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Abstract: We propose a way to compute the hedging Delta using the Malliavin weight method.
Our approach, which we name the A-method, generally outperforms the standard Monte Carlo finite
difference method, especially for discontinuous payoffs. Furthermore, our approach is nonparametric,
as we only assume a general local volatility model and we substitute the volatility and the other processes
involved in the Greek formula with quantities that can be nonparametrically estimated from a given time
series of observed prices.
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1. Introduction

In finance, the numerical computation of the option price sensitivities, named Greeks, has attracted
much attention in the last few years, as the knowledge of the Greeks and their implementation as
risk management tools have paramount importance when trading financial derivatives. However,
their numerical computation using the Monte Carlo finite difference method is particularly inefficient in
the case when the option payoff is represented by a discontinuous function of the underlying asset, as it is
often the case.

In their seminal paper, Fournié et al. (1999) show that the stochastic calculus of variations, also referred
as the Malliavin calculus (see Malliavin 1997), is the correct tool for computing hedging Greeks as it
allows us to consider the effects of perturbations of the model (e.g., perturbation on the initial data,
volatility process, ...) on functionals of random variables expressing the payoff. Fournié et al. (1999),
(2001) propose to exploit the integration by parts formula based on the Malliavin calculus to avoid
computing the derivatives of possibly non differentiable payoff functionals as a strategy to get efficient
Monte Carlo methods for computing the Greeks. The integration by parts formula can be performed
in different ways, producing alternative weights, which are numerically more or less efficient. Even if
the different expressions are equivalent from a mathematical point of view, when performing numerical
computations they slightly differ, even if the same random series is used. The problem of the optimality
of the weight—i.e., providing the minimal variance—is addressed in Kohatsu-Higa and Monteiro (2001)
and Benhamou (2003).

Furthermore, the practical implementation of the Malliavin-Monte Carlo method requires the
knowledge of the precise form of the diffusion function of the underlying process—i.e., the latent volatility
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process. This is a crucial point both for pricing and hedging, as demonstrated by the huge amount
of literature on determining the correct specification of the underlying model—see Ait-Sahalia (1996).
Moreover, the specification of the functional form of the diffusion function is even harder to determine.
In this respect, the use of a nonparametric estimator of the volatility can be substantial in terms of
avoiding misspecification of the hedging Greeks. Hedging errors due to model misspecification have
been investigated from different points of view—see Bouleau (2003); Hayashi and Mykland (2005) and the
references therein.

In this paper, we address both issues. We propose a way to compute the weight in the Malliavin
weight method that yields a faster convergence rate. Furthermore, our approach is nonparametric, as we
only assume a general local volatility model and we substitute the volatility and the other processes
involved in the Greek formula with quantities that can be nonparametrically estimated given the time
series of observed prices. This result can be achieved by expressing the weight using the rescaled variation
which has been introduced in Barucci et al. (2003); Malliavin and Mancino (2002b).

An important advantage of expressing the Malliavin weight in terms of the rescaled variation
relies in the fact that this function satisfies an ordinary differential equation instead of a stochastic
differential equation. This result has an impact on the numerical efficiency of the Malliavin-Monte Carlo
method. In fact, as long as the method is applied only to the case in which the underlying process is a
Black-Scholes model, as in Elie et al. (2007); Fournié et al. (1999), the numerical computation of the weight
involves only one It6 integral. Nevertheless, this is a very special case: as the underlying SDE is linear,
the linearized SDE for the variation process and for the log-normal process are the same. The situation
is drastically different if the underlying model is non-linear, as for the local volatility models as well as
for stochastic volatility models. Under these models, the expression of the weight involves more than
one stochastic integral. The simplest numerical approximation to these stochastic integrals is given by
the Euler-Maruyama method. It is well known that this method has strong order of convergence 0.5 and
weak order of convergence 1 for Itd stochastic integrals, while it is of order v = 1 for Riemann integrals.
Therefore, when we consider an underlying model which is not log-normal, Fournié et al. (1999) account
for numerically computing a double stochastic integral, while our approach requires us only to compute
one stochastic integral.

In this paper, we assume an underlying local volatility model,; namely, we model volatility
as a level-dependent quantity (i.e., a deterministic function of the asset price). There are different
motivations for this kind of model. For instance, in a single asset, market volatility depends
on the asset price and, therefore, the market is complete. Moreover, this way to model asset
price volatility is well suited to capture the relationship between volatility and asset price-returns
(leverage effect). The simplest way to model the negative relation between asset-price returns and
volatility is to assume a constant elasticity of variance (CEV) model—see Cox and Ross (1976).
Furthermore, level dependent volatility has also been employed to reproduce the implied volatility
smile, see Derman and Kani (1994); Dupire (1994); Hobson and Rogers (1998).

