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Abstract: Banks play a vital role in strengthening the financial system of a country; hence, their
survival is decisive for the stability of national economies. Therefore, analyzing the survival probability
of the banks is an essential and continuing research activity. However, the current literature available
indicates that research is currently limited on banks’ stress quantification in countries like India where
there have been fewer failed banks. The literature also indicates a lack of scientific and quantitative
approaches that can be used to predict bank survival and failure probabilities. Against this backdrop,
the present study attempts to establish a bankruptcy prediction model using a machine learning
approach and to compute and compare the financial stress that the banks face. The study uses the data
of failed and surviving private and public sector banks in India for the period January 2000 through
December 2017. The explanatory features of bank failure are chosen by using a two-step feature
selection technique. First, a relief algorithm is used for primary screening of useful features, and in
the second step, important features are fed into the support vector machine to create a forecasting
model. The threshold values of the features for the decision boundary which separates failed banks
from survival banks are calculated using the decision boundary of the support vector machine with a
linear kernel. The results reveal, inter alia, that support vector machine with linear kernel shows
92.86% forecasting accuracy, while a support vector machine with radial basis function kernel shows
71.43% accuracy. The study helps to carry out comparative analyses of financial stress of the banks
and has significant implications for their decisions of various stakeholders such as shareholders,
management of the banks, analysts, and policymakers.

Keywords: failure prediction; relief algorithm; machine learning; support vector machine;
kernel function

JEL Classification: C53; C55; C81; C82; B41; C40

1. Introduction

Indian banks are strongly capitalized, well-regulated, and have been monitored by the Reserve
Bank of India (RBI) for over a decade. The banking sector is highly interconnected with daily economic
activity, and any major failures in the sector pose operational and financial risks. Due to these possible
risks, the RBI has tried to maintain the financial stability of banks by providing appropriate monetary
policy support from time to time. The financial disaster during 2007–2008 is one example that spread
internationally over time. The RBI has taken certain important steps to ensure the financial stability of
Indian banks, such as Prompt Corrective Action (PCA) and capital infusion. It has also provided a
recapitalization package for public sector banks in October 2017 to the tune of Rs. 2.11 trillion.

The high probability of similar financial crises in the future warrants the need for close and
strict supervision of the banks and an appropriate action plan. Bankruptcy prediction is crucial, and
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developing a technique to measure financial distress before it actually occurs is important. As a result,
formulating precise and efficient bankruptcy prediction models have become important. The financial
institutions are concentrating on developing an understanding of their drivers of success, which include
better uses of its resources like technology, infrastructure, human capital, the process of delivering
quality service to its customers, and performance benchmarking. Performance analyses of current
financial institutions use traditional techniques like finance and accounting ratios, debt-to-equity
proportions, returns on equity, and returns on assets, but these methods all have methodological
limitations (Yeh 1996).

There is a significant amount of literature that deals with bankruptcy prediction using statistical
techniques (Altman 1968; Meyer and Pifer 1970; Altman et al. 1977; Martin 1977; Ohlson 1980;
Zmijewski 1984; Whalen 1991; Cole and Gunther 1998; Shumway 2001; Cole and Gunther 1995;
Lin et al. 2011 and many more). Several recent studies have been conducted for bankruptcy prediction
using machine learning techniques as well (Lin et al. 2011; Antunes et al. 2017; Kirkos 2015; Murphy
2012; Shrivastava et al. 2020). Most machine learning techniques find common patterns in failed banks
based on financial and nonfinancial information.

An innovative bankruptcy predictive model and a stress quantification technique are developed
in this study using a support vector machine (SVM) with suitable kernels for Indian banks. In this
new approach, first the instance-based method “Relief Algorithm” was used for the initial screening of
feature selection, which is a nonparametric method. Many previous researchers have used parametric
methods for feature selection, as discussed in the literature. Second, we developed a SVM model and
tuned the parameter using 5-fold cross-validation, which helps in the generalization of the model by
developing an optimal cut-off level, while many previous researchers used the default cut-off level.
Third, geometric analysis of the proposed machine learning technique in this study is beneficial for
stress quantification and provides a tool to regulators for tracking and comparing different banks’
financial status. This is the first study of its kind on Indian banks where stress quantification is derived
using SVM.

The paper is organized as follows: Section 1 contains an introduction; Section 2 contains a literature
review; Section 3 contains methodology and data descriptions; Section 4 explains empirical results,
findings, and stress quantification; Section 5 contains the conclusions of the study; and Section 6
explains the limitations of the study.

