
assumed to be independent in the multiple-peril case.

2.1.4. Notation

In this paper, we adopt classical compound claims notation with a slight deviation
from convention to meet the needs of this paper. Given the frequency N, the event losses
drawn from the (single or multi-peril) severity fX(x) are denoted by: X1, X2, ..., XN . Here
we use the convention that X1 ≥ X2 ≥ ... ≥ XN . Therefore X1 represents the annual
maximum, X2 represents the second annual maximum, and so on. These ordered random
variables are called the occurrence losses.

For our purposes, it is convenient to extend this classical notation in the following
sense. First, suppose that the random frequency N = k. In this case, the particular event
losses are denoted by: (X1 = x1) ≥ (X2 = x2) ≥ ... ≥ (Xk = xk) ≥ (Xk+1 = 0)... ≥ (X∞ =
0). We use the convention that all event losses with index greater than k are assigned a
value of zero (this is of course true as they do not occur). This notation convention is useful
as we are interested in the statistics of all occurrence losses.

Given the above discussion, we hereafter denote the occurrence loss random variables
as XM where M ∈ [1, 2, 3, ...] (where X1 ≥ X2 and so on). Next we discuss how the statistics
of the occurrence loss random variables can be used to understand reinsurance pricing.

2.1.5. Pre-catXL Loss Perspective and Decomposition

We now discuss what we call the pre-catXL perspective, which considers losses to a
primary insurer portfolio before the application of any reinsurance. For any given model
described by frequency PN(N = k) and severity fX(x), we can generate what we call a
‘timeline simulation’ by using the following procedure: 1. For each year i = 1, ..., S of
simulation, generate a random draw from PN(N = k) denoted by ki. 2. Then take ki
independent samples from the severity fX(x). A visualization of a timeline simulation is
provided in Figure 1. For example, in year i = 1 we have 4 losses above the loss threshold
$X. The dots below the loss threshold $X represent the 5th largest loss and so on. Suppose
for year i = 7 the realization of N is k7 = 5, then the 6th smallest loss and beyond is
assigned 0.
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Figure 1. A depiction of a timeline simulation for a given combination of frequency and severity.
Each simulation period is one-year in length (x-axis). The y-axis is the primary insurer portfolio loss
in $, before the application of any reinsurance. The annual maximum loss events are depicted by the
1’s with red circles. Second annual maximum losses are indicated by the 2’s with yellow circles and
so on. Event losses that are less than or equal to $X < $A have values in the closed interval from $0 to
$X. The dashed red and blue lines indicated by the $A and $E values correspond to the attachment
and exhaustion point of a catXL reinsurance contract that will be applied in what follows.

In each year of simulation, there is a 1st maximum, a 2nd maximum, and so on,
as labeled in Figure 1. These ordered maxima are what we call the occurrence losses.
Figure 1 shows that events happen at different times of year (as in reality). To simplify,
we ignore this ‘seasonality’. Using the above stated notation, the random variable XM,
where M ∈ [1, 2, 3, ...], is called the Mth annual maximum loss. We also define the annual
aggregate loss Zpre = ∑∞

M=1 XM (subscript pre emphasizes pre-catXL perspective).
Our aim is to quantify the contribution of the various occurrence losses to the mean

and variance of Zpre. This is motivated by the fact that the mean and variance are inputs to
technical pricing metrics used in making reinsurance underwriting decisions (discussed
in what follows). It is therefore of interest to understand the mean and variance before
the application of reinsurance, to enable better understanding of what are the effects of
applying reinsurance structures. We emphasize the fact that the variance depends on the
correlation structure and is therefore of interest.

Mathematically, we require the mean µXM and variance σ2
XM

for all M. We also require
an expression for the Pearson correlation between any arbitrary pair of occurrence loss
random variables indexed by I, J ∈ [1, 2, 3, ...], where I > J, written as ρXI ,XJ . Analyti-
cal expressions for all these quantities provided in Sections 2.3–2.5 (with derivations in
Appendices A–C).

We now define the decomposition of the mean and variance of Zpre, which is our main
tool for analysis in this paper. The mean of Zpre is given by,

EX [Zpre] ≡ AALpre =
∞

∑
M=1

µXM

where AALpre denotes the pre-catXL average annual aggregate loss. The contribution
CAALpre ,XM of any particular occurrence loss XM to the AALpre is defined as,
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CAALpre ,XM =
µXM

AALpre
(3)

where ∑∞
M=1 CAALpre ,M = 1 (AALpre is assumed finite).

For the annual aggregate loss variance, Varpre, we take the variance over all occurrence
loss random variables XM. Using the expression for the variance of the sum of correlated
random variables, we obtain,

Varpre =
∞

∑
M=1

σ2
XM

+ ∑
1≤J<I<∞

2ρXI ,XJ σXI σXJ

and we define the marginal contribution CVarpre ,XM of any particular occurrence loss XM to
Varpre as,

CVarpre ,XM =
σ2

XM

Varpre
(4)

and we define the interaction contribution CVarpre ,XI ,XJ of any pair of occurrence losses XI
and XJ to be Varpre as,

CVarpre ,XI ,XJ =
2ρXI ,XJ σXI σXJ

Varpre
(5)

where ∑∞
M=1 CVarpre ,XM + ∑1≤J<I<∞ CVarpre ,XI ,XJ = 1 (Varpre is assumed finite).

2.1.6. Post-catXL Loss Perspective and Decomposition

We now apply the reinsurance layer depicted in Figure 1 by the so-called attachment
point $A and exhaustion point $E. Figure 2 gives a visual representation of the effect of
applying the layer parameterized by $A and $E. Mathematically, this is represented by the
following random variable,

YAE,M =


0 XM < A

XM − A A ≤ XM < E
E− A XM ≥ E

where M ∈ [1, 2, 3, ...] (and YAE,1 ≥ YAE,2 and so on). This can be written in a compact form
as YAE,M = Min[Max[0, XM − A], E− A] (Cummins et al. 1999; Hurlimann 2005; Mata
2000). In this paper, we develop analytical expressions for the mean µYAE,M = EX [YAE,M],
the variance σ2

YAE,M
= VarX [YAE,M], and the correlation coefficient ρYAE,I ,YAE,J between any

pair of random variables YAE,I and YAE,J with I, J ∈ [1, 2, 3, ...] and I > J. Analytical
expressions for all these quantities are shown in Sections 2.3–2.5 (with derivations in
Appendices A–C). Subscript AE specifies a particular $A and $E.

The reinsurer is responsible for all the losses depicted in Figure 2 up to a certain
limit called the (annual) aggregate limit $AL = (1 + re)($E− $A), where re ∈ [0, 1, 2, ...]
specifies the number of ‘reinstatements’ (as in Cummins et al. 1999; Hurlimann 2005;
Mata 2000). Typical market practice is to set the number of reinstatements re to 2 or 3.
For simplicity, we make the assumption that re → ∞. Previous studies have found that
pricing metrics based on 2 or 3 reinstatements are well approximated by results using the
limit re → ∞ (Khare et al. 2015). Assuming re → ∞, the annual aggregate loss random
variable is given by the sum over all occurrence losses so that Zpost,AE = ∑∞

M=1 YAE,M
(where subscript post denotes after application of the catXL layer). A given combination of
$A and $E is called a ‘layer’.
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Figure 2. This picture illustrates the application of a catXL contract to the pre-catXL timeline
simulation depicted in Figure 1. Occurrence losses in Figure 1 below the attachment point are given
$0 value. Occurrence losses greater than or equal to the attachment point, but less than the exhaustion
point, are equal to the assigned value in Figure 1, minus the attachment point. All occurrence losses
above the exhaustion point in Figure 1 are assigned a value of $(E-A). In all simulation years, all
higher order occurrence losses which are not depicted are assigned $0 value.

Common market practice makes use of the mean and variance of Zpost,AE to compute
what we call technical prices which are used to make underwriting decisions. For example,
a technical pricing metric could be computed as,

EX [Zpost,AE] + v
√

VarX [Zpost,AE]

premium

where premium denotes net income, and v is a volatility loading factor greater than 0.
Decomposing the mean EX [Zpost,AE] and variance VarX [Zpost,AE] into the contributions from
the various underlying occurrence losses will enable us to understand the role that they
play in the technical pricing. We emphasize again that the total variance VarX [Zpost,AE]
depends on the correlation ρYAE,I ,YAE,J , motivating our analysis of the correlation structure
to follow.

We now define the decomposition of the mean and variance of Zpost,AE, which is our
main tool for analysis in this paper. In the uncapped aggregate limit where re → ∞, the
post-catXL mean annual aggregate loss is simply obtained by summing the post-catXL
mean annual losses for each random variable YAE,M given by,

EX [Zpost,AE] ≡ AALpost,AE =
∞

∑
M=1

µYAE,M .

The contribution CAALpost ,YAE,M of any particular occurrence loss YAE,M to the AALpost,AE is
defined by,

CAALpost ,YAE,M =
µYAE,M

AALpost,AE
(6)

where ∑∞
M=1 CAALpost ,YAE,M = 1 (AALpost,AE is assumed finite).
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The annual aggregate loss variance, Varpost,AE, is obtained using the formula for the
variance of the sum of correlated random variables given by,

Varpost,AE =
∞

∑
M=1

σ2
YAE,M

+ ∑
1≤J<I<∞

2ρYAE,I ,YAE,J σYAE,I σYAE,J

and we define the marginal contribution CVarpost ,YAE,M of any particular occurrence loss
YAE,M to be Varpost,AE as,

CVarpost ,YAE,M =
σ2

YAE,M

Varpost,AE
(7)

and we define the interaction contribution CVarpre ,YAE,I ,YAE,J of any pair of occurrence losses
YAE,I and YAE,J to be Varpost,AE as,

CVarpost ,YAE,I ,YAE,J =
2ρYAE,I ,YAE,J σYAE,I σYAE,J

Varpost,AE
(8)

where ∑∞
M=1 CVarpost ,YAE,M + ∑1≤J<I<∞ CVarpost ,YAE,I ,YAE,J = 1 (Varpost,AE is assumed finite).

2.2. Occurrence Loss Marginal Distributions

Here we start with the general expression for the cumulative probability of any
occurrence loss random variable XM, written as an infinite sum. We then show expressions
for the Negative Binomial (Equation (1)) and the limiting Poisson case (Equation (2)).
Derivations are provided in the Appendix A.