The paper is organized as follows. In Section 2, we describe the Malliavin weight approach to Greek
computation and its nonparametric application; moreover, the Black-Scholes model and the CEV model
are briefly analyzed. In Section 3, we show the computational advantage of computing the weight
function by a single stochastic integral instead of a double stochastic integral; in addition, we show the
computational efficiency of the method when compared to the standard finite difference Monte Carlo
method. Finally, in Section 4 we illustrate an empirical nonparametric implementation of our approach
for the EUR/USD exchange rate options on the period from 29 February 2016 to 3 June 2016. Section 5
concludes. The Appendix A resumes the mathematical computation of the rescaled variation and its
model-free expression.
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2. Greeks Computation via Malliavin Calculus and the Rescaled Variation

In this section we recall the main ingredients for the computation of the Greeks using the Malliavin
calculus, referring to Fournié et al. (1999) and Malliavin and Thalmaier (2006) for details. The underlying
asset price is described by a diffusion process (S ())o<t<T whose dynamic is described under the risk
neutral probability by the following SDE!

Sy (t) = rSy ()dt + a(Sw(£)dW(t), Sw(0) = so, 1)

where a(-) is a deterministic function of the asset price, r the constant risk-free interest rate and W a
Brownian motion on a filtered probability space.

Consider a contingent claim with a payoff function of the form f(Sy(T)) for some function f.
The no-arbitrage price of the contingent claim is given by

u(so) = Ele”"" f(Sw(T,s0))], )

where E is the expectation under the risk neutral probability and the notation Sy (T,sp) denotes the
solution of (1) at time ¢ = T which has initial condition s.

From a mathematical point of view, the Greeks formulae are given by the directional variations of
u(sp) in response to a perturbation of the initial datum (in the case of Delta), of the volatility coefficients
(in the case of Vega) or of different parameters. In the present paper we focus on the computation of Delta,
the first derivative of u(sg) with respect to the initial datum. Consider the variation of the initial condition
so — 5o + ¢, for which the Delta is given by

A=e T (S (T s0+6))]. @)
de |e=0

If the expression (3) does not have an explicit-closed formula (because in most cases the distribution of
Sw (t) is not known—see Remark 2), we may think of using Monte Carlo simulations in order to compute
the expectation. Moreover, as the function f is usually not smooth, we can resort to the computation of
difference quotients (i.e., finite differences) to perform the derivative in (3).

Fournié et al. (1999) showed that it is possible to accelerate the rate of convergence of the Monte Carlo
method and to overcome the lack of classical differentiability of the payoff function f, if we are able to
express the differentiation involved in the Greeks formulae—e.g., (3), as the expectation of the payoff
function multiplied by a weight 7r, which does not depend on the payoff function itself. The authors study
numerical applications of the method in the case where the volatility is constant, showing its efficiency.
We sketch the idea behind this approach.

In the context of stochastic calculus of variation (see Malliavin (1997)), a perturbation of the initial
condition propagates along the trajectory W as

d d
L f(Sw(Tsn+e) | = EL A Swia(Tso)) @
where h(t) := fot z(s)ds and the process z(s) is the rescaled variation defined as the ratio between the

variation process {(t) associated to (1) and the diffusion coefficient of (1), namely

1 We emphasize the dependence on the Brownian path, using the subindex W.
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Remember that the variation process follows an SDE, which is the linearized equation of the SDE (1)
driving the price?

dg(t) = Z(t) (a'(Sw(t))dW; +rdt), (0) = 1. (6)
Then, we have
E[%f(sw+sh(T/ SO))\ezo] = E[Dyf(Sw(T,s0))] = E[f(Sw(T,s0)) /OTw(t)z(t) dW(t)], @)

where Dy, is the Malliavin derivative along the direction / and the last equality is obtained by means of the
integration by parts formula (see Malliavin (1997)). The function w(t) can be arbitrarily chosen but it must
satisfy fOT w(t)dt = 1. For simplicity we will consider w(t) =1/T.

Therefore, the weight 77 is equal to (1/T) fOT z(t) dW(t) and it does not depend on the payoff function.
Furthermore, formula (7) does not require us to differentiate the payoff function.?

The computation of the weight in (7) is far from being trivial. In fact, it is worth noting that apriori
the computation of the weight 7t involves a double stochastic integral, as the rescaled variation z(t) is
the solution to an SDE. However, in Malliavin and Mancino (2002b); Malliavin and Thalmaier (2006) it
is proven that the rescaled variation actually evolves in time according to a linear ordinary differential
equation. More precisely, the rescaled variation is differentiable with respect to ¢ and it holds that

z(t) = z(s) exp </:/\(T)d’f) s<t, 8)

where
1

M) = = (34" (Sw(e) a(Sw(r) ~ r+ 15w (7)

YSu(0)) o

a(Sw(T))

The general case of this result in stated in Appendix A as Theorem A1l.