2. Literature Review

Practitioners and academicians are currently using artificial intelligence (AI) and machine learning
(ML) approaches to predict bankruptcy. For instance, Tam (1991) used a back-propagation neural
network (BPNN) to conduct bankruptcy prediction for US banks, and the input features were selected
based on capital adequacy, asset quality, management quality, earnings, and liquidity (CAMEL) metrics.
Tam concluded that the BPNN gives better predictive accuracy than other techniques like discriminant
analysis (DA), logistic regression (LR), and K-nearest neighbor (K-NN). Also, Sharda and Wilson (1993)
compared the usefulness of BPNN with multi-discriminant analysis (MDA) for bankruptcy prediction
and found that the BPNN’s performance was better than that of MDA in all scenarios. Fletcher and
Goss (1993) used the BPNN with 5-fold cross-validation for bankruptcy prediction and equated its
results with the ones obtained from logistic regression (LR) using data collected for 36 companies. The
authors found that BPNN had 82.4% prediction accuracy compared to the 77% from logistic regression.

Altman et al. (1994) compared the accuracy of linear discriminant analysis (LDA) with BPNN
in distress classification using financial ratios and found that LDA performed better than BPNN.
Tsukuda and Baba (1994) formulated a predictive model for bankruptcy using BPNN with one hidden
layer and found that BPNN had better accuracy than discriminant analysis (DA). Cortes and Vapnik
(1995) used SVM for the first time for two-group classification problems. Due to nonlinearly separable
data, input factors were mapped to a very high-dimension feature space, the performance of the
support vector machine was compared to various other machine learning algorithms. Leshno and
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Spector (1996) compared various neural network (NN) models with DA and described their prediction
proficiencies in the form of data span, learning technique, convergence rate and number of iterations.
Piramuthu et al. (1998) used a new set of features to improve the accuracy of the BPNN bankruptcy
model for the dataset of 182 Belgium-based banks.

Swicegood and Clark (2001) used DA, BPNN, and human judgment to predict bank failure. They
found that BPNN outperformed and provided the maximum accuracy when compared to the rest of
the models. Neural network (NN) is perhaps the most significant forecasting tool to be applied to the
financial markets in recent years and is gaining its prominence. Nanni and Lumini (2009) used the
dataset of firms from countries like Australia, Germany, and Japan and found that machine learning
techniques with bagging and boosting lead to better classification than standalone methods. Du Jardin
(2012) found the significance of feature selection and its influence on the classification performance for
the first time. The study revealed that NN gave better prediction accuracy when the input features
were selected by definite criterion. Further, Wang et al. (2011) used ensemble methods with the base
learners like logistic regression (LR), decision tree, artificial neural network (ANN) and SVM and
found that the performance of bagging technique was better than the boosting technique for all the
databases they analyzed. Chaudhuri and De (2011) used a novel approach known as a fuzzy support
vector machine (FSVM) to solve bankruptcy classification problems. This extended model combines
the advantages of both machine learning and fuzzy sets and equated the clustering power with a
probabilistic neural network (PNN).

Tian et al. (2012) showed that machine learning techniques are the most important recent advances
in applied and computational mathematics, which carry significant implications for classification
problems. Chen et al. (2013) constructed a bankruptcy trajectory reflecting the dynamic changes of the
financial situation of companies that enables them to keep track of the evolution of companies and
recognize the important trajectory patterns. Korol (2013) investigated the effectiveness of statistical
methods and artificial intelligence techniques for predicting the bankruptcy of enterprises in Latin
America and Central Europe a year and two before bankruptcy and found that artificial intelligence
techniques are more efficient in comparison to statistical techniques.

Wang et al. (2014) advocated that there is no mature or definite principle for a firm’s failure.
Kim et al. (2015) proposed the geometric mean based boosting algorithm (GMBoost) to resolve the data
imbalance problem for bankruptcy prediction. The authors applied GMBoost to bankruptcy prediction
tasks to estimate its performance. The comparative analysis between GMBoost with AdaBoost and
cost-sensitive boosting showed that GMBoost with AdaBoost is better than the cost-sensitive boosting
in terms of high predictive power and robust learning capability in both imbalanced and balanced data.
Papadimitriou et al. (2013) formulated the SVM bankruptcy predictive model using six input features
on the dataset of 300 U.S. banks and achieved 76.40% of forecasting accuracy. Cleary and Hebb (2016)
examined 323 failed banks and the same number of non-failed banks in the U.S. for the period 2002
through 2011. The author used DA and variables based on CAMEL to predict the failure of banks for
unseen data and obtained 89.50% predictive accuracy.

Most of the previous research studies on bankruptcy prediction were focused on the country
where the number of failed banks were large, but for a country like India, where the number of failed
banks is less in comparison to the surviving banks, very few studies are available for bankruptcy
prediction (Chelimala and Ravi 2007; Dash and Das 2009; Pradhan 2014; Shrivastava et al. 2020). Most
studies have focused on creating a bankruptcy prediction model, and no one has attempted to calculate
and compare the financial stress of Indian banks. In this research study, we derived a bankruptcy
prediction model and developed a technique to calculate and compare the financial stress of Indian
banks using SVM.