2.2.1. General Expression

For convenience, we define the cumulative probability of the severity at loss threshold
l as f ≡ FX(l) =

∫ l
0 fX(x)dx. The cumulative probability f ∈ [0, 1] is not to be confused

with the density fX(x). For any occurrence loss random variable XM, the cumulative
probability at l is given by,

FXM (l) =
M−1

∑
k=0

PN(N = k) +
∞

∑
k=M

PN(N = k)
M−1

∑
i=0

(
k

k− i

)
f k−i(1− f )i. (9)

2.2.2. Negative Binomial Frequency Assumption

For any occurrence loss random variable XM, and under the assumption that the
frequency distribution is Negative Binomial (Equation (1)), the cumulative probability at
loss threshold l is given by,

Fnb,XM (l) =
M−1

∑
k=0

Γ(k + r)
k!Γ(r)

pr(1− p)k −
M−1

∑
i=0

M−1

∑
k=i

Γ(k + r)
k!Γ(r)

pr(1− p)k
(

k
k− i

)
f k−i(1− f )i

+
pr

Γ(r)

M−1

∑
i=0

Γ(i + r)(1− f )i(1− p)i(1− f (1− p))−(i+r)

i!
.

(10)

2.2.3. Poisson Frequency Assumption

In the limit that r → ∞ we obtain the Poisson frequency with corresponding marginal
distribution,

Fpois,XM (l) =
M−1

∑
k=0

eλλk

k!
−

M−1

∑
i=0

M−1

∑
k=i

eλλk

k!

(
k

k− i

)
f k−i(1− f )i + e−λ(1− f )

M−1

∑
i=0

(1− f )iλi

i!
. (11)
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2.3. Occurrence Mean Loss

We now build up the tools required to compute the decompositions for the pre and
post-catXL annual aggregate loss means given by Equations (3) and (6). We start with the
pre-catXL mean loss for any random variable XM, given by,

µXM =
∫ ∞

0
(1− Ff req,XM (x))dx (12)

and for the post-catXL case, the mean loss associated with random variable YAE,M is
given by,

µYAE,M =
∫ E

A
(1− Ff req,XM (x))dx. (13)

For completeness, derivations of Equations (12) and (13) are provided in the Appendix B.

2.4. Occurrence Loss Variance

To compute the marginal contributions to the total variance for Zpre and Zpost
(Equations (4) and (7)), we require the pre-catXL centered variance given by,

σ2
XM

=
∫ ∞

0
2x(1− Ff req,XM (x))dx− µ2

XM
(14)

and for the post-catXL variance given by,

σ2
YAE,M

=
∫ E

A
2(x− A)(1− Ff req,XM (x))dx− µ2

YAE,M
. (15)

Derivations of Equations (14) and (15) are provided in Appendix B.

2.5. Occurrence Loss Correlation Structure

To compute the interaction contributions to the total variance for Zpre and Zpost
(Equations (5) and (8)), we require expressions for the correlation coefficients between
occurrence loss random variables. For convenience, we first define the operator tAE() to
be such that tAE(XM) = YAE,M. For any pair of random variables YAE,I and YAE,J (I > J
with (I, J) ∈ [1, 2, 3, ...]), the correlation coefficient, for a Negative Binomial frequency
assumption, is given by the following double integral,

ρnb,YAE,I ,YAE,J =
1

σYAE,I σYAE,J

(µYAE,I µYAE,I

J−1

∑
k=0

Γ(k + r)
k!Γ(r)

pr(1− p)k

−µYAE,I

∫ ∞

0

[
(tAE(y)− µYAE,J )

I−1

∑
k=J

Γ(k + r)pr(1− p)k

Γ(r)(k− J)!(J − 1)!
[FX(y)]k−J [1− FX(y)]J−1 fX(y)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(tAE(x)− µYAE,I )(tAE(y)− µYAE,J )A3nb(x, y)

]
dxdy)

(16)

where σYAE,I , σYAE,J , µYAE,I , µYAE,J are computed for Negative Binomial assumption. The
pre-catXL case is covered by taking the limit as A = 0 and E → ∞ (so tAE(XM) = XM).
Equation (16) is derived in the Appendix C (where we also define A3nb(x, y)).
Equations (5), (8), (14)–(16) can be used to compute the pre and post-catXL interaction
contributions (Negative Binomial case).

The Poisson case is obtained by taking the limit as r → ∞ of Equation (16) and is
given by,
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ρpois,YAE,I ,YAE,J =
1

σYAE,I σYAE,J

(µYAE,I µYAE,J

J−1

∑
k=0

e−λλk

k!

−µYAE,I

∫ ∞

0

[
(tAE(y)− µYAE,J )

I−1

∑
k=J

e−λλk

(k− J)!(J − 1)!
[FX(y)]k−J [1− FX(y)]J−1 fX(y)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(tAE(x)− µYAE,I )(tAE(y)− µYAE,J )A3pois(x, y)

]
dxdy)

(17)

where σYAE,I , σYAE,J , µYAE,I , µYAE,J are computed for the Poisson assumption. Again, the
pre-catXL result is obtained when A = 0 and E → ∞. Equation (17) is derived in the
Appendix C (where we also define A3pois(x, y)). Equations (5), (8), (14), (15) and (17) can
be used to compute the pre and post-catXL interaction contributions (Poisson case).

2.6. Convergence Error Quantification

Typical market practice uses a limited number S years of simulation for technical
reinsurance pricing. We are therefore interested in quantifying convergence errors asso-
ciated with the various contributions to the mean and variance of Zpost and Zpre arising
from the occurrence losses of order M. Making use of the mathematical results provided
above, we now discuss how this can be done using standard errors (Wasserman 2004).
As there are a number of cases to cover, we first define some simplifying notation. Let µ
and σ be the mean and standard deviation for a given occurrence loss order M, frequency
assumption, $A and $E (µ and σ are not to be confused with the parameters discussed in
Section 2.1.1). We also require the 4th central moment µ4 (the required integral is provided
in the Appendix B). Let ρ be the correlation coefficient between any pair of occurrence
losses YAE,I and YAE,J (or XI and XJ in the pre-catXL case). All values for µ, σ, ρ and µ4 are
computed via numerical integration (to a high degree of accuracy for the numerical results
discussed in Sections 3 and 4).

2.6.1. Mean Loss

The standard error of the mean loss (SEµ) is given by,

SEµ =
σ√
S

(18)

EECS (2021). Equation (18) quantifies the standard deviation of the mean loss over many
independent simulation sets (Wasserman 2004). We define the percentage error to be
100 σ√

Sµ
where µ is the associated mean loss.

2.6.2. Variance

The standard error of the variance is given by,

SEσ2 = σ2
√

2
S− 1

(19)

EECS (2021). The percentage error is 100
√

2
S−1 (which does not depend on a numerical

estimate of σ2).

2.6.3. Standard Deviation

The standard error of the standard deviation is approximately given by,

SEσ ≈
1

2σ

√
1
S
(µ4 −

S− 1
S− 3

σ4) (20)

Rao (1973), and the percentage error is approximately 50
σ2

√
1
S (µ4 − S−1

S−3 σ4).
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2.6.4. Pearson Correlation

Here we consider a pair of occurrence loss random variable YAE,I and YAE,J where
I > J (the pair is XI and XJ in the pre-catXL case). Suppose we generate many simulations
of length S (starting with different random seeds) and for each simulation we use the
sample statistics to estimate the correlation between YAE,I and YAE,J . For each independent
simulation of length S, let the random sample correlation coefficient be ρ∗(S). If YAE,I

and YAE,J are normally distributed, we know that the random variable Z = 1
2 ln( 1+ρ∗(S)

1−ρ∗(S) )

is approximately normally distributed with mean equal to E[Z] = 1
2 ln( 1+ρ

1−ρ ) (where ρ

is the true correlation), and variance Var[Z] = 1
S−3 (Fisher 1915, 1921). It is clear that

YAE,I and YAE,J are not generally bi-variate normal (Equations (9)–(11)). Despite this, we
simply choose to apply the results for the bi-variate normal to derive an approximate
confidence interval for ρ as a function of S. We can form a confidence interval for Z as,

[E[Z]−
√

1
S−3 , E[Z] +

√
1

S−3 ]. Given that ρ∗(S) = e2Z−1
e2Z+1 , we can invert this expression to

derive an approximate confidence interval for ρ, e2(E[Z]−
√

1
S−3 ) − 1

e2(E[Z]−
√

1
S−3 ) + 1

,
e2(E[Z]+

√
1

S−3 ) − 1

e2(E[Z]+
√

1
S−3 ) + 1

 (21)

Let L be the length of the above confidence interval. We define the percentage error as
100 L

2ρ (the factor of 2 divides the asymmetric interval length in half).

3. Multi-Peril Model Results for a US Nationwide Portfolio

We now apply our mathematical framework to an idealized representation of a multi-
peril catastrophe model for a US nationwide industry portfolio. We begin by prescribing
an appropriate frequency and severity, followed by an analysis of the resulting risk profile
to set the context. We then analyze the decompositions of the AAL and total variance of the
pre and post-catXL perspectives, which demonstrates the practical insights that are gained
by application of our framework.

3.1. Multi-Peril Model Setup and Risk Profile

Our objective is to define a multi-peril frequency and severity model that will serve as
a reasonable testbed for our mathematical framework from which we can derive practical
insight. First we define the perils, their respective AALs and average annual frequencies,
followed by our formulation of the severity distribution.

We use publicly available data from (AON 2021; Insurance Information Institute 2021)
to formulate model parameters such that the model is representative of results from a
catastrophe model run against a US nationwide insured portfolio. We assume that losses on
a hypothetical US industry portfolio arise from hurricanes (HU), winter storms (WS), wild-
fires (WF), earthquakes (EQ) and severe convective storms (SCS). Using the US inflation-
adjusted losses from 1980–2018 provided in (Insurance Information Institute 2021) as a
guide, we assume a portfolio AAL of $29.5 Billion (hereafter denoted by B). We then use
Exhibit 19 of (Insurance Information Institute 2021) as a guide to assign the following AALs
to each peril: $12.5 B to HU, $2.5 B to WS, $2.5 B to WF, $2.0 B to EQ and $10.0 B to SCS.
Historical frequency data of US loss events provided in (Insurance Information Institute
2021) (1980–2018) suggests that order 100 meteorological events occur on average where
the vast majority of events are severe convective storms. We therefore assign an average
annual frequency of 100 to SCS, and we assign to 2 to HU and 6 to WS (we use the ratio
of HU to WS loss events provided in (Insurance Information Institute 2021)). Insurance
Information Institute (2021) also provides frequency data for geological events, and we
assign a frequency of 5 to EQ. Finally, we assign a frequency of 70 to WF. This deviates
from the data provided in (Insurance Information Institute 2021), but our choice reflects the
fact that many small WF events occur that may not be accounted in (Insurance Information



Risks 2021, 9, 52 12 of 38

Institute 2021) due to censoring, and also noting that the annual frequency of WF events is
order 50,000 (CRS 2021). The perils, assigned AALs and average annual frequencies are
provided in the first 3 Columns of Table 1.