In practice, the Greeks can be calculated in a parametric framework as follows: first determine a
parametric model, as a general diffusion process on the underlying process, that can produce the best fit,
and estimate the parameters in the model; then, calculate the Greeks using the selected model. We take
a nonparametric approach instead. The function A contains terms, such as the volatility function and
its derivatives, which are latent and should be estimated from the data. Following Barucci et al. (2003);
Malliavin and Mancino (2002b), it can be expressed in terms of three factors which can be estimated
nonparametrically given high frequency asset return data using the Fourier methodology introduced by
Malliavin and Mancino (2002a, 2009). Therefore, the rescaled variation is expressed by means of quantities
which can be empirically estimated using the price process observations.More precisely, the function A(t)
in (9) can be expressed by means of terms which are iterated cross volatilities. The result is the following:

Denoting by (, ) the quadratic (co-)variation operation, define the following cross-volatilities:

(dS, dS)/dt == Ay, (dA, dS),/dt == By, (dB, dS)/dt == Cy,

The prime stands here for the first derivative with respect to the level Sy (t).
It should be noticed that the last integral in (7) is a Skohorod integral, for the duality formula with the Malliavin derivative
operator Dj,. However, if the integrand is adapted to the filtration, then the Skohorod integral and the It6 integral coincide.

3
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then the function A; in (9) has the following expression
3B} 1B 1G
A= (=28 1B g G
t ( 8A‘?+2A%r5t T+4A%> (10)

The general case of this result is stated in Appendix A as Theorem A2.

On their turn, these cross volatilities are stochastic functions that can be estimated using the Fourier
estimation method—see Mancino et al. (2017). In particular, consistent estimators of the stochastic functions
A;, Bt and C; have been studied in Mancino and Sanfelici (2020).

The next subsection illustrates the methodology by means of two examples, the first one is the
Black-Scholes model, the second is a level dependent volatility model, the Constant Elasticity of Variance
(CEV) model.

2.1. Two Examples

We illustrate the methodology first on the Blac-k-Scholes model, then on the CEV model in the case of

the European-type options.

2.1.1. The Black-Scholes Model
Under the risk neutral probability, let S; follow a Black-Scholes model
ds(t) = rS(t)dt +oS(t)dW(t), S(0) = sp.

Note that this is a linear SDE, thus the SDE for {(t) coincides with that of 5(t), with different
initial data

dg(t) = rg(t)dt + o (t)dW(t), ¢(0)=1
and so{(t) = S(t). Using (7), as in Fournié et al. (1999) we obtain the Delta:

TLLUO

A = Ele"T£(S(T))

o ToS(t)
= ELTAS(T) [ 2 S0 aw] = e TELF(S(T)) 2 )
0 TSOU'S(t) f T spo™
Remark 1. Note that, for the Black-Scholes model so(t) = S(t), thus z(t) = U% = 0%0 =
zo—i.e., constant—uwhich implies that A = 0. This can also be derived by using the expression (9).
2.1.2. The CEV Model
Consider now the CEV model for S(t), that is, under the risk neutral probability,
dS(t) = rS(t)dt +oS° (t)dW;,  S(0) = sq. (12)
The associated SDE of the variation process is
dz(t) = ¢(t) (rdt + 06S°~1(H)dW;), (0) =1. (13)

The non linearity of the diffusion coefficient—i.e., 0S°—drastically changes the relation between S(t)
and {(t). The solution of the linear SDE (13) is
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2(t) = exp( /O 6551 (s)dW, — % /0 252526 (5)ds).

The computation of the Delta using (7), as in Fournié et al. (1999), gives:

ELf(Swia(Ts0) ]
T 1 1 t _ t 1 _
_E [f(SW(T,so)) [ T(Tsé(t)exp{/o 7650 1(s)dws+/0 (r — 5075757 1>(s))ds} dwt], (14)

which entails the computation of two stochastic integrals.
On the other side, by using the A-method, through the formula (8) we get:

E[if(Sth(T,so))so] =E |:f(SW(T, s0)) /OT ],0515(())exp (/Ot)\(s)ds> th] , (15)

which entails the computation of a single stochastic integral.
The computation of A for the CEV model can be easily obtained from (9) and is equal to

1
A(t)=—(6—1) (r + 202552@—”(0) . (16)
Remark 2. Note that even for a plain vanilla call option, there is no explicit expression for the non arbitrage price
(and thus the Delta) assuming a CEV model. For the pricing and hedging of options, the available formulae are
expressed by a series of incomplete Gamma functions—see, for instance, Davydov and Linetsky (2001) .