3. Data Descriptions and Methodology

Data were collected for failed and survived banks, public sector banks (public sector banks (PSBs)
are a major type of bank in India, where a majority stake, i.e., more than 50%, is held by the government)
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and private banks (private sector banks in India are banks where the majority of the shares or equity
are not held by the government but by private shareholders) in India for the period January 2000
to December 2017. In this research study, we assumed that a bank failed if any of these conditions
occurred: merger or acquisition, bankruptcy, dissolution, and/or negative assets (Pappas et al. 2017;
Shrivastav 2019). Data were collected for only those banks where data existed for four years before
their failure. In the same way as the surviving banks, the last four years of data were considered in
the sample. In our final sample, out of 59 banks, 42 banks were surviving banks and 17 were failed
banks. For each bank, 25 features and financial ratios were calculated for four years (Pappas et al.
2017). In this way, in the sample, we had a total of 25 × 4 = 100 variables per bank (Pappas et al. 2017).
The information about 25 features and financial ratios is given in Appendix A. During data collection,
we treated data of the immediately preceding year (t−1) as recent and the data of (t−2), (t−3), and (t−4)
as past information.

Data collected for the failed and survived banks for the period Jan. 2001 through Dec. 2017
contained a mix of importance and redundancy features. All features of the data collected for modeling
are not equally important. Some have significant contributions, and some others have no significance in
modeling. A model that contains redundant and noisy features may lead to the problem of overfitting.
To reduce non-significant features and computation complexity in the forecasting model, well-known
two-step feature selection techniques, relief algorithm and support vector machine, have been used.

3.1. Two-Step Feature Selection

In this study, we used the relief algorithm, an instance-based learning algorithm, which comes
from the family of a filter-based feature selection technique (Kira and Rendell 1992; Aha et al. 1991).
This algorithm maintains trade-off between the complexity and accuracy of any statistical or machine
learning model by adjusting to various data features. In this feature selection method, the relief
algorithm assigns the weight to explanatory features that measure the quality and relevance based on
the target feature. This weight ranges between −1 and 1, where −1 shows the worst or most redundant
features and +1 shows the best or most useful features. The relief algorithm is a non-parametric
method that computes the importance of input features concerning other input features and does not
make any assumptions regarding the distribution of features or sample size.

This algorithm just indicates the weight assigned to each explanatory feature but does not provide
a subset of the features directly. Based on the output, we discarded all such features that had less than
or equal to zero weight. The features having weights greater than zero will be relevant and explanatory.
A computer pseudo-code for the feature selection relief algorithm is given below (Kira and Rendell
1992; Aha et al. 1991).

Initial Requirement: We need features for each instance where target classes are coded as −1 or
1 based on bankruptcy prediction. In this study, we used ‘R’ programming for the relief algorithm,
where “M” denotes the number of records or instances selected in the training data, “F” denotes the
number of features in each instance of training data, “N” denotes the random training instances from
“M” instances of training data to update the weight of each feature, and “A” represents the randomly
selected feature for randomly selected training instances.

The following is the pseudo-code for the relief algorithm (Kira and Rendell 1992; Aha et al. 1991):
Initially, we assume that the weight of each feature is zero, i.e., W [A]: = 0.0
For i: = 1 to N do
Select a random target instance say Li
Check the closest hit ‘H’ and closest miss ‘M’ for the randomly selected instance.
For A: = 1 to F do
Weight [A]: = Weight [A] − diff [A, Li, H]/N + diff [A, Li, M]/N
End for (second loop)
End for (First loop)
Return the weight of features.
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The relief algorithm selects the instances from the training data say “Li” without replacement.
For selected instances from training data, the weight of all features is updated based on the difference
observed for target and neighbor instances. This is a cyclic process, and in each round the distance of
the “target” instance with all other instances is computed. This method selects the two closest neighbor
instances of the same class (−1 or 1) called the closest hit (‘H’) and the closest neighbor with a different
class called the closest miss (‘M’). The weights are updated based on closest hit or closest miss. If it is
the closest hit, or when the features are different for the same class of instances, the weight decreases
by the amount 1/N, and when the features are different in the instances of a different class, the weight
increases by the amount 1/N. This process continues until all features and instances are completed by
the loop. The following is an example of the relief algorithm:

Class of Instances
Target Instance (Li) CDCDCDCDCDCDCD 1
Closest Hit (H) CDCDCDCCCDCDCD 1
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Here, due to mismatch between features in the instances of the different classes, indicated in red
color, a positive weight 1/N is allocated to the feature. This process follows until the last instances and
is valid for only discrete features.