The severity distribution for each individual peril is assumed to be a gamma distri-
bution. The gamma density is given by fX(x) = 1

Γ(α)βα xα−1e−
x
β for x > 0, and fX(x) = 0

for x ∈ (−∞, 0], where α > 0 is the shape parameter, β > 0 is the scale parameter, and
the gamma function Γ(α) (Section 2.1.1). The mean event loss is αβ with variance αβ2.
We note that the gamma distribution is used in actuarial based reinsurance applications
(Bahnemann 2015), and was therefore deemed sufficient for demonstration purposes only.
Alternative severity distributions may result in different conclusions, but we leave explo-
ration of this issue to future work. To determine the shape and scale parameters for each
distribution, we note that the mean event loss αβ is given by the AAL divided by the
average annual frequency. We now impose an assumption on the coefficient of variation
(CV) given by the event loss standard deviation divided by the event loss mean. For HU
we simply assume this to be equal to 5. Given a mean event loss of $6.25 B, this implies
that a 1 standard deviation event gives a loss of order $30 B, and a 2 standard deviation
event gives a loss of order $60 B, which is reasonable given historical losses (Insurance
Information Institute 2021). Using the HU value of CV as a baseline, we then assign CV
values for other perils using sensible relativities. We assume EQ has a CV exactly twice
that of HU. We assume both WS and SCS are less volatile than HU with assigned values
of 3 and 4 respectively, whereas WF is more volatile so we have assigned a CV value of 8.
With these (reasonable) assumptions in hand, we can readily solve for the shape and scale
parameters α, β, whose numerical values are provided in Columns 4 and 5 of Table 1.

Table 1. This table contains the assumed parameters for the individual peril frequency and severity
distributions that are used to form the multi-peril catastrophe model studied in this paper. Column 1
provides the peril names. Column 2 provides the average annual loss (AAL) for each peril against a
hypothetical industry portfolio. Column 3 provides the average annual frequency of loss causing
events per peril. Column 4 provides the coefficient of variation for each perils’ respective severity
distribution. Columns 5 and 6 give the α and β parameters of the gamma distribution used to model
the severity distribution for each peril. The multi-peril model is formed using a mixture of the various
peril frequency and severity distributions as described in the main text.

Peril AAL ($ Billion) Frequency CV α β

Hurricane (HU) 12.5 2 5 0.04 1.56 × 1011

Winter Storm (WS) 2.5 6 3 0.11 3.75 × 109

Wildfire (WF) 2.5 70 8 0.016 2.19 × 109

Earthquake (EQ) 2.0 5 10 0.01 4.0 × 1010

Convective Storm (SCS) 10.0 100 4 0.063 1.6 × 109

Having chosen the individual peril parameters in Table 1, we can now formulate the
multi-peril frequency and severity given certain assumptions. We assume that each peril
has independent frequency and severity. We also assume independence across perils. We
assume each individual peril has a Poisson frequency, which under our stated assumptions
implies that the multi-peril frequency is also a Poisson distribution with average annual
frequency λ = 183 (Klugman et al. 2008). The multi-peril severity is taken to be a weighted
mixture of the underlying gamma distributions for the different perils (with weights
proportional to a given perils Frequency in Table 1 divided by the total multi-peril λ = 183).
The multi-peril frequency and severity are assumed independent (as stated in Section 2.1.3).

To set the context, we now analyze the implied risk profile of our multi-peril frequency
and severity model. In Figure 3, we display results from a S = 500,000 year timeline
simulation (details of the simulation method are provided in Appendix D). The colored
dots in the first 5 panels represent individual annual aggregate losses for WS, WF, SCS, HU
and EQ. The horizontal axis (for each peril) is the log (base 10) of the annual aggregate loss
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in USD. The bars overlaid on top of the colored dots represent the minimum, maximum,
median and interquartile ranges. The corresponding histograms are displayed on top of
the individual colored dots. The final row labeled ALL displays results aggregated across
all perils. Figure 3 demonstrates a number of qualitative features of our modeling setup.
First, it is clear that both HU and EQ are the most volatile of the 5 perils with potential
loss years greater than $100 Billion USD. Figure 3 makes clear that tail risk is dominated
by HU followed by EQ. Both SCS and WF have a tighter range of annual aggregate losses
which is consistent with the high frequency nature of both perils. The results for ALL
perils combined demonstrates a large variation in aggregate annual losses from the tens of
Billions USD to over one Trillion USD in the most of extreme years.

Figure 3. This figure displays results from a S = 500,000 year timeline simulation derived from the
multi-peril frequency and severity model. The first 5 set of results displays annual aggregate losses
for WS, WF, SCS, HU and EQ. The colored dots represent the annual aggregate losses overlaid by
a bar indicating the minimum, maximum, median and interquartile ranges. A histogram is also
provided for each peril. The final set of results labelled ALL displays the analogous results for all of
the 5 perils aggregated together.

Figure 4 provides another viewpoint on the risk profile. Panel A of Figure 4 displays
the annual aggregate loss exceedance probability (1 minus the cumulative probability,
labeled as AEP) where the y-axis is displayed in terms of return period (1 over the ex-
ceedance probability) using a standard convention. Panel A makes clear the dominance of
HU for tail risk in our multi-peril model. Panel A also demonstrates how SCS dominates
short return periods (due to the relatively high AAL with high frequency), followed by
WF and WS (the next two highest frequency perils). Panel A also shows that EQ is the
second most important component of tail risk albeit a distant second compared to HU in
our model. Panel B of Figure 4 displays the exceedance probabilities associated with the
individual peril model severities (EQ, HU, SCS, WF and WS) as well as the mixture model
for the multi-peril severity (ALL). Panel B re-iterates the idea that HU has the highest loss
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potential in our model. Panels C and D display the multi-peril exceedance probability
curves for the occurrence losses XM for orders M = 1, 2, 3, 4, 5 (obtained by integration
using Equation (11), and labelled by OEPM). Panel D is a zoomed version of Panel C, and
displays an intriguing set of relationships between the occurrence losses.

Figure 4. (Panel A) depicts the AEP for the individual peril models, as well as the multi-peril model
denoted by ALL. (Panel B) depicts the exceedance probability of the individual severity distributions,
as well as the multi-peril model. (Panels C,D) depict the exceedance probability curves for the
occurrence loss marginal distributions up to order M = 5.

3.2. Pre-catXL Loss Decomposition for the Multi-Peril Case

Here we discuss in detail the decompositions of the AAL (Equation (3)), the annual
aggregate loss variance (Equations (4) and (5)), and the correlation structure across occur-
rence losses (Equation (17)) for the pre-catXL perspective, setting the stage for our analysis
of the post-catXL case to follow.

We begin with the decomposition of the pre-catXL AAL displayed in Figure 5. In
Figure 5, the inner (gray shaded) circle represents, proportional to the arc length, the
contribution from the different occurrence losses. The results are obtained by numerical
integration using our analytical formulation in Equation (12) (where the normalizing
factor AALpre in Equation (3) is obtained using a S = 500,000 year simulation procedure
discussed in Appendix D). Note that in what follows we will address the accuracy of our
numerical integration schemes versus brute force numerical simulation, but we leave that
aside for the moment. Figure 5 is interesting for the following reasons. Firstly, we see that
the order M = 1 occurrence loss dominates the pre-catXL AAL with a roughly 60 percent
contribution. Secondly, non-trivial contributions are made by orders M = 2, ..., 10, but very
little contribution is made from occurrence losses M = 11 and above. We have also used
our S = 500,000 simulation to further decompose the orders into the contributions from the
individual perils (Appendix D makes clear how the peril contributions are quantified). This
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second level of decomposition sheds even further light on the nature of the results. Figure 5
makes clear that HU dominates the M = 1 order, but there are non-trivial contributions
from SCS, EQ, WS and WF. Order M = 2 shows the diminishing importance of HU, and
in fact SCS dominates with non-trivial contributions from HU, WF followed by WS. For
orders M = 3 and above, it is clear that SCS, due to its high frequency nature and large
AAL (Table 1) dominates.

Figure 5. The decomposition of the pre-catXL AAL. The inner gray shaded circle displays (in
proportion to the arc length) the contributions of the various occurrence loss orders to the full AAL.
The color shaded segments with associated peril name abbreviations displays the contributions, to
each occurrence loss order, of the individual perils. For example, the contribution of HU to order
M = 1 is over 50 percent.

Table 2 displays estimates of convergence errors (in percentage terms) for the mean
losses associated with all the orders M = 1, ..., 10 displayed in Figure 5. The errors in Table 2
are computed using Equation (18) (where the standard deviation is computed via numerical
integration using the square root of Equation (14)). The implications of Table 2 are perhaps
self-evident, but, our results indicate that catastrophe modeling systems based on S = 10K
years of simulation can generate unacceptably large errors (few percent) in fundamentally
important metrics like the mean annual loss associated with order M = 1. Our results
suggest that around S = 100K should be used to reduce errors in the various orders to
below 1 percent. Our framework enables one to systematically investigate convergence
errors (although not done here to limit scope). Finally, we note that percentage errors for
higher order losses are lower than lower orders. This is not surprising as higher order
losses have an enhanced likelihood of being assigned zero value (and therefore vary less
than the annual maximum for example).

The mean loss results presented in Figure 5 (the inner grayscale circle segments) are
obtained using Equations (3) and (12). For completeness, we have recorded the accuracy
estimates associated with our numerical integration. We have used standard functions
in Mathematica to perform the numerical integrals, with no explicit attempt to optimize
the accuracy. Mathematica provides error estimates. Results for orders M = 1, 2, 3 are
presented in Table 3 (in percentage terms). Table 3 shows that the percentage errors are well
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below 1 percent. Given the convergence errors presented in Table 2, we can loosely infer
that our numerical integrals are as accurate as results from simulations of order S = 1M
years. We are therefore confident that our numerical integrations are highly accurate.

Table 2. Convergence errors in the mean annual losses for the pre-catXL perspective (in Figure 5) for
various occurrence loss orders M = 1, ..., 10 using Equation (18). The first column has the occurrence
loss order. The second column provides the number of simulation years (S = 1000 = 1K and
S = 106 = 1M years of simulation).

Order S = 1K S = 10K S = 100K S = 1M

1 8.5 2.69 0.85 0.27
2 5.7 1.8 0.57 0.18
3 2.35 0.74 0.24 0.07
4 1.62 0.51 0.16 0.05
5 1.51 0.48 0.15 0.05
6 1.49 0.47 0.15 0.05
7 1.5 0.47 0.15 0.05
8 1.52 0.48 0.15 0.05
9 1.55 0.49 0.15 0.05
10 1.58 0.50 0.16 0.05

Table 3. Numerical integration errors associated with the mean annual pre-catXL loss estimates for
different orders (presented in Figure 5). Column 1 displays the occurrence loss order, and Column 2
gives the numerical integration errors for each pre-catXL mean loss estimate.