3. Simulation Study

The aim of this section is twofold: first we show the computational advantage of computing the
weight function 7z by a single stochastic integral as in (15) versus a double stochastic integral as in (14);
second, we show the computational efficiency of the method when compared to the standard finite
difference Monte Carlo method.

3.1. Computation of the Weight

As a case study, we consider the CEV model. We compare two alternative ways to compute the
Malliavin weight, namely by the processes

(1) = 1(0 exp (/Ot 85° 1 (s)dW + /Ot(r - ;025252@—1)(5))015) , (17)

S

and

P(t) = asgm)exp(/(;t)\(s)ds). (18)

Equation (18) exploits the knowledge of the price-volatility feedback rate A, and requires the
computation of a Riemann integral, while the term (17) involves the computation of a stochastic integral.

The simplest numerical approximation to these stochastic processes is given by the Euler-Maruyama
method. It is well known that this method has strong order of convergence 0.5 and weak order of
convergence 1. Although the Delta values in (14) and (15) are expressed as expected values, it is important
to quantify the ability of the method to compute strong (i.e., pathwise) solution on average, because this
reflects on the weak convergence as well.
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We discretize the interval [0, 1] into M = 400 subintervals of length df = 1/ M with nodes t; = j dt.
We generate a discretized Brownian path which is used to compute a reference ("true") trajectory for the
processes ¢ and . Then, we consider other decomposition of the interval [0, 1] into L subintervals in such
a way that the stepsize At = 1/L is an integer multiple R > 1 of the increment dt used for computing the
Brownian path. This ensures that the set of nodes {t;} contains the points {7;} at which the convergence
of the Euler-Maruyama method is tested. Our choice is to double the discretization step each time by
taking R = 27, with p = 1, 2, 3,4. The Brownian motion increments on the reference path are aggregated
in order to build the increments W(7;) — W(7;_1) on the sparse grids that are then used to implement the
Euler method. The parameter values are K = 100,00 =0.2,6 = 0.8, T =1, sp = 100 and r = 0.0.

The upper panels of Figure 1 show the effects of the discretization on the asset price S(t) and
lambda paths A(t). The blue lines are the reference trajectories on the finer grid, while the red dotted
lines are the discrete approximations obtained for p = 4. In the lower panels of Figure 1, we plot the

corresponding approximated trajectories of the functions ¢ and ¢ over the discrete grids {Tj(p)} for
p = 1,2,3,4. We notice that the function ¢(t) is much affected by the discretization over sparse grids,
while () is not. Nevertheless, the approximated functions match the reference ones computed on the
fine grid more closely as At decreases. Therefore, convergence seems to take place. Finally, we remark
that the stochastic function () seems to be much regular. Indeed, this is in complete agreement with
Equation (8), which proves the differentiability with respect to time of the rescaled variation, while the
differentiability of function ¢(t) is not so visually evident.

A -4 Lambda X
106 sset S 5.15><1O
104 5.1
102
5.05
100
98 5
96 4.95
0 0.5 1 0 0.5 1
t t
Lambda weight (t Fournié et al., 1999] weight ¢(t
0.12566 ght $(t 0.1258[ ’ 1 weight $(1
0.12564 0.12575
0.12562 0.1257
0.1256 0.12565
0.12558 0.1256
0 0.5 1 0 0.5 1
t t

Figure 1. Constant Elasticity of Variance model. Parameter values: K = 100, 0 = 02,6 =08, T =1,
So = 100, r = 0.0.

In order to test the strong convergence of the two different methods, we compute esAttmng = E[|z; —

z(7;)|], where z is the reference rescaled variation computed by (17) or by (18) on the fine grid and ; its
discrete approximation. A method is said to have strong order of convergence equal to v if there exists a
constant C such that

E[[2 — =(x)[] < CAf" (19)
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for any fixed 7; and At sufficiently small. It is well known that the Euler method of integration is of order
v = 1/2 for It6 stochastic integrals, while it is of order v = 1 for ordinary differential equations. This marks
a departure between the stochastic and the deterministic settings and can support and motivate our
approach of computing the rescaled variation by the Riemann integral (18) instead of the It6 integral (17).
In our numerical tests, we focus on the error at the endpoint T = 1 and we test whether the bound
esAttmng < CAt7 holds for some y. We compute N = 1000 different Brownian paths over [0, 1] with M = 400
and then we apply the Euler-Maruyama method with different stepsizes At = 2Pdt, with p = 1,2,3,4.
If the condition (19) holds with approximate equality, then we get

strong __

loge,, © ~logC + ylogAt,

namely plotting the approximated errors esAttmng against At on a log-log scale would produce a line with
slope 7.