The diff. function in the above pseudo-code computes the difference in the value of feature “A”
with two instances I1 and I2, where I1 = Li and I2 is either “H” or “M” when performing weight updates.
The diff. function for the discrete feature is defined as

diff.(A, I1, I2) =

{
0 if value(A, I1) = value(A, I2)

1 otherwise

and the diff. function for the continuous feature is defined as

diff.(A, I1, I2) =

∣∣∣value(A, I1) − value(A, I2)
∣∣∣

max(A) −min(A)

The maximum and minimum values of feature “A” are calculated over all instances. Due to
normalization of the diff. function, the weight updates for discrete and continuous features always lie
between 0 and 1. While updating the weight of feature “A”, we divide the output of the diff. function
by “N” to bring the final weights of features between 1 and −1. The weight of each feature calculated
through the relief algorithm is listed in Appendix B. The selected features from the relief algorithm
are fed into SVM to find the combination of significant features through an iterative process based
on the target feature. The feature set that gives the highest accuracy of SVM is known as optimal
features. There are several benefits of using a relief algorithm as an initial screening of features. First,
the relief algorithm calculates the quality of the feature by comparing it with other features. Second,
the relief algorithm does not require any assumptions on the features of the dataset. Third, it is a
non-parametric method.
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We used the R package “relief (formula, data, neighbours.count, sample.size)” to find the relief
score as given in Appendix B, where argument “formula” is a symbolic description of the model,
argument “data” is the data to process, argument “neighbours.count” is the number of neighbors to
find for every sampled instance, and the argument “sample.size” is the number of instances to sample.

3.2. Support Vector Machine

3.2.1. Why Support Vector Machine?

Support vector machine is a machine learning algorithm established early in the 1990s as a
nonlinear solution for the problem of classification and regression (Vapnik 1998). The basic idea behind
the SVM model was to avoid the problem of overfitting, where most of the machine learning techniques
suffer from this issue. SVM is an important and successful method because of many reasons. First,
SVM is a robust technique and can handle a very large number of variables and small samples easily.
Second, SVM employs sophisticated mathematical principles, for instance, K-fold cross-validation to
avoid overfitting, and it gives better and superior empirical results over the other machine learning
techniques. The third reason for using the support vector machine is an easy geometrical interpretation
of the model when the data are linearly separable.

3.2.2. Support Vector Machine for Linearly Separable Data

SVM has been effectively applied in many areas to classify data into two or more than two classes
(Vapnik 1998). The SVM finds a classification criterion that can separate data into two, or more than
two, classes based on the target feature. If the data are linearly separable in two classes, then the
classification boundary will be a linear hyperplane with a maximum distance from the data of each
class. The mathematical equation of the linear hyperplane for training data zi(i = 1, 2, 3, . . . , n) is
given as

wTz + b = 0 (1)

where w is an n-dimensional weight vector and b is the bias.
The hyperplane shown in Figure 1 separates data in two classes that must satisfy two conditions.

First, the misclassification error should be at a minimum, and second, the distance of the linear
hyperplane of the closest instance from each class should be at a maximum. Under the stated
conditions, the instance of each class will be above or below the hyperplane. Two margins can,
therefore, be defined as in Figure 2.

wTz + b
{
≥ 1 for yi = 1
≤ −1 for yi = −1

(2)
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Since the margin section for the decision boundary lies between [−1, +1], there is an infinite
possible hyperplane that can be a decision boundary for each section, as shown in Figure 2. To get
the optimal decision boundary, we need to maximize the distance “d” between the margins given
as follows:

d(w, b, z) =

∣∣∣∣(wTz + b− 1
)
−

(
wTz + b + 1

)∣∣∣∣
‖w‖

=
2
‖w‖

(3)

Maximizing the margin 2
‖w‖ means minimizing ‖w ‖ or 1

2 wTw. The modified optimization
problem for the optimal decision boundary is given as follows:

Minw,b =
1
2

wTw (4)

s.t yi

(
wTz + b

)
≥ 1 (5)

We used the Lagrange multiplier (alpha) to find the combined Equations (4) and (5) as below:

Lp(w, b,α) =
1
2

wTw−
N∑

i=1

αi

{
yi

[
wTzi + b

]
− 1

}
(6)

We determined the equation of the linear hyperplane by solving Equation (6) using the
Karush–Kuhn–Tucker method (Mangasarian 1969).

There is always a likelihood that data are not easily linearly separable because of some similarities
in input features of the dataset. Here, we used the modified SVM by introducing the concept of penalty.
Figure 3 below represents the soft margin where data are not easily separable.Risks 2020, 8, x FOR PEER REVIEW 8 of 22 
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Let ξ be the distance between the wrongly classified data and the margin of that class. Then, the

penalty function can be calculated as F(ξ) =
N∑

i=1
ξi, and modified forms of Equations (4) and (5) can be

written, respectively, as

Minw,b
1
2

wTw + C
N∑

i=1

ξi (7)

s.t. yi

(
wTz + b

)
≥ 1− ξi (8)

Here, “C” is the tradeoff parameter and is used to minimize the classification error and maximize
the margin. We used the Karush–Kuhn–Tucker method to solve Equations (7) and (8) simultaneously.
Let us consider that (α(αi ≥ 0),β(βi ≥ 0)) are the Lagrange multipliers. The unconstrained form of
Equations (7) and (8) can be written as

Lp(w, b, ξ,α,β) =
1
2

wTw + C
N∑

i=1

ξi −

N∑
i=1

αi
{
yi
[
wTzi + b

]
− 1 + ξi

}
−

N∑
i=1

βiξi (9)