Order Percentage Error

1 0.12
2 0.11
3 0.09

Figure 6 displays the decomposition of the pre-catXL annual aggregate loss variance
using Equations (4), (5), (12), (14) and (17). We again use the S = 500,000 year simulation
to estimate the total variance. The leading term is the marginal contribution from the
order M = 1 occurrence loss, followed by progressively smaller contributions from the
2/1 interaction term between M = 1 and M = 2, the marginal M = 2 term, and the 3/1
interaction term. In contrast to Figure 5 for the AAL decomposition, the total variance
structure is more strongly dominated by the order M = 1 occurrence loss (well over 75%
of total variance). Figure 6 also demonstrates the dominance of the order 1 occurrence loss
through the appearance of the 2/1 and 3/1 interaction terms (as the second and fourth most
important terms). The appearance of the interaction terms also points to the importance of
the correlation structure across occurrence losses.

Analogous to Table 2, we have estimated the standard errors of the marginal and
interaction terms contributing to the total variance, displayed in Table 4. For example, for
the marginal M = 1 term in row 1 of Table 4, the percentage error for a S = 10K year simu-
lation is approximately 1.41 percent. The standard errors for the marginal contributions are
computed using Equation (19). For the interaction terms, we use Equations (20) and (21)
to estimate the errors in the standard deviations and Pearson correlations. For both the
marginal and interaction contributions, we have added up errors from individual terms
in the required integrals using a standard method (University of Toronto 2021), under
the assumption that errors are independent (which they are generally not). Furthermore,
we note that our error estimate for the Pearson correlation is itself approximate (due to
non-normality). Our interest is to get a feel for the errors and hence these approximations
were deemed acceptable. For example, Table 4 indicates that well over S = 100K simula-
tions are required to obtain percentage errors below 1 percent (for the leading terms that
contribute to the total variance). Comparing Tables 3 and 4 indicates the resolving the
variance structure requires larger numbers of simulations than for the AAL.
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Figure 6. Here the variance decomposition of the pre-catXL total annual aggregate loss variance
is displayed. The largest contribution comes from the marginal contribution of the order M = 1
occurrence loss, followed by the 2/1 interaction term, the marginal order 2 term, and the 3/1
interaction term.

Table 4. Convergence errors (in percentage terms) associated with the marginal and interaction terms
for the pre-catXL total variance. Column 1 indicates the term (which is 1 for the M = 1 marginal
contribution, and Int 2/1 for the interaction term between M = 1 and M = 2). Similar to Table 2,
results for S = 1K to S = 1M years of simulation are shown.

Order S = 1K S = 10K S = 100K S = 1M

1 4.47 1.41 0.45 0.14
Int 2/1 17.13 5.45 1.73 0.55

2 4.47 1.41 0.45 0.14
Int 3/1 30.42 9.65 3.05 0.97

Table 5 displays our estimates of numerical integration errors associated with the
various marginal and interaction terms. Similar to Table 3, we have used output from
Mathematica to estimate numerical integration errors of various terms involved in the
computations, and used a standard method for adding up errors (University of Toronto
2021), again using the assumption of independence of errors. Table 5 again gives us a
feel for the order of magnitude of errors arising from numerical integration. For example,
Table 5 shows the percentage error associated with the M = 1 marginal term is around 0.1
percent, and 0.29 percent for the 2/1 interaction term. Comparison of Table 5 with Table 4
shows that the numerical integration process has similar accuracy to running a S = 1M
year simulation.
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Table 5. Numerical integration error estimates (in percentage terms) for various marginal and
interaction terms involved in decomposing the pre-catXL total annual aggregate variance. Column 1
indicates the particular marginal or interaction term, and Column 2 indicates the percentage error.

Term Percentage Error

1 0.11
2 0.17
3 0.48

Int 2/1 0.29
Int 3/1 0.70
Int 3/2 0.72

Figure 7 Panel A displays the correlation structure in the pre-catXL occurrence losses.
The results in Figure 7 have been computed using Equation (17) via numerical integration.
Figure 7 Panel A reveals a very interesting correlation structure. First, we note that
higher order occurrence loss interactions have much higher correlation than lower order
correlations. For example, the correlation between M = 1 and M = 2 is 0.33 (as seen in
Panel A), and the correlation between M = 10 and M = 11 is approximately 0.95. Our
explanation is that the higher order losses are more likely to be simultaneously small
driving up correlation. Lower order losses can take on a large range of values, and this
added variation leads to lower correlation. The bottom 4 panels of Figure 7 display
convergence error estimates, in percentage terms, derived using our approximate standard
error Equation (21). Our results indicate that order S = 1M years of simulation are required
to achieve accuracy of better than 1 percent.

The following is a list of key results and conclusions derived from our analysis of the
pre-catXL occurrence loss decompositions presented above:

• The order M = 1 occurrence loss makes up roughly 60 percent of total AAL, with
non-trivial contributions from occurrence losses M = 2, ..., 10. Using a S = 500,000
year simulation, we have further decomposed each occurrence loss contribution into
the individual peril contributions. At lower orders, HU is dominant, but, all other
perils (SCS, EQ, WS and WF) make significant contributions. AAL contributions
from higher order occurrence losses are dominated by SCS (with high frequency and
significant AAL). Our calculations demonstrate that order S = 100K simulations
are required to achieve less than 1 percent errors in the contributions from various
occurrence loss orders, and we find that our numerical integration process is highly
accurate, corresponding to roughly S = 1M years of simulations.

• The total variance structure is dominated by the marginal contribution from the order
M = 1 occurrence loss, followed by significant contributions from the marginal M = 2
contribution, the 2/1 interaction term, and the M = 3 marginal contribution. Relative
to the AAL decomposition, the order M = 1 occurrence loss is even more dominant,
with an over 75 percent contribution to the total variance. Our calculations reveal that
order S = 1M simulations are required to achieve accuracy of 1 percent or better, and
our integration process was found to be highly accurate.

• Our analysis of the pre-catXL correlation structure across occurrence losses reveals
an interesting structure, with lower order occurrence loss pairs being less correlated
than higher order interaction terms. We find that order S = 1M years of simulation
are required to achieve errors of less than 1 percent in the correlation structure.

We have now set the stage for our analysis of the post-catXL perspective where we
will investigate how the characteristics of the decomposition change as the terms of the
reinsurance contract changes. Our analysis will provide an understanding what aspects of
our multi-peril model are important for various types of catXL layers covered by insurers
and reinsurers.
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Figure 7. (Panel A) displays the pre-catXL correlation structure across the occurrence losses up
to order M = 11. The (Panels B–E) depict the convergence error estimates for S = 1K, S = 10K,
S = 100K and S = 1M years.

3.3. Post-catXL Loss Decomposition for the Multi-Peril Case

Figure 8 displays post-catXL AAL results for 4 layers. In each case, we specify the
attachment $A and exhaustion point $E using loss thresholds obtained from the M = 1
occurrence loss distribution in Figure 4 Panel C (a common approach in practice). For
example, in Figure 8 Panel A, the attachment point is the loss threshold associated with
return period 1, and the exhaustion point is associated with return period 2. Typically,
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reinsurers will provide coverage for layers corresponding to higher return periods (Panels
C and D) whereas lower layers are retained by insurers (Panels A and B).

Panel A in Figure 8 clearly demonstrates that the AAL is comprised of non-trivial
contributions from occurrence losses up to order M = 10. The inner grayscale decomposi-
tion in Panel A is obtained using numerical integration, but we have also used our S =
500,000 year simulation (see Appendix D) to further decompose the results into the peril
contributions (analogous to the pre-catXL case). Panel A demonstrates that the M = 1 oc-
currence loss explains roughly 40 percent of the AAL (lower than in the pre-catXL case with
60 percent) while the most significant contributor is from SCS, followed by WS, WF, HU
and EQ. For higher order contributions, SCS plays a progressively larger role in explaining
the AAL. The contrast between Figure 8 Panel A and Figure 5 (pre-catXL AAL) is stark. The
introduction of the catXL operator tAE() in Panel A leads to more of an emphasis on the 3
highest frequency perils (SCS, WF and WS). HU and EQ play a smaller role in Panel A since
losses happen infrequently, and when they do occur, the catXL operator tAE() caps the
severity of the loss. We note again that the lowest layers are typically the responsibility of
primary insurers. Our results clearly demonstrate the importance of accurately modeling
high frequency perils from the perspective of a primary insurer.

Figure 8. (Panel A) depicts the AAL decomposition for a catXL layer with attachment and exhaustion
points defined by the loss thresholds of the M = 1 occurrence loss distribution (Figure 4 Panel C)
for the 1 and 2 year return periods, respectively. The results displayed here are analogous to the
pre-catXL results in Figure 5. (Panels B–D) show results for layers defined by return periods 2–5,
10–20 and 50–100 years, respectively.

Panel B in Figure 8 shows AAL results for the 2–5 year return period layer. The M = 1
occurrence loss now dominates the AAL with an over 90 percent contribution, the majority
of which is derived from HU, followed by meaningful contributions from EQ, WS, SCS
and WF. The results in Panel B are a stepping stone to the higher layers depicted in Panels
C and D. Panels C and D show the dominance of the M = 1 occurrence loss, which itself is
dominated by HU, followed by EQ. The highest layers are dominated by low-frequency
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and high severity perils. The most extreme layer depicted in Panel D clearly demonstrates
that the HU losses are almost singularly important when determining the AAL component
of the catXL premium. While our results in Panel D would be well appreciated by market
practitioners, our mathematical framework enables us to shed light on this result in a
precise way.

Table 6 provides convergence errors for the results in Figure 8 for S = 100K simulation
years, for a selection of layers and occurrence loss orders (computed in the same way as
the pre-catXL case). Table 6 demonstrates very large standard errors for the higher order
contributions to the 10–20 year return period layer. While these contributions are generally
not significant, and negates to some degree their practical significance, Table 6 suggests the
need for greater than S = 100K simulation years for accurate catXL technical pricing.

Table 6. Convergence errors for various AAL results displayed in Figure 8 are provided for the
S = 100K simulation years case. Column 1 provides the layer definition, Column 2 provides the
occurrence loss order and Column 3 the percentage error. Results are analogous to the pre-catXL
convergence errors displayed in Table 2.