In Figure 2, the blue asterisk line plots our simulated results. For reference, a dashed line of slope
7 is plotted as well. In both cases the error eSAttmng reduces as At becomes smaller but in the case of the
lambda approach the slope 7 is 1, suggesting a strong order of convergence of 1, while in the other case
the convergence rate is y = 1/2.

10_58trong converg. inner integral 10_4$trong converg. inner integral
R k
S 5
= r- slope y=1 R N
E E
= S 0% I 1/2
o £ o 10 sopevf////
0.01 0.02 0.030.04 0.01 0.02 0.030.04
At At

Figure 2. Constant Elasticity of Variance model. Parameter values: K = 100, 0 = 02,6 =08, T =1,
So = 100, 7 = 0.0.

We can analyze this further by testing a power law relation ezftrong = CAt7 or, equivalently, log eztnmg =

log C + ylog At. A least squares fit for log C and 1 is computed producing the values 1.2945 and 0.4849
for  in the two cases, respectively.

Now we come to examine the convergence of the approximation to the weight 77 computed in the
two alternative forms

1
&= /O ¢(1)dW,, (20)

and

¥ — /01 P(H)dW,. @1)

As before, we compute the mean of the error E|2At — Z| of the approximated integral Zar as At
becomes small. In the upper panels of Figure 3 we can see that again the error reduces with At but, while ®
exhibits a strong order of convergence equal to 1/2, the approximation of ¥ still retains a strong order of
convergence equal to 1. More precisely, the least squares fit for v produces the values 1.2025 and 0.6196 for
the strong convergence regression.
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10_53trong converg. outer integral Strong converg. outer integra
= slope v = 1 B
£ 10° T ‘e
= 107 -
2 ] slope y=1/2_---~
w w -
107 S
0.01 0.02 0.030.04 0.01 0.02 0.030.04
At At
105 Weak converg. outer integral 105 Weak converg. outer integral
5 T E T
B | ---="""slope y=1 [t slope y=1/2
= =
) F g
w w
107
0.01 0.02 0.030.04 0.01 0.02 0.030.04
At At

Figure 3. Constant Elasticity of Variance model. Parameter values: K = 100, 0 = 02,6 =08, T =1,
So = 100, r = 0.0.

This different behavior of the two methods has important consequences even on the weak order of
convergence of the integral. This is a less demanding alternative to strong convergence which measures
the rate of decay of the error of the means |E[Z,;] — E[Z]|. This error is plotted against At on a log-log
scale in the lower panels of Figure 3. As expected, the approximation of ¥ exhibits a weak order of
convergence y = 1 typical of the Euler-Maruyama method, while in the case of ® the convergence rate is
not much clearer. The least squares fit for v produces the values 1.0802 and 0.3307 for the weak convergence
regression with the two different methods, respectively. However, the least squares residual for @ is 1.4119
and does not support a clear order of weak convergence for a double stochastic integral approach.

3.2. Efficiency of the Method

In order to asses the efficiency of our method, we compute the A in the case of a Black-Scholes and of
a CEV underlying diffusion for the following payoffs:

e  European Call/Put option: f(Sw(T,s0)) = (St —K)™, f(Sw(T,s0)) = (K—S1)*;
e  Digital Call/Put option: f(Sw(T,s0)) = 1s,>k, f(Sw(T,%0)) = 1s,<k

using the A-method, the method proposed by Fournié et al. (1999) and the Monte Carlo finite difference
method. The results are displayed in Tables 1-4. ”Analytic” denotes the closed form solution.

First, let us consider the Black-Sholes framework. In this case, the A-method and the method
of Fournié et al. (1999) are the same. However we implement the formula (11) for the A in two different
ways, either by computing the expectation in the right hand side as in Fournié et al. (1999) or by simulating
trajectories of the Brownian motion to compute the integral in the left hand side (A-method).



Risks 2020, 8,120 10 of 17

Table 1. Black—-Scholes model. Parameter values: K = 100, 0 = 0.2, T =1, So = 100, r = 0.05.

Option N n  A-Method Fournié etal.(1999) MC Fin. Diff.  Analytic

EC 1000 200  0.620603 0.584784 0.620490 0.636831
EP 1000 200 —0.382432 —0.409168 —0.378079 —0.363169
DC 1000 200  0.018054 0.017937 0.190246 0.018762
DP 1000 200 —0.019501 —0.020261 —0.190246 —0.018762

From Table 1, we notice that the A-method generally outperforms the method of Fournié et al. (1999)
as well as the Monte Carlo finite difference method for small number of iterations N, i.e., the A-method
exhibits a faster convergence speed. The perturbation of the initial condition in the Monte Carlo approach
is set to 1 = 0.01. The Monte Carlo finite difference method performs quite poorly for Digital options,
while the A-method gives very good results.