Using the KKT equation, we will get

∂L
∂w

= 0⇒ w =
N∑

i=1

αiyizi (10)

∂L
∂b

= 0⇒ w =
N∑

i=1

αiyi = 0 (11)

∂L
∂ξ

= 0⇒ αi + ξi = C (12)

Using Equations (10)–(12) in Equation (9), we find the following dual optimization:

Max Ld(α) =
N∑

i=1
αi −

1
2

N∑
i, j=1

yiy jαiα jzT
i z j

s.t


0 ≤ αi ≤ C
N∑

i=1
αiyi = 0

(13)

3.3. Support Vector Machine for the Non-Linear Case (Kernel Machine)

If input data are linearly separable, then it is easy to find the decision boundary to separate them
into two or more classes based on the target feature. However, in most of the cases, the input data
will not be linearly separable, and it would remain inappropriate to use linear decision boundary as a
separator. To resolve this issue, input features are transformed onto a higher-dimensional space, given
by Mercer (1909), and this concept is known as kernel method (Cristianini and Shawe-Taylor 2000).
The input data will still be nonlinear, but the data can separate into two or more subspaces using an
appropriate support vector classifier.

Figure 4 given below shows how the input data can be converted into a higher dimension by
using kernel methods. The newly transformed coordinates show only the transformed data in a higher
dimension. If z is the input data, then the transformed data in the new feature space are represented
by φ(z). The inner product of data in the new feature space is represented by a kernel function as in
Figure 4.

φ
(
zi, z j

)
= K

(
zi, z j

)
(14)
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Kernel Trick

Equation (13) has been transformed into a new form for nonlinearly separable data using a kernel
function and can be written as follows:

Max Ld(α) =
N∑

i=1
αi −

1
2

N∑
i,j=1

yiyjαiαjK
(
zi, zj

)
s.t.


0 ≤ αi ≤ C
N∑

i=1
αiyi = 0

(15)

Here, “C” is the trade-off parameter included in Equation (15) to minimize the classification error
and maximize the margin. We can find the optimal hyperplane using Equation (15). Using the new
feature space, the weight vector “w” can be written as

w =
N∑

i=1

yiαiφ(zi) (16)

The bias term “b” is computed through the kernel function given as

b = yi −

NSV∑
i,j=1

yiαiK
(
zi, zj

)
(17)

The hyperplane is defined as
h(z) = wTφ(z) + b (18)

Using Equations (15)–(18), the equation of the hyperplane can be stated as

h(z) =
N∑

i=1

yiαiK(z, zi) + b (19)

In this paper, we used the SVM technique with the appropriate kernel as given in Table 1 to find
the best predictive model and stress quantification.
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Table 1. Kernel functions.

Mathematical Kernel Equation Name of Kernel

K
(
zi, zj

)
=

(
zi

Tzj + p
)

Linear

K
(
zi, zj

)
= exp

(
−α

[
‖zi − zj‖

2
])

RBF (Radial Basis Function)

Here p and α are the hyperplane parameters and need to be optimized.

3.4. Overfitting and Cross-Validation

There is always a likelihood that the models may perform well on the training data but have poor
performance for the unseen data. This case is known as overfitting. To resolve this issue, we used
K-fold cross-validation in this study to overcome the problem of overfitting (Moore 2001).

K-fold cross-validation is a machine learning technique to check the stability and tune the
parameters of the model. We divided the parent data into two parts in the proportions of 75% and 25%
for training and testing data, respectively. We trained our model with training data and measured the
accuracy of the testing data. In the case of K-Fold cross-validation, the input data were divided into
“K” subsets, and we repeated this process “K” times. Out of k total subsets, one subset was used for the
test set, and the remaining “K-1” subsets were used for training the methods. The algorithm error was
calculated by taking the average of the error estimated during all “K” trials. By using this approach, we
can eliminate the problem of overfitting. In this method, we used the 5-fold cross-validation technique,
and the same is demonstrated in Figure 5.
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4. Empirical Results and Discussion

4.1. Empirical Results

The first part of the feature selection is based on the relief algorithm that uses instance-based
learning (Sun et al. 2009). The method calculates the weight for each feature as discussed in Section 3.1.
In this method, the dependent variable is the financial position of banks classified as failed or survived.
The important and useful features have relief scores greater than zero, and the redundant and
non-significant features have relief scores either zero or less than zero. Sixteen out of 100 features have
been selected based on relief scores as given in Table 2.
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Table 2. List of features with positive weights assigned by the relief algorithm.