Layer Order Percentage Error

1–2 year 1 0.09
1–2 year 2 0.13
1–2 year 3 0.15
1–2 year 4 0.15
1–2 year 5 0.15

10–20 year 1 1.08
10–20 year 2 5.39
10–20 year 3 30.92
10–20 year 4 199.64
10–20 year 5 1419.56

Table 7 provides a selection of estimates of numerical integration errors for the order
M = 1, 2, 3 contributions to the 1–2 year return period layer. In comparison to Table 6,
the results in Table 7 again demonstrates that our numerical integration process is highly
accurate, and roughly corresponds to order S = 1M years of timeline simulation.

Table 7. Numerical integration errors associated with a selection of results in the post-catXL AAL
decompositions provided in Figure 8. Column 1 provides the occurrence loss order (for the 1–2 return
period layer) and Column 2 the percentage error.

Term (1–2 year) Percentage Error

1 0.05
2 0.06
3 0.07

Figure 9 plots the variance decomposition for the 4 catXL layers of interest. Panel A of
Figure 9, which shows results for the 1–2 year return period layer, depicts a rich structure
with many interactions contributing to the total variance. The 3 largest contributors are the
order 3/2 interaction, followed by the 2/1 interaction, and then the marginal contribution
of the order 2 occurrence loss. The fact that the 3/2 interaction term is greater than the
2/1 interaction term could in part be explained by the higher correlation in the 3/2 term
(0.78) versus the 2/1 term (0.65) (correlations are provided in Figure 10 to follow). The key
takeaway from Panel A is that the variance is driven by a large set of interaction terms
across the different orders, and modeling such interactions accurately is important for
risk takers that provide coverage for such layers (primary insurers). Panel B of Figure 9,
corresponding to the 2-5 year return period layer, shows a much less rich structure, which
is dominated by the order 1 occurrence loss. As we move to progressively higher catXL
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layers in Panels C and D, the order 1 occurrence loss becomes nearly singularly important
(explaining well over 90 percent of the total variance). Given our findings for the AAL
depicted in Figure 8, this order 1 occurrence loss is largely attributable to HU. The results
in Figure 9 for the total variance further bolster the notion that the HU peril dominates the
pricing of high catXL layers in our particular multi-peril setup.

Figure 9. (Panels A–D) depict the post-catXL variance decomposition for the multi-peril model. The
contribution of any particular marginal or interaction term is proportional to the arc length.

Table 8 provides convergence errors, for S = 100K, for the various (variance contribu-
tion) terms displayed in Figure 9 (using the same methodology as in the pre-catXL results
provided in Table 4). Table 8 shows that most terms have standard errors below 1 percent,
with the exception of interaction terms for the 10-20 year return period layer. While such
terms do not explain a large part of the variance, our results nonetheless indicate that very
precise quantification of all terms requires larger than S = 100K simulations. As noted in
our discussion of the pre-catXL case, all terms in Table 8 are computed under assumptions
which are not valid, but nonetheless give us a feel for the magnitude of the standard errors.

Table 9 contains numerical integration errors we have computed using methods
similar to those discussed for Table 5 in the pre-catXL case. Results in Table 9 are displayed
for the 1–2 year return period layer. Table 9 shows that the numerical integration errors
we have quantified are higher than the standard errors derived from a S = 100K year
simulation (but not dramatically so). This was not the case in the analogous pre-catXL
results, and it is not entirely clear why. Nonetheless, the results in Table 9 do demonstrate
that the numerical integration process is accurate. We note once again the results in Table 9
are computed using assumptions which are not correct, but nonetheless give us a feel for
the magnitude of the errors.
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Table 8. A selection of post-catXL variance contribution term standard errors for S = 100K simulation
years (corresponding to the results displayed in Figure 9). Column 1 provides the Layer, Column 2
provides the type of term, and Column 3 contains the percentage error.

Layer Term Percentage Error

1–2 year Int 3/2 0.54
1–2 year Int 2/1 1.73
1–2 year 2 0.45
1–2 year Int 4/3 0.28
1–2 year Int 4/2 0.69

10–20 year 1 0.45
10–20 year Int 2/1 2.79
10–20 year 2 0.45
10–20 year Int 3/1 16.2
10–20 year Int 3/2 3.04

Table 9. Numerical integration errors for post-catXL annual aggregate variance decomposition.
Column 1 indicates the various marginal and interaction terms for the 1–2 return period layer.
Column 2 has the percentage error.

Term (1–2 year) Percentage Error

1 1.58
2 0.93
3 0.84

Int 2/1 2.59
Int 3/1 2.53
Int 3/2 1.77

Figure 10 displays the correlation structures for the post-catXL results (computed
using Equation (17) using the appropriate operator tAE()). Figure 10 shows that lower
layers (Panels A and B) have strong correlations across the different occurrence loss orders,
whereas the correlations drop to close to 0 for the highest layer in Panel D. This is a direct
consequence of the effect of the catXL operator tAE(). For Layer 1, occurrence losses up to
order 10 ‘survive’ the effect of tAE(), and are able to interact in a non-trivial way. For the
highest Layer 4 in Panel D, higher order occurrence losses are nearly always zero due to the
effect of tAE(), and the correlations as a consequence tend to 0. Comparing the results to
the pre-catXL case is also interesting. For example, for Layer 1 in Figure 10, the correlations
for the (1/2, 2/3, 1/3) interaction terms are (0.65, 0.75, 0.51) which is much higher that
the pre-catXL equivalent set of correlations (0.33, 0.47, 0.22). For the highest Layer 4 in
Figure 10, the equivalent correlations are (0.10, 0.09, 0.01), much lower that the pre-catXL
results. We therefore infer that lower layers emphasize correlations across the occurrence
losses, whereas the highest layers diminish their importance.

Our results for an idealized multi-peril catastrophe model for a US nationwide port-
folio sheds light on interesting and different aspects of the occurrence losses. Our key
findings are:

• For the lowest layers which are typically covered by primary insurers, we find non-
trivial contributions from occurrence losses up to order 10 for the AAL. The decompo-
sition of the variance clearly demonstrates that many interactions across occurrence
losses are important, which is consistent with our results that strong correlations were
found for interactions up to order 9. Due to the effect of the catXL operator tAE(),
the AAL and total variance for the lowest layer have been shown to have the largest
contributions from the highest frequency perils (SCS, WS, WF) and generally lower
contributions from HU and EQ. As well, tAE() increases correlation across all orders.
The consequences in practical settings is that primary insurers must ensure accurate
modeling of the higher frequency perils to achieve useful technical pricing for retained
risk. Our mathematical framework sheds light on this in a precise way.
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• The highest layers, typically covered by reinsurers, are dominated by the lowest
frequency and highest severity perils (HU followed by EQ). What is perhaps surprising
is the degree to which the maximum loss arising from hurricanes appears to dominate
for the highest layer we have studied (50–100 year return period). The practical
implications are clear that high layer catXL underwriters must pay careful attention to
accurate modeling of HU. While this notion is well appreciated by market participants,
our framework is able to quantify this in a precise way, and will enable practitioners
to quickly assess the impact of different model assumptions on the decomposition of
pricing metrics.

Figure 10. (Panel A) depicts the post-catXL correlation structure for Layer 1 (1–2 year return period).
(Panels B–D) depicts the correlation structure for Layers 2–4.

Within the context of our particular multi-peril catastrophe model, our results have
made clear the importance of HU to the high layer reinsurance pricing problem. The
following Section 4 uses a HU only model to address a question related to HU model
adequacy.

4. Hurricane Model Sensitivity Results for a US Nationwide Portfolio

Section 3 makes clear the importance of HU to pricing the highest catXL layers typ-
ically covered by reinsurers. In this section, we study the sensitivity of the post-catXL
loss decomposition to HU model assumptions. We are motivated by the following con-
siderations: First, hurricane catastrophe models which are used in practice (Dong 2001;
Katz 2002; Michel 2018; Mitchell-Wallace et al. 2017), oftentimes make a Poisson frequency
distribution assumption (Katz 2002; Michel 2018; Mitchell-Wallace et al. 2017) as we have
done in Section 3. Previous studies (Oxenyuk et al. 2017) of historical hurricane activity
in the southeastern US, have shown the superiority of the Poisson frequency assump-
tion as compared to the Negative Binomial assumption (using a variety of statistical
tests). However, other studies have found that Florida landfalling hurricane activity
is best modeled with frequency distributions that exhibit so-called clustered behavior
(Jagger and Elsner 2012). The Negative Binomial distribution is an example of a clus-
tered frequency model where the over-dispersion parameter σ2

µ > 1 (using notation from
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Section 2.1.1). Furthermore, some reinsurance underwriters are of the opinion that cur-
rent HU models under-represent potential losses from higher order occurrence losses,
and that models should have more tunable parameters that influence the decomposition
(Casey 2020). We also note that (Oxenyuk et al. 2017) finds that the historical data has an
over-dispersion σ2

µ ≈ 1.23. Given these motivating factors, we now examine the sensitivity
of the post-catXL loss decomposition to the over-dispersion parameter.

Our baseline HU model assumes a Poisson frequency with rate and severity parame-
ters as in Table 1. We define two sensitivity models which instead use a Negative Binomial
frequency distribution assumption with over-dispersion values of 1.5 and 2.0 (a reason-
able upper bound sensitivity in light of the results in (Oxenyuk et al. 2017)), and with all
parameters as in Table 1. The baseline and sensitivity models only differ in the frequency
distribution choice. We first examine the basic risk profile displayed in Figure 11. Figure 11
Panel A depicts the discrete probability distributions for the two sensitivity models and the
baseline model. The two sensitivity models exhibit higher probabilities of both small and
high numbers of HU events. Figure 11 Panel B depicts the percent difference in the AEP
of the two sensitivity models to the baseline model, showing large negative percentage
differences at short return periods, and small positive differences at long return periods.
Panels C and D depict the analogous percent difference plots for the order 1 and 2 occur-
rence loss distributions, respectively. Panel C shows how the over-dispersive models have
negative differences at short return periods and converge to the baseline model at high
return periods, whereas Panel D shows that the over-dispersive models are higher for the
order 2 occurrence loss return period losses. The results in Panels C and D imply that the
over-dispersive models have a lower contribution (to the AAL) from order 1, and a higher
contribution from order 2, given that the AAL contribution (using Equations (6) and (13))
is proportional to the area under the exceedance probability curve.

Figure 11. (Panel A) depicts discrete frequency distributions for the Poisson and two over-dispersive
sensitivity models. (Panel B) depicts percent differences in the AEP relative to the Poisson baseline,
and (Panels C,D) have the analogous results for the order M = 1 and M = 2 distributions.