When increasing the number of iterations, the results provided by the three methods are more
comparable and almost equivalent as shown in Tables 2 and 3.

Table 2. Black-Scholes model. Parameter values: K = 100, = 0.2, T =1, Sy = 100, r = 0.05.

Option N n  A-Method Fournié etal. (1999) MC Fin. Diff.  Analytic

EC 5000 200  0.641900 0.646569 0.633642 0.636831
EP 5000 200 —0.355614 —0.368940 —0.364584 —0.363169
DC 5000 200  0.018898 0.018950 0.019025 0.018762
DP 5000 200 —0.018348 —0.018951 —0.019025 —0.018762

Table 3. Black—-Scholes model. Parameter values: K = 100, 0 = 0.2, T =1, S = 100, r = 0.05.

Option N n  A-Method Fournié etal.(1999) MC Fin. Diff.  Analytic

EC 10,000 200  0.642683 0.634604 0.633323 0.636831
EP 10,000 200 —0.351281 —0.359368 —0.364866 —0.363169
DC 10,000 200  0.018758 0.018717 0.019025 0.018762
DP 10,000 200 —0.018252 —0.018755 —0.019025 —0.018762

Finally, we consider the case of the CEV model. In this case the A-method consists in computing the
expectation in (15), where the function A is given by (16), while the Fournié et al. (1999) method is based
on the computation of the expectation in (14). The Monte Carlo finite difference method is implemented
with common random numbers. The initial perturbation is set to i1 = 0.01 and in the case of digital options
a second order different quotient is used to approximate the delta. The Analytic delta value is computed
in terms of the noncentral chi-square distribution—see Hull (2018).

As can be seen from Table 4, the results provided by the A-method and the method
of Fournié et al. (1999) are almost undistinguishable, while the Monte Carlo finite difference method
performs slightly better in the European case but is completely unreliable for binary options with a 20%
relative error on the Delta value.
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Table 4. Constant Elasticity of Variance model. Parameter values: K = 100, 0 = 02,6 =08, T =1,
So = 100, r = 0.0, N = 10,000, n = 200.

Option A-Method Fournié etal. (1999) MC Fin. Diff.  Analytic

EC 0.0.506340 0.506337 0.519070 0.512955
EP —0.468663 —0.468662 —0.481571 —0.487045
DC 0.050183 0.050182 0.040000 0.050090
DP —0.048846 —0.048846 —0.040000 —0.050090

Figure 4 shows the performance of the A-method versus the Monte Carlo finite difference for
increasing values of the number of simulations N used to compute the expectation. In the case of the
European option the Monte Carlo method provides slightly less biased results. This is a well understood
phenomenon and a possible way to fix this problem is to localize the integration by parts around the strike
price K, as suggested by Fournié et al. (1999). In contrast, for the Digital option case the A-method is very
efficient, while the Monte Carlo finite difference methods gives very poor results.

; European Call Option 012 ?igital C?II Optio? ‘ ‘
T T T T :
Lambda method
09 - Lambda method i MC finite difference
’ MG finite difference Exact value
Exact value 04 4
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«©
£ N
W\ S NN
w04 w t& \\\\\
T -
0.04 ~I™— N
0.3 i
0.2~ 4
0.02 |- 4
0.1~ 4
I I I I I I I I I . . . . . . . .
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Number of simulations Number of simulations

Figure 4. Constant Elasticity of Variance model. Parameter values: K = 100, 0 = 02,6 =08, T =1,
So = 100, r = 0.0, N = 10,000, n = 200.

4. Greek Estimation from Observed Underlying Prices. An Empirical Case Study

In order to illustrate the model-free nature of our approach in the context of the Malliavin weight
method, we consider a case study based on 5-minute observations (open prices) of the EUR/USD exchange
rate on the period from 29 February 2016 to 3 June 2016. We propose a nonparametric estimation
procedure for computing the Delta of exchange rate options. Prices of derivative securities depend
crucially on the form of the volatility of the underlying process, therefore we work in the framework of
local volatility models but leave the volatility function unrestricted and estimate it nonparametrically from
the observed prices.

Our sample contains 20,136 observations. Table 5 describes the main features of our data set. Intra-day
returns may be contaminated by transaction costs, bid-and-ask bounce effects, etc., leading to biases in the
variance measures. A preliminary analysis through the autocorrelation function plot of the 5-min returns
is conducted in Figure 5 to detect the presence of market microstructure noise. The degree of first order
autocorrelation of log-returns seems very weak, meaning that microstructure effects are not relevant in this
sample. However, the autocorrelations decay slowly. To test for stationarity, we performed an augmented
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Dickey—Fuller nonstationarity test. The nonstationarity hypothesis is rejected at the 90% level. The test is
known to have low power, so even a slight rejection means that stationarity of the series is likely.