Subordebt_TA (t−2) 0.18
Subordebt_TA (t−1) 0.12

Tier1CAR(t−2) 0.1
Provision_for_loan_Interest_income (t−4) 0.1

Subordebt_TA(t−3) 0.09
Provision_for_loan_Interest_income(t−1) 0.08
Provision_for_loan_Interest_income(t−2) 0.08
Provision_for_loan_Interest_income(t−3) 0.07

TA_employee(t−3) 0.07
TA_employee(t−2) 0.06

Tier1CAR(t−1) 0.06
TA_employee(t−4) 0.05
TA_employee(t−1) 0.05

Noninterest_expences_Int_income(t−3) 0.04
Subordebt_TA(t−4) 0.02

Salaries_and_employees_benefits_Int_income(t−3) 0.01

From Table 2 it is clear that, apart from recent information (t−1), some past information (t−2, t−3,
and t−4) was also useful for bankruptcy prediction. The parent data were divided into two parts,
training and testing, in the proportions of 75% and 25%, respectively. The training and testing data
contained information of 44 and 14 banks, respectively. The model was formulated on the training
data and validated on the testing dataset. With regards to the division of the data in training and
testing sets, we maintained the same proportion of classes (failed or survived), as in the case of parent
data. This was primarily to ensure that the weights between failed and survived classes were the same
across all datasets.

In the second part of the feature selection method, we fed 16 features, given in Table 2, into SVM,
and we refined the input features through the shrinking process. At each step, we compared the
accuracy of the base feature set with all input features created by eliminating one input feature from
the base input feature set. For instance, if the base feature set contained “p” features, we equated the
base feature set with all probable sets of (p−1) input features. If the performance of the base feature set
was not the best, then a (p–1) size feature set that gives the highest improvement on the base feature set
swapped the base feature set in the next phase of iteration. This process remained until no progress was
achieved by reducing the base feature set. Here, we tried only the two most common kernel functions:
linear and radial basis function kernel (RBFK). We started iterations by taking all combinations from 16
features to obtain the best input in support vector machine with the linear kernel (SVMLK) and RBF
kernel (SVMRK) at a time. SVMLK had the best accuracy with two explanatory features, Tier1CAR(t−1)
and provision_for_loan_Interest_income(t−1), whereas SVMRK had the best accuracy with four
explanatory features—subordebt_TA(t−1), Tier1CAR(t−1), provision_for_loan_Interest_income(t−2),
and noninterest_expences_Int_income(t−3)—out of 16 features.

The best predictive results were achieved by SVMLK when the threshold value was 6.97. The SVMLK
model gave 94.44% predictive accuracy, 75% sensitivity, and 100% specificity. The coefficients of input
features for the linear decision boundary formed by SVMLK are mentioned below.

Input Features Coefficient

provision_for_loan_Interest_income(t−1) 6.056
Tier1CAR(t−1) 4.37

Bias Term 3.96
Cut-off value 6.97
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The failure and survival subspaces were divided based on the position of banks concerning the
decision boundary. If the sum of the feature products and its coefficients with bias term was greater
than 6.97, then the bank was classified as a survival bank, and a failed bank otherwise.

The SVMLK gave 100% accuracy for the surviving banks and 75% for failed banks, as shown in
Table 3. The total accuracy of the SVMLK was 92.86%. The SVMRK gave 100% accuracy for the surviving
banks and 0% for failed banks, as shown in Table 4. The total accuracy of the SVMRK was 71.43%. Our
best model was obtained by using the SVMLK with an overall misclassification rate of 7.14%, while the
best model with SVMRK had a 29.57% rate of misclassification. In the case of SVMLK, the best accuracy
was obtained by using the features Tier1CAR(t−1) and provision_for_ loan_Interest_income(t−1),
while in the case of SVMRK, the best accuracy was obtained by using the features subordebt_TA(t−1),
Tier1CAR(t−1), provision_for_loan_Interest_income(t−2), and noninterest_expences_Int_income(t−3).
In the case of SVMLK, both the features Tier1CAR(t−1) and provision_for_ loan_Interest_income(t−1)
were recent information for the banks.

Table 3. Overall accuracy of SVMLK on the testing dataset.

Total Accuracy Solvent Predictive Accuracy Insolvent Predictive Accuracy

92.86% 100% 75%

Table 4. Overall accuracy of SVMRK on the testing dataset.

Total Accuracy Solvent Predictive Accuracy Insolvent Predictive Accuracy

71.43% 100% 0%

4.2. Stress Quantification of Banks

Decision Linear Boundary

It is clear from Section 4.1 that the SVMLK forecasting model gave the maximum accuracy.
This model generated a hyperplane that classified the banks into two classes, solvent and insolvent,
with two input features: (a) provision_for_loan_Interest_income(t−1) and (b) Tier1CAR(t−1). The
mathematical equation of the linear hyperplane is

6.056 × provision_for_loan_Interest_income(t−1) + 4.37 × Tier1CAR(t−1) − 3.01 = 0, while the
cut-off is scaled to zero.

Based on the above linear hyperplane given by the SVMLK model, we found the answer to some
questions, as given below, by using geometrical interpretation.

(a) By using the SVMLK predictive model, is it possible to find quantitative information about bank
features to avoid a predicted bank failure?

(b) How financially strong are the banks that are predicted as survival banks by using SVMLK
predictive model?

Visualization of a decision boundary derived from SVM is easy when the kernel is linear and only
two input features have been used.