Figure 12 displays post-catXL AAL decomposition for 4 layers in Panels A, B, C and
D. The attachment and exhaustion point loss thresholds are defined by the 1–2 year (Panel
A), 2–5 year (Panel B), 10–20 year (Panel C) and 50–100 year (Panel D) return period loss
thresholds derived from the baseline HU only Poisson order 1 occurrence loss distribution
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(similar approach to the multi-peril model). We once again use our S = 500,000 year
simulation to compute the total AAL. Figure 12 Panel A depicts results for the 1–2 year
return period layer, with the base Poisson model decomposition depicted by the colored
circle (analogous to the multi-peril case). The adjacent graph depicts the percent change
in the contribution of the first 3 occurrence loss orders to the AAL. Contributions for the
Negative Binomial case are computed using Equations (6), (10) and (13). Panel A shows
that the addition of over-dispersion has a dramatic impact on the percent contribution
of order 2 (25%). However, since the contribution of occurrence loss 2 itself is already
small (less than 10%), the resulting decomposition is not highly sensitive to this model
assumption. Panels B, C and D for the higher layers tell the same story.

Figure 12. (Panels A–D) depict post-catXL AAL decomposition results for the 1–2, 2–5, 10–20 and
50–100 year return period layers. The over-dispersive sensitivity models are depicted by the x-y
plots which give the percent change over for contributions up to order M = 3 relative to the baseline
Poisson model.

Figure 13 Panels A–D shows the decompositions of the total variance for the same
layers depicted in Figure 12 (once again we use S = 500,000 year simulation to compute
total variance). Results for the Negative Binomial assumption (labelled by OD = 1.5 and
OD = 2.0) are computed using Equations (10), (13), (15) and (16). Figure 13 (which shows
the full decompositions as an alternative to Figure 12) makes clear that the inclusion of
over-dispersion does not make a dramatic impact on the characteristics of the total variance
decomposition.

We have computed numerical integration errors for terms depicted in Panels A of
Figures 12 and 13 (using the exact same methods discussed in Section 3). The results
in Table 10 demonstrate that the numerical integration process is highly accurate, with
percentage errors less that 0.0002. Table 10 demonstrates much higher accuracy compared
to the multi-peril case (Tables 3, 5, 7 and 9), which we attribute to the relative simplicity of
the severity distribution in the HU only case.

Above we have investigated the sensitivity of the post-catXL loss decomposition to
the use a frequency distribution that includes clustering (in the form of an over-dispersive
Negative Binomial). Our results show that the decomposition of the post-catXL AAL
and total variance is not sensitive to fairly dramatic departures from the Poisson baseline
assumption (having tested over-dispersion values of 1.5 and 2.0, which is higher than
the historical data would suggest (Oxenyuk et al. 2017)). At least within the context
of our simplified HU model, we can rule out the use of an over-dispersive Negative
Binomial to make a dramatic impact the characteristics of the decomposition, and would
not necessarily be a useful parameter to tune in an underwriting practice if so desired.
We leave open the possibility that more sophisticated approaches to modeling clustering
(e.g., Khare et al. 2015), or more physically realistic approaches that take climate variability
into account (e.g., Villarini et al. 2012), or changes to the severity distribution, would result
in larger changes to the characteristics of the decomposition, which may be desirable so
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that models can be tuned for applications (Casey 2020). In any case, we have demonstrated
the utility of our mathematical framework for addressing these important sensitivities.

Figure 13. Analogous results to Figure 12 are shown for the variance decomposition. Here the
full decompositions are displayed, and demonstrates the insensitivity to prescribed changes in the
frequency distribution.

Table 10. Numerical integration errors for the post-catXL HU only results for various terms presented
in Figures 12 and 13 (analogous to Tables 3, 5, 7 and 9). Column 1 indicates the particular mean or
total variance statistic, Column 2 has the occurrence loss order (or interaction term) for the 1–2 year
return period layer and Column 3 has the percentage error.

Statistic Order / Term (1–2 year) Percentage Error

Mean 1 1.7 × 10−5

Mean 2 7.9 × 10−6

Mean 3 7.0 × 10−6

Variance 1 3.8 × 10−5

Variance 2 2.0 × 10−5

Variance 3 3.1 × 10−5

Interaction 2/1 1.9 × 10−4

Interaction 3/1 1.9 × 10−4

Interaction 3/2 2.0 × 10−4

5. Summary and Conclusions

We have developed a mathematical framework to quantify the role that occurrence
losses (order statistics (Barakat and El-Shandidy 2015; Buhrman 1973; Consul 1984; David
and Nagaraja 2003; Gupta and Gupta 1984; Raghunandanan and Patil 1976; Young 1970))
play in catXL reinsurance pricing metrics. Our framework is comprised of:
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• A general expression for the marginal distribution of a given occurrence loss random
variable (Equation (9))

• General expressions for the occurrence loss marginal distributions applied to a Poisson
and Negative Binomial frequency assumption (Equations (11) and (10))

• The mean loss attributable to a given occurrence loss random variable both before
and after the application of a catXL contract (Equations (12) and (13))

• The variance attributable to a given occurrence loss random variable both before and
after the application of a catXL contract (Equations (14) and (15))

• The Pearson correlation structure for occurrence losses both before and after the appli-
cation of a catXL contract for the Poisson and Negative Binomial cases (Equations (17)
and (16))

The mathematical results, which are summarized in Section 2 and derived in detail
in the Appendices, can be used to decompose the average annual loss and total annual
aggregate loss variance (key statistics used in pricing catXL contracts) into contributions
from different occurrence losses both before and after the application of a catXL contract.
Our framework enables us to answer important questions related to the role of various
occurrence losses that arise in practice.

We have applied our framework to an idealized multi-peril model in Section 3, and a
hurricane-only model in Section 4 (for a US nationwide exposure). The multi-peril model
was designed to simulate losses arising from hurricanes, earthquakes, winter storms, severe
convective storms and wildfires. Both the multi-peril and hurricane only model are derived
using actual historical loss data, and were therefore deemed as an appropriate testbed. The
key learnings were:

• In the multi-peril pre-catXL case: The AAL has non-trivial contributions from occur-
rence losses up to order 10, and the order 1 loss is dominated by hurricane, whereas
the higher order losses are dominated by the high frequency severe convective storm
peril. The variance decomposition is dominated by the order 1 marginal contribution,
with non-trivial contributions from order 2 and the 2/1 and 3/1 interaction terms.

• In the multi-peril post-catXL case: The lower layers have contributions from many
occurrence loss orders, and the contributions themselves are dominated by the high-
est frequency perils (such as severe convective storms, winter storm and wildfire).
Relative to the pre-catXL case, the inclusion of a low layer catXL operator drives up
correlation amongst the various post-catXL occurrence losses. The highest layers are
dominated by hurricane (followed by earthquake). The inclusion of high layer catXL
operators drives down correlation relative to the pre-catXL case. The application of
our framework to the multi-peril case reinforces the notion, in a precise way, that
risk takers covering lower layers must be concerned by a multitude of perils, and
in particular the highest frequency perils, whereas those covering the highest layers
should be most concerned with hurricane followed by earthquake.

• The application of our framework requires numerical integration, which after apply-
ing standard and non-optimized integration packages we have found to be highly
accurate, and in nearly all cases equivalent to running one million years of simulation

• In the hurricane only post-catXL case: The role that various occurrence losses play
in catXL pricing metrics is not sensitive to the addition of clustering to the model
(modeled using an over-dispersive Negative-Binomial frequency distribution). Our
results suggest that other types of model changes would be required to make a
significant impact.

We hope our framework will enable practitioners in the market to understand the role
of occurrence losses in catXL pricing metrics, and quickly test the sensitivity to changes in
model assumptions. This could be done by using vendor catastrophe model output to fit
baseline frequency and severity distributions, and in turn perturbing around this baseline.
We end by discussing several new research directions which arise from this paper:
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• Our mathematical framework uses an assumption of unlimited re-instatements (for
mathematical convenience). Future work could address how the characteristics of the
decomposition change with the inclusion of more complex contracts used in practice
(using numerical simulations).

• Climate change is expected to impact catastrophe peril severity and frequency (e.g.,
see Knutson et al. 2020). Our framework can be used to assess the impact of a changing
climate on the role that occurrence losses play in reinsurance pricing metrics.

• In practice, full physically-based catastrophe simulation models are not always used,
even for some material perils such as severe convective storm. Instead, frequency
and severity distributions are fit to historical data. This raises the question of how
sensitive the occurrence loss decomposition is to uncertainty in this fitting process,
and whether or not this could lead to mis-pricing in the market. Our framework can
be used to study this problem.

• In the multi-peril setting, we have used numerical simulations to further decompose
the various occurrence loss contributions into the the various perils (see Appendix D).
Performing such calculations analytically appears to be an extremely challenging
mathematical problem, and is left to future work.

• We have used our mathematical framework to quantify convergence errors that may
arise in practical catastrophe model applications. Further work could explore the use
of more advanced simulation techniques to improve convergence errors for a fixed
computational cost (e.g., using surrogate models or machine learning).

• It appears possible to extend our mathematical framework to the retrocession (retro)
reinsurance pricing problem (where a further catXL operator is applied the post-catXL
perspective for many layers combined). Further research into this may yield insights
into various aspects of occurrence losses and retro reinsurance technical pricing.

• Our framework has been presented for the case where we have assumed independence
between frequency and severity. Recent work in an insurance context has explored the
implications of this dependency (Peng et al. 2015). In a catastrophe modeling context,
there are a number of perils where frequency and severity are dependent (e.g., flood).
Future work could explore the extension of our framework to this case.

• We have presented numerical results for a hypothetical US industry portfolio. The
insights we have developed are therefore conditional on this choice. Future work
could explore the extension of our framework to other portfolio and peril combinations
to yield new insights.

• In Section 4 we have explored the sensitivity of US hurricane results to the frequency
distribution assumption. Other types of sensitivities are of interest from a practical
and theoretical point of view and can be explored in future studies.
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Appendix A. Occurrence Loss Marginal Distributions

Appendix A.1. General Expression

Our aim is to develop an analytical expression for the cumulative probability FXM (l)
for the random variable XM evaluated at a loss threshold l ∈ [0, ∞). In this paper, we work
under the assumption of a discrete frequency and continuous severity distribution. By
definition, FXM (l) is given by,

FXM (l) =
∫ l

0

[
∞

∑
k=0

PN(N = k) f ∗XM
(x|N = k)

]
dx

where f ∗XM
(x|N = k) is the density of XM conditional on the number of event realizations

k. The form of f ∗XM
(x|N = k) depends on k. For example, if k < M, then we must have

XM = 0. Recall the definition from Section 2.2 where f ≡
∫ l

0 fX(x)dx with the continuous
severity density fX(x). For a single draw from the severity, the probability of getting a
loss greater than or equal to l is clearly 1− f . Now consider the expansion of the total
probability,

1 = FXM (l) +
∫ ∞

l

[
∞

∑
k=0

PN(N = k) f ∗XM
(x|N = k)

]
dx

= PN(N = 0)

+ PN(N = 1)[
(

1
1

)
f 1(1− f )0 +

(
1
0

)
f 0(1− f )1]

+ PN(N = 2)[
(

2
2

)
f 2 +

(
2
1

)
f 1(1− f )1 +

(
2
0

)
f 0 f 2]

+ PN(N = 3)[
(

3
3

)
f 3(1− f )0 +

(
3
2

)
f 2(1− f )1 +

(
3
1

)
f 1(1− f )2 +

(
3
0

)
f 0(1− f )3]

+ ...