Table 5. Summary statistics for the sample of the EUR/USD exchange rate on the period from 29 February
2016 to 3 June 2016 (20136 open prices). “Std. Dev.” denotes the sample standard deviation of the variable.

Variable Mean Std. Dev. Min Max
EUR/USD exchange rate 1.124517 0.015473 1.082280 1.161020
5-min log-return (%) 2.028925 x 10~%  3.302504 x 1072 —8.892366 x 10~1  9.972291 x 101

Sample Autocorrelation Function

0.5

-0.005

log-return
o
Sample Autocorrelation

-0.01 -0.5
0.5 1 1.5 2 0 5 10 15 20

x10* Lag

Figure 5. Time plot of the 5-min log-returns and ACF for EUR/USD exchange rate on the period from 29
February 2016 to 3 June 2016.

We assume the risk neutral dynamics for the spot exchange rates S is
dSt = rStdt + U(St)Stth. (22)

Then, the logarithm X; = log S; follows a time-homogeneous Itd diffusion process represented by the
following stochastic differential equation

dXy = (r — *(X¢)/2)dt + &(X;)dWy. (23)

with initial condition Xy = xp, where W; is a standard real Brownian motion and the real function
7(x) = o(exp(x)) is such that a single solution X; of the stochastic differential Equation (23) exists.
We remark that we are making no assumptions on the functional form of &(-). Our specific problem is
to estimate the diffusion term &(x) when we observe a discrete realization of the process X; via n + 1
observations XO, ..., X, at times to=0<t; <..<t, =Tintheinterval [0, T] and then to price derivatives
in the context of the Malliavin weight method.

FIRST STEP: We estimate the diffusion term &(x) by means of classical Nadaraya—Watson type

estimators of the kind )
n=1 g
yK(FE) e
i=0

}EK (X, —X)
i=0 h

where 67 is a consistent estimator of the spot volatility at time ;.

0% (x) =

(24)
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Following Kenmoe and Sanfelici (2014), our choice for ffiz is based on the Fourier-Malliavin estimator
of the spot volatility. The spot volatility at time ¢; is estimated at the opening of each day using the whole
high-frequency exchange rate time series

7=y ( ‘|Ak4) e e (on ),

k<M
where the k-th Fourier coefficient of the variance process is obtained by Bohr-convolution

T
2 Ny
ck(an,N) =Nl “ENCZ(an)ck,l(an)

from the discrete Fourier transform cs(dX,) := + Z;?:_Ol oSt (X1 — X)).

Figure 6 plots the histogram of the distribution of the EUR/USD exchange rate and the nonparametric
estimate of the diffusion function of the exchange rate model obtained by the estimator (24). The function
02 (x) is plotted on a uniform grid xp < x; < ... < x in the interval [0.08,0.15]. The diffusion function does
not look flat or linear, rather it shows the shape of a "smile" with higher volatilities for low exchange rates.

(logarithmic) EUR/USD (5-minute) 29.02.2016-03.06.2016

600

400

200

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

x10° Volatility function estimate

1
0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
X

Figure 6. Histogram of the distribution of the logarithmic EUR/USD exchange rate on the period from 29
February 2016 to 3 June 2016 and nonparametric estimation &2 (x) of the diffusion function.

SECOND STEP: The estimated volatility function & (-) is then used to generate N realizations of
the process (22) and to price a given contingent claim in a Monte Carlo simulation. We generate 100
trajectories by dividing the interval [0, T] into n = 1000 subintervals and by discretizing the estimated
diffusion process by first order Euler method.

THIRD STEP: For each generated trajectory, we estimate the spot functions A(t), B(t) and C(t) using
the Fourier estimation metho— see Mancino et al. (2017)— and we compute the feedback rate function
A(T) by (A6) in Remark Al:
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We remark that each time the Fourier cross-volatility estimation procedure is reiterated the resolution
at which the estimated function can be observed becomes lower and lower. To maintain a good resolution,
we can exploit the fact that, in the trajectories simulation process, the spot volatility A(t) = o?(exp(X;)) is
actually known. Therefore, we can easily compute its discrete Fourier coefficients by

1 n-l 27t
GlAn) = = Y e FUAG), K <N.
j=0

From cx(A;) and cx(dX,), the functions B(t), C(t) and A(f) can be estimated by the Fourier
methodology according to Theorem A2.*

Furthermore, we highlight that any other approach for computing the Malliavin weight is not possible
in this context because the computation of the variation process from (6) requires the knowledge of the
functional form of the volatility function to perform differentiation.