4.3. Mathematical Approach for Stress Quantification Using SVMLK

4.3.1. Change in Both Features

In this study, our focus was on the line (linear kernel) ax + by + c = 0, which divided the data
into two classes: failure and survival. We take point B whose coordinates are

(
xb, yb

)
in the failed
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subspace, as shown in Figure 6, and if ax + by + c = 0 is a decision boundary of the model, then the
perpendicular distance of this point B

(
xb, yb

)
from the decision boundary is given by Equation (20).

d(B, B′ ) =

∣∣∣axb + byb + c
∣∣∣√

a2 + b2
(20)
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The minimum distance that changes the position of point B
(
xb, yb

)
from failure to survival

subspace is the perpendicular distance from point B to the line given in Equation (1).
The minimum change needed to move point B

(
xb, yb

)
from failure subspace to survival subspace

is B′
(
xb − a

axb+byp+c
√

a2+b2
, yp − b axb+byb+c

√
a2+b2

)
, and the difference in the coordinates of B and B’is given by

B′
(
a

axp+byp+c
√

a2+b2
, b

axp+byp+c
√

a2+b2

)
.

4.3.2. Change in One Feature

If we want to move point B from failure subspace to survival subspace by keeping one feature
constant, say yb, then xb moves to the new point

(_
x b, yb

)
, where a

_
x b + byb + c = 0 and

_
x b =(

−c−byb
a

)
= −

(
c+byb

a

)
.

In another way, if we want to move point P from failure subspace to survival subspace by keeping
xp, then yp moves to the new point

(
xb, yb

)
, where axb + byb + c = 0 and yb =

(
−c−axb

b

)
= −

( c+axb
b

)
.

4.4. Comparison of Bank Financial Health

From Sections 4.3.1 and 4.3.2, we can determine the changes needed in the financial features of
the bank under different situations that will change the forecasted position of the banks. Figure 7
represents the forecasted position of banks with two features: provision_for_loan_Interest_ income(t−1)
and Tier1CAR(t−1).
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If the two points L and M represent the banks forecasted as failed, and if d(L) > d(M), where d(L)
and d(M) are the perpendicular distances from L and M to the decision boundary, as given in Figure 7,
then this shows that bank L is financially weaker than bank M.

In another way, if the two points L and M represent the banks that are forecasted as surviving
banks, and if d(L) > d(M), as given in Figure 8 where d(L) and d(M) are the perpendicular distances
from L and M to the decision boundary, then this indicates that bank L is financially healthier in
comparison to bank M.
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point L and M from the linear decision boundary is reduced by amount “c”, then the new displaced
points towards the boundary are Lt and Mt as shown in Figure 9.

If d (M) > c, both banks will be in survival subspace. If d (L) > c > d (M), the bank M lies in
insolvent subspace, and bank L will still be healthy. If c > d (L), both banks L and M will lie in insolvent
subspace. Based on the above analysis, we can conclude that the financial health of bank L is more
sensitive in comparison to the financial health of bank M, and the distance of points L and M from
the decision boundary shows the robustness or confidence about their financial health. This method
can also be used by a monitoring committee to understand the different scenarios of the bank by
making changes in financial features. The bank can determine the minimum changes required to avoid
bankruptcy in the financial features and minimum changes required to move forecasted banks from
failure subspace to survival subspace.
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The value of the parameters “a”, “b”, and “c” for the decision boundary determined by SVMLK,
as given in Equation (1), are 6.056, 4.37, and −3.01, respectively, where “a” is a coefficient of
provision_for_loan_Interest_income(t−1), “b” is a coefficient of Tier1CAR(t−1), and “c” is a bias term.
The decision boundary equation is given by

6.056 × provision_for_loan_Interest_income(t−1) + 4.37 × Tier1CAR(t−1) − 3.01 = 0.
The perpendicular distance from point B (provision_for_loan_Interest_income(t−1), Tier1CAR

(t−1)) to the decision boundary is given by

d(B, B′) = |6.056 × provision_for_loan_Interest_income(t−1) + 4.37 × Tier1CAR(t−1) − 3.01|
√

6.056̂2 + 4.37̂2
(21)

Using Equation (21), we calculated the distance of banks which were forecasted as solvent and
insolvent from the decision boundary. The minimum and maximum distances of banks forecasted as
solvent from the linear decision boundary were 8.53 and 29.52, while the minimum and maximum
distances of banks forecasted as insolvent from the linear decision boundary were 4.02 and 10.86.
Based on these distances, we used sensitivity analysis to quantify the amount of stress based on two
important bank features: provision_for_loan_Interest_income(t−1) and Tier1CAR(t−1).

Here, we will take an example to understand the applicability of stress quantification. We will
not disclose the name of the bank in order to maintain secrecy. For example, bank “A”, which has
been predicted by the model as the failed bank, is selected for stress quantification. The values of
the features provision_for_loan_Interest_income(t−1) and Tier1CAR(t−1) are (0.00123, 0.1120) for
bank “A”. The position of bank “A” with respect to the decision boundary of SVMLK lies in the
insolvency region.