We first discuss the meaning behind the above expansion. The PN(N = 0) term
corresponds to the case where there are 0 events, where all XM are assigned value 0,
and therefore have total probability 1 being less than any l > 0. The PN(N = 1) term
accounts for the cases where we have one event realization. Looking at (1

1) f 1(1− f )0,
(1

1) represents the number of configurations where the loss is less than any l > 0. This
happens with probability f 1(1− f )0 = f . (1

0) represents the number of cases where the
loss greater than or equal to l and happens with probability f 0(1− f )1 = (1− f ). The sum
(1

1) f 1(1− f )0 + (1
0) f 0(1− f )1 = 1 since this accounts for the probability over all possible

configurations of a single event loss in relation to the loss threshold l. The same argument
holds true for all other terms in the expansion. For example, consider the (3

2) f 2(1− f )1
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term corresponding to PN(N = 3). There are exactly (3
2) configurations of 3 events with 2

samples from fX(x) below l, and each configuration has probability f 2(1− f )1. We can
now write the total probability in the following compact form,

1 =
∞

∑
k=0

PN(N = k)
k

∑
i=0

(
k

k− i

)
f k−i(1− f )i

Our task is to now assign the appropriate terms in the above Equation to FXM (l). We
can reason this by considering an example and then extending the argument. Suppose that
M = 2. When M = 2, we know that the k = 0 and k = 1 terms have X2 = 0. However, for
the terms with k ≥ M = 2, to assign terms to FX2(l), we can only take cases where at most
1 event is greater than or equal to l to ensure that X2 < l. In the sum ∑k

i=0 (
k

k−i) f k−i(1− f )i,
the index i corresponds to the number of events which are greater than or equal to l. So
when M = 2 we must truncate so that the maximum value that i achieves is 1 = M− 1
(for M = 2). Extending this for any M and terms with k ≥ M, the maximum value that the
index i can attain is M− 1. This leads us to the final form,

FXM (l) =
M−1

∑
k=0

PN(N = k) +
∞

∑
k=M

PN(N = k)
M−1

∑
i=0

(
k

k− i

)
f k−i(1− f )i.

This completes our derivation of Equation (9). The first sum in the above equation accounts
for cases where the number of events is less M (and hence all losses must be 0 with
probability 1). The second term accounts for cases where we can have one or more event
losses which are greater than or equal to l, but ensures that the loss assigned to XM remains
below the threshold l.

Appendix A.2. Negative Binomial Assumption Marginal Distribution

We now impose the Negative Binomial assumption to compute Fnb,XM (l) (subscript
nb indicates Negative Binomial). The challenge is to compute the infinite sum. This is
easily achieved through the use of a symbolic programming language such as Mathematica.
Direct application to FXM (l), however, leads to a complex expression that is less than ideal
for applications. A few manipulations are worth the effort to achieve a relatively clean and
simplified version of Fnb,XM (l).

First, we rewrite FXM (l) in the convenient form,

FXM (l) =
M−1

∑
k=0

PN(N = k)−
M−1

∑
i=0

M−1

∑
k=0

PN(N = k)
(

k
k− i

)
f k−i(1− f )i +

M−1

∑
i=0

∞

∑
k=0

PN(N = k)
(

k
k− i

)
f k−i(1− f )i

Note that the above equation has terms like ( k
k−i) where k− i < 0, and such terms evaluate

to 0 (by definition, and we later drop these terms from the summations). We now compute
the infinite sum after imposing the Negative Binomial assumption. We call this term Anb,1
given by,

Anb,1 ≡
M−1

∑
i=0

∞

∑
k=0

Γ(k + r)
k!Γ(r)

pr(1− p)k
(

k
k− i

)
f k−i(1− f )i

We now compute Anb,1,
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Anb,1 =
M−1

∑
i=0

pr f−i(1− f )i

Γ(r)i!

∞

∑
k=i

Γ(k + r)(1− p)k f k

(k− i)!

=
M−1

∑
i=0

pr f−i(1− f )i

Γ(r)i!

[
Γ(i + r)

0!
(1− p)i f i +

Γ(i + r + 1)
1!

(1− p)i+1 f i+1 + ...
]

=
M−1

∑
i=0

pr(1− f )i(1− p)i

Γ(r)i!

∞

∑
k=0

Γ(i + r + k)(1− p)k f k

k!

=
pr

Γ(r)

M−1

∑
i=0

Γ(i + r)(1− f )i(1− p)i(1− f (1− p))−(i+r)

i!

We have used Mathematica programming language to compute the infinite sum find-
ing that,

∞

∑
k=0

Γ(i + r + k)(1− p)k f k

k!
= (1− f (1− p))−(i+r)Γ(i + r)

Putting it all together we have the final form,

Fnb,XM (l) =
M−1

∑
k=0

Γ(k + r)
k!Γ(r)

pr(1− p)k −
M−1

∑
i=0

M−1

∑
k=i

Γ(k + r)
k!Γ(r)

pr(1− p)k
(

k
k− i

)
f k−i(1− f )i

+
pr

Γ(r)

M−1

∑
i=0

Γ(i + r)(1− f )i(1− p)i(1− f (1− p))−(i+r)

i!

This completes our derivation of Equation (10).

Appendix A.3. Poisson Assumption Marginal Distribution

For the Poisson assumption, we take the r → ∞ limit in the Negative Binomial case.
This requires the computation of the infinite sum Apois,1 using a similar method to the
Negative Binomial case,

Apois,1 =
M−1

∑
i=0

∞

∑
k=0

e−λλk

k!

(
k

k− i

)
f k−i(1− f )i

=
M−1

∑
i=0

f−i(1− f )i

i!

∞

∑
k=i

e−λ(λ f )k

(k− i)!

=
M−1

∑
i=0

f−i(1− f )i

i!
e−λ

[
(λ f )i

0!
+

(λ f )i+1

1!
+

(λ f )i+2

2!
+ ...

]

=
M−1

∑
i=0

(1− f )iλi

i!

∞

∑
k=0

e−λ(λ f )k

k!

We know that ∑∞
k=0

e−λ(λ f )k

k! = e−λ(1− f ) from (Klugman et al. 2008). The final expression
for the Poisson assumption is therefore,

Fpois,XM (l) =
M−1

∑
k=0

eλλk

k!
−

M−1

∑
i=0

M−1

∑
k=i

eλλk

k!

(
k

k− i

)
f k−i(1− f )i + e−λ(1− f )

M−1

∑
i=0

(1− f )iλi

i!

This completes our derivation of Equation (11).
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Appendix B. Occurrence Loss Moments

In Section 2.1.6, we defined the random variable YAE,M for a given attachment $A and
exhaustion $E. The general formula for the nth non-central moment (n ∈ [1, 2, 3, ...]) for
YAE,M, given the density fXM (x) is,

E[Yn
AE,M] =

∫ E

A
(x− A)n fXM (x)dx +

∫ ∞

E
(E− A)n fXM (x)dx

where fXM (x) = d
dx FXM (x) = d

dx (1− EPXM (x)) and EPXM (x) = 1− FXM (x) is the defini-
tion of the exceedance probability for XM (Klugman et al. 2008). Using integration by parts,
we obtain,

E[Yn
AE,M] = −(x− A)nEPXM (x) |EA +

∫ E

A
n(x− A)n−1EPXM (x)dx + (E− A)nEPXM (E)

=
∫ E

A
n(x− A)n−1(1− FXM (x))dx

Klugman et al. (2008). The above formulas are applied in this paper to the Poisson
(Fpois,XM (x)) and Negative Binomial (Fnb,XM (x)) cases. The pre-catXL case is achieved
with A = 0 and E→ ∞.

Appendix B.1. Mean

For the pre-catXL case, the mean is obtained by setting A = 0, E→ ∞, and n = 1 to
give,

µXM =
∫ ∞

0
(1− Ff req,XM (x))dx

and for the post-catXL case, we have,

µYAE,M =
∫ E

A
(1− Ff req,XM (x))dx.

Subscript f req is either nb (Negative Binomial) or pois (Poisson).

Appendix B.2. Variance

The pre-catXL centered variance is given by taking the non-central moment for n = 2,
A = 0, E→ ∞ and subtracting the square of the mean,

σ2
XM

=
∫ ∞

0
2x(1− Ff req,XM (x))dx− µ2

XM

and for the post-catXL case, we get,

σ2
YAE,M

=
∫ E

A
2(x− A)(1− Ff req,XM (x))dx− µ2

YAE,M
.

Appendix B.3. 4th Moment

For the pre-catXL case, using the same limits for A and E, the pre-catXL 4th central
moment µ4,pre,XM is given by,

µ4,XM =
∫ ∞

0
4x(1− Ff req,XM (x))3dx− 4µXM

∫ ∞

0
3x(1− Ff req,XM (x))2dx

+ 6µ2
XM

∫ ∞

0
2x(1− Ff req,XM (x))dx− 3µ4

XM

and for the post-catXL case, we have,
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µ4,YAE,M =
∫ E

A
4x(1− Ff req,XM (x))3dx− 4µYAE,M

∫ E

A
3x(1− Ff req,XM (x))2dx

+ 6µ2
YAE,M

∫ E

A
2x(1− Ff req,XM (x))dx− 3µ4

YAE,M
.

Appendix C. Occurrence Loss Correlation Structure

We first develop the equation for a generalized form of the joint distribution between
any pair of pre-catXL occurrence loss random variables. In turn this will lead to formulas
for the Negative Binomial and Poisson cases. We will also show how to extend to the
post-catXL case.

Appendix C.1. Generalized Joint Distribution and Pearson Correlation Integral

For the pair of random variables XI and XJ (I > J with (I, J) ∈ [1, 2, 3, ...]) the joint
density is defined by,

fXI ,XJ (x, y) =
∞

∑
k=0

P(N = k) f ∗∗XI ,XJ
(x, y|N = k)

where x ≤ y. To understand the relationship between x and y consider an example: If
I = 2 > J = 1, this corresponds to the joint distribution between the second and first
maxima, and since the second maxima is less than or equal to the first, we must have
x ≤ y. This is true for all pairs of XI and XJ . To determine the analytical form for
f ∗∗XI ,XJ

(x, y|N = k) we require several components. To proceed, we must understand how
to formulate f ∗∗XI ,XJ

(x, y|N = k) for different combinations of the 3 values (k, I, J).
First, consider cases where k ≥ I > J. In this case, we set f ∗∗XI ,XJ

(x, y|N = k) to the
following joint density,

fXI ,XJ (x, y|N = k) =
k!