FOURTH STEP: We compute

A=e'TE {f(S(T)) /OT [T(loglso)So exp(/ot A(s)ds) dwt} )

via Monte Carlo method, by averaging the argument of the expectation over the simulated sample paths.
As a benchmark for our computations, we solved the associated generalized Black-Scholes equation

avV 1

w1 ,02V 9V
ot 2

0% (log S)S ES3 + T rV =0,
with the final condition V (S, T) = f(S) by (backward Euler) finite difference method. Following Tavella
and Randall (2000), we impose linearity conditions on the boundary of a truncated computational domain.
The option delta values are also compared to those obtained by Monte Carlo finite difference and by
the Black—Scholes formula with volatility parameter set equal to ¢ = &(log(S)).
In Table 6, we show the results obtained for the pricing of an European Put option with strike K = 1.1
and expiry time T = 1 year. For simplicity, the risk free interest rate is taken to be r = 0. The perturbation
of the initial datum in the Monte Carlo finite difference method is set to 0.001.

Table 6. European put option written on the EUR/USD exchange rate on the period from 29 February 2016

to 3 June 2016.
Underlying asset value S 0.9500 1.0500 1.1000 1.1500 1.2500
Option delta

Lambda method —0.9892 —0.9740 —0.5319 —0.0938 0
Standard deviation (0.2749)  (0.2021)  (0.0932)  (0.0419) (0)
Monte Carlo finite difference —0.9899 —0.7651 —0.4547 —0.1590 —0.0103
Standard deviation (0.0045)  (0.0045) (0.0033)  (0.0009)  (0.0004)
Finite Difference Method —-0.9974 —0.8109 —0.5225 —0.1774 —0.0023
Black-Scholes formula —0.9988 —0.7957 —0.4900 —0.1502 —0.0021

In particular, as discussed in Mancino and Sanfelici (2008), the cutting frequencies for the functions B(t) and C(t) can be taken
as Ng = N/2 and N¢c = Np/2, respectively. Finally, the feedback rate function A can be estimated at N¢ distinct points in the
interval [0, T] by taking Mc = N¢/2 in the Fourier expansion for B(t). Being N = n/2, this procedure allows for a reconstruction
of the feedback rate function at 125 nodes in the interval [0, T].
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We notice that the lambda method outperforms the Monte Carlo finite difference method for
at-the-money options, due to the lack of regularity of the payoff function f at S = K. However, the Monte
Carlo finite difference method works better for out-of-the-money and deep out-of-the-money options and
has in general a much smaller variability.

5. Conclusions

We have proposed a possible way to compute the hedging Delta using the Malliavin weight method
of Fournié et al. (1999) in a local volatility framework. The advantage of our A-method are twofold:
on the one hand the advantage is computational, because it allows us to compute the Malliavin weight
by a single stochastic integral versus a double stochastic integral as in Fournié et al. (1999). This yields a
faster convergence rate in a Monte Carlo experiment, especially for discontinuous payoffs. On the other
hand, our approach is nonparametric, as we only assume a general local volatility model and we can
estimate the volatility and the other processes involved in the Greek formula with quantities that can be
nonparametrically obtained from observed prices.
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Appendix A

This Section resumes the mathematical computation of the A function. The proof of the
Theorems A1l and A2 can be found in Malliavin and Thalmaier (2006).

Theorem Al. Assume that the asset price evolves according to the SDE
ds; = H(St)dW(t) + b(St)dt, (A1)

with initial value sy, where a and b are smooth functions. Consider the associated variation process

dgt = gt (El/(St)th + b’(St)dt) ’ 50 =1. (AZ)
Then, the rescaled variation defined by
o G
a(St)

is differentiable with respect to t and it holds that

v
Zp = Zg exp(/ Adt) s<t,
S

where

. a’(ST) 1 " /
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Theorem A2. Denoting by (, ) the quadratic (co-)variation operation, define the following cross-volatilities:
<dSt , dSt> = At dt , <dAt, dSt> = Bt dt , <dBt, dSt> = Ct dt,
then the function A; in (A3) has the following expression

3B2 1B 1C
No—— (28 20, LR ) A4
‘ ( 847 242 T aaz t) (B4)

Remark Al. In particular, if b(S¢) = r — 1a2(S;) and substitute in (A3), then

b= — (L5 = JaP(51)) + 30" (S0a(51) + 320(5)a'(50))

—— (28 Jatsa' (50 + e (spus))). .

Then, the formula (A4) becomes

3B 1B 1B 1C
=2 O, oo oSt A
MESar T 2ar Tia,aa (A6)
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