4.4.1. Changing the Status of Bank “A” from Insolvent to Solvent by Changing Both Variables

Table 5 lists the original values of the two features provision_for_loan_Interest_income(t−1) and
Tier1CAR(t−1) of bank “A” as well as its critical values to move from solvent subspace to insolvent
subspace. These critical values quantify the amount of provision_for_loan_Interest_income(t−1) and
Tier1CAR(t−1) needed to cross the decision boundary of insolvent to the solvent subspace.

Table 5. Features, original values, and critical values.

Features Original Values Critical Values

provision_for_loan_Interest_income(t−1) 0.00123 2.0
Tier1CAR(t−1) 0.1123 1.6



Risks 2020, 8, 52 16 of 22

The minimum changes required in provision_for_loan_Interest_income(t−1) and Tier1CAR(t−1)
to move bank “A” from insolvent subspace to solvent subspace is (2.0, 1.60).

4.4.2. Marginal Cases: Changing the Status of Bank “A” from Insolvent to Solvent by Changing a
Single Variable

Case 1. In this case, we kept the second feature Tier1CAR(t−1) constant while changing the value of the first
feature provision_for_loan_Interest_income(t−1).

Features Original Values Critical Values

provision_for_loan_Interest_income(t−1) 0.00123 0.49
Tier1CAR(t−1) 0.1123 0.1123

Based on the distance measure of bank “A” from the decision boundary, we can calculate the minimum
changes required to move bank “A” from insolvent to solvent subspace. The critical values of the two features
provision_for_loan_Interest_income(t−1) and Tier1CAR(t−1) were 0.00123 and 0.1120. Based on the critical
values, we can conclude that bank “A” should maintain the provision_for_loan_Interest_income(t−1) more than
0.49 by keeping Tier1CAR(t−1) constant to move the status of Bank “A” from insolvent to solvent subspace.

Case 2. In this case, we kept the first feature provision_for_loan_Interest_income(t−1) constant while changing
the value of the second feature Tier1CAR(t−1).

Features Original Values Critical Values

provision_for_loan_Interest_income(t−1) 0.00123 0.00123

Tier1CAR(t−1) 0.1123 0.54

If we change Tier1CAR(t−1) by keeping provision_for_loan_Interest_income(t−1) constant, then the bank should
keep the value of Tier1CAR(t−1) more than 0.54 to move from insolvent subspace to solvent subspace. If we
arrange the rank of the banks forecasted as failed based on the distance from decision boundary, then the bank
with a rank of one (higher distance from decision boundary) will feel more financial stress in comparison to rank
two and so on. Similarly, if we arrange the rank of the banks forecasted as survived based on the distance from
decision boundary, then the bank having a higher rank (higher distance from decision boundary) will feel more
financial security in comparison to lower-ranked banks.
By using this SVMLK and rank-based approach, each bank is classified as “solvent” or “insolvent”, and banks are
ranked based on the distance from the decision boundary. The result of this study may prove useful for managers
and the government for micro-level supervision. This method of stress quantification is useful to create an early
warning for banks that are likely to fail soon.

5. Conclusions

Early warning of potential bank failure is important for various stakeholders like management
personnel, lenders, and shareholders. In this study, we used the support vector machine to predict the
financial status of banks. We used a two-step feature selection relief algorithm and support vector
machine to arrive at the best predictive model. The accuracies of SVMLK and SVMRK on the sample
data were found to be 92.86% and 71.43%, respectively. Based on the predictive accuracy of these two
models, we concluded that SVMLK is a better predictive model than SVMRK and uses two features,
provision_for_loan_Interest_income(t−1) and Tier1CAR(t−1). Further, by using SVMLK, we used the
proposed stress quantification technique to compare the financial health of banks. We also used a
geometrical interpretation of the decision boundary of SVMLK to measure the minimum changes
required for banks to move from failure subspace to survival subspace. This, in turn, will help bank
management to take appropriate steps to avoid possible bankruptcy in the future.
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6. Limitations of the Study

As stated earlier in this study, the number of failed banks in India is found to be relatively low.
Hence, data available for failed banks may seem to be relatively limited compared to that of surviving
banks. This data imbalance is one of the major limitations of the SVM model used in this study.
Another important limitation of the study is that, if the model is replicated with other firms, one may
get other forms of SVM than SVMLK; thus, interpretation of the results would be difficult. Another
limitation we foresee is that it is possible to get a different combination of features while working on
the datasets of firms in other countries. This could be due to various country-specific reasons like
government policies, economic indicators, and so forth.

Author Contributions: The authors have equal contributions. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of 25 features calculated for banks.

Name Type Definition

Financial Status
(Failed or Survival) Categorical Binary indicator equal to 1 for failed banks

and 0 for surviving banks

Total_Assets (TA) Quantitative Total earning assets

Cash_Balance_TA Quantitative Cash and due from depository
institutions/TA

Net_Loan_TA Quantitative Net loans /TA

Deposit_TA Quantitative