(k− I)!(I − J − 1)!(J − 1)!
FX(x)k−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

as shown in David and Nagaraja (2003) (with x ≤ y, and recall that fX(x) and FX(x) are
the density and cumulative probability of the severity).

Secondly, consider the cases where J ≤ k ≤ I− 1. In these cases, XI = 0, since there are
not enough events to generate a non-zero loss for XI . We represent the marginal distribution
for XI as a generalized distribution δXI (x) with the property that

∫ ∞
0 g(x)δXI (x)dx = g(0)

for some function g(x) (Gershenfeld 1998). The marginal density for XJ is given by the
following,

fXJ (y|N = k ∈ [J, ..., I − 1]) =
k!

(k− J)!(J − 1)!
[FX(y)]k−J [1− FX(y)]J−1 fX(y)

as shown in David and Nagaraja (2003).
Thirdly, we need to consider the cases where k ≤ J − 1 < I. In these cases, there

are not enough events to generate non-zero losses for either random variable XI and XJ .
Hence, XI = XJ = 0. We represent this mathematically using a multi-variate generalized
distribution δXI ,XJ (x, y) with the property that

∫ ∞
0

∫ ∞
0 g(x, y)δXI ,XJ (x, y)dxdy = g(0, 0) for

some function g(x, y) (Gershenfeld 1998).
With the above results in hand, we have covered all possible combinations of the 3

values (k, I, J). We can then formulate a general expression written with terms involving
the required generalized distributions,

fXI ,XJ (x, y) = δXI ,XJ (x, y)
J−1

∑
k=0

P(N = k) + δXI (x)
I−1

∑
k=J

P(N = k) fXJ (y|N = k) +
∞

∑
k=I

P(N = k) fXI ,XJ (x, y|N = k)
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We now make use of the above joint (generalized) distribution to compute the Pearson
correlation. Keeping in mind that x ≤ y (which informs the integration limits), the
numerator of the Pearson correlation is given by,

A2 ≡
∫ ∞

y=x

∫ ∞

0
(x− EX [XI ])(y− EX [XJ ]) fXI ,XJ (x, y)dxdy

Note that the bounds on the integral for the y dummy variable ensures the integration is
restricted to the domain where y ≥ x. Now plug in the joint distribution fXI ,XJ (x, y) to get,

A2 =
∫ ∞

y=x

∫ ∞

0
(x− EX [XI ])(y− EX [XJ ])δXI ,XJ (x, y)dxdy

J−1

∑
k=0

P(N = k)+

+
∫ ∞

0
(x− EX [XI ])δXI (x)dx

∫ ∞

0

[
(y− EX [XJ ])

I−1

∑
k=J

P(N = k) fXJ (y|N = k)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(x− EX [XI ])(y− EX [XJ ])

∞

∑
k=I

P(N = k) fXI ,XJ (x, y|N = k)

]
dxdy

which, using the properties for δXI ,XJ (x, y) and δXI (x), simplifies to,

A2 = EX [XI ]EX [XJ ]
J−1

∑
k=0

P(N = k)+

− EX [XI ]
∫ ∞

0

[
(y− EX [XJ ])

I−1

∑
k=J

P(N = k) fXJ (y|N = k)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(x− EX [XI ])(y− EX [XJ ])

∞

∑
k=I

P(N = k) fXI ,XJ (x, y|N = k)

]
dxdy

The Pearson correlation coefficient is,

ρXI ,XJ =
A2

σXI σXJ

.

The above expression for the Pearson correlation is provided for the pre-catXL case. The
post-catXL correlation is achieved by replacing x → tAE(x), y → tAE(y), EX [XI ] →
EX [YAE,I ], EX [XJ ]→ EX [YAE,J ], σXI → σYAE,I and σXJ → σYAE,J in the above formula for the
correlation coefficient.

Appendix C.2. Negative Binomial Assumption Correlation Coefficient

We first compute the required infinite sum A3nb for the Negative Binomial assumption,

A3nb =
∞

∑
k=I

Γ(k + r)
k!Γ(r)

pr(1− p)k k!
(k− I)!(I − J − 1)!(J − 1)!

FX(x)k−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

=
prFX(x)−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

Γ(r)(I − J − 1)!(J − 1)!

∞

∑
k=I

Γ(k + r)(1− p)kFX(x)k

(k− I)!

=
prFX(x)−I [FX(y)− F,X(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

Γ(r)(I − J − 1)!(J − 1)!
(1− p)I FX(x)I

∞

∑
k=0

Γ(I + r + k)(1− p)kFX(x)k

k!

=
pr[FX(y)− F,X(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)(1− p)I(1− FX(x)(1− p))−(I+r)Γ(I + r)

Γ(r)(I − J − 1)!(J − 1)!
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Remarkably we have used the same result for ∑∞
k=0

Γ(I+r+k)(1−p)k FX(x)k

k! as in our derivation
of Fnb,XM (l). We now provide the general expression for the correlation coefficient, written
in terms of the post-catXL random variables YAE,I and YAE,J ,

ρnb,YAE,I ,YAE,J =
1

σYAE,I σYAE,J

(µYAE,I µYAE,J

J−1

∑
k=0

Γ(k + r)
k!Γ(r)

pr(1− p)k

−µYAE,I

∫ ∞

0

[
(tAE(y)− µYAE,J )

I−1

∑
k=J

Γ(k + r)pr(1− p)k

Γ(r)(k− J)!(J − 1)!
[FX(y)]k−J [1− FX(y)]J−1 fX(y)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(tAE(x)− µYAE,I )(tAE(y)− µYAE,J )A3nb(x, y)

]
dxdy)

where σYAE,I , σYAE,J , µYAE,I , µYAE,J are computed for Negative Binomial assumption. The
pre-catXL case is covered by taking the limit as A = 0 and E → ∞ (so tAE(XM) = XM).
This completes our derivation of Equation (16).

Appendix C.3. Poisson Assumption Correlation Coefficient

The r → ∞ Poisson limit requires the following infinite sum,

A3pois ≡
∞

∑
k=I

P(N = k) fXI ,XJ (x, y|N = k)

which follows a similar calculation to the Negative Binomial case,

A3pois =
∞

∑
k=I

e−λλk

k!
k!

(k− I)!(I − J − 1)!(J − 1)!
FX(x)k−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

=
FX(x)−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

(I − J − 1)!(J − 1)!

∞

∑
k=I

e−λλkFX(x)k

(k− I)!

=
FX(x)−I [FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

(I − J − 1)!(J − 1)!
FX(x)IλI

∞

∑
k=0

e−λλkFX(x)k

k!

=
[FX(y)− FX(x)]I−J−1[1− FX(y)]J−1 fX(x) fX(y)

(I − J − 1)!(J − 1)!
λIe−λ(1−FX(x)).

Remarkably we have used the same result for ∑∞
k=0

e−λλk FX(x)k

k! as in our derivation of
Fpois,XM (l). The general expression for the Poisson case is therefore, written in terms of the
post-catXL random variables YAE,I and YAE,J ,

ρpois,YAE,I ,YAE,J =
1

σYAE,I σYAE,J

(µYAE,I µYAE,J

J−1

∑
k=0

e−λλk

k!

−µYAE,I

∫ ∞

0

[
(tAE(y)− µYAE,J )

I−1

∑
k=J

e−λλk

(k− J)!(J − 1)!
[FX(y)]k−J [1− FX(y)]J−1 fX(y)

]
dy

+
∫ ∞

y=x

∫ ∞

0

[
(tAE(x)− µYAE,I )(tAE(y)− µYAE,J )A3pois(x, y)

]
dxdy)

where σYAE,I , σYAE,J , µYAE,I , µYAE,J are computed for the Poisson assumption. The pre-catXL
case is covered by taking the limit as A = 0 and E → ∞ (so tAE(XM) = XM). This
completes our derivation of Equation (17).

Appendix D. Decomposing Occurrence Loss AAL Contributions into
Peril Contributions

Here we describe the simulation procedure that is required to compute the peril
contributions associated with the occurrence loss AALs in Figures 5 and 8. We first
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outline the procedure for the pre-catXL case in Figure 5. As discussed in Section 2.1.3,
the multi-peril severity is given by fX(x) = ∑P

p=1 wp fXp(x) where ∑P
p=1 wp = 1, and the

frequency random variable is N = ∑P
p=1 Np (where PNp(Np = kp) is an individual peril

Poisson frequency distribution). We have considered exactly P = 5 perils labeled by HU
(Hurricane), WS (Winter Storm), WF (Wildfire), EQ (Earthquake) and SCS (Convective
Storm). Using the properties of the Poisson process, the total multi-peril average annual
rate is λtot = 183 (summing the frequencies given in Table 1). The following steps are
repeated for each year of simulation labeled by i = 1, ..., S:

• Step 1: Generate a random sample from the multi-peril Poisson frequency with
λ = 183 yielding a particular realization N = ki

• Step 2: Take N = ki independent samples from the severity in a two-step process:
First generate a random sample of the peril by sampling from a discrete distribution
with probability weights (w1, w2, w3, w4, w5) where wp =

λp
λtot

(where each λp is given
in Table 1, and recall that p = 1, ..., 5). Secondly, for each chosen peril, simulate from
the particular severity fXp(x) and keep track of the peril index.

• Step 3: For year i, order the ki loss values in descending order. Each loss will have
a particular peril index which we label as p1,i for the M = 1 annual maximum in
year i and so on. Denote these ordered losses as: (X1 = xi

11p1,i ) ≥ (X2 = xi
21p2,i ) ≥

... ≥ (Xki
= xi

ki
1pki ,i ) (where the indicator function 1pM,i is equal to 1 when the peril

index pM,i for occurrence loss M for year i happens to be a particular value from 1 to
5 recorded in step 2 and 0 otherwise).

The simulated AAL estimate assigned to each occurrence loss M is given by,

µ̂XM =
P

∑
p=1

S

∑
i=1

xi
M1pM,i

S

The AAL estimate assigned to each peril is given by evaluating the above sum for a
particular peril p = 1, ..., 5 and is denoted by,

µ̂XM ,p =
S

∑
i=1

xi
M1pM,i

S

∣∣∣∣
p

where the indicator function allows us to pick off the particular peril that arises in the
simulation. The above procedure extends to the post-catXL case by replacing the pre-catXL
random variable XM by YAE,M.
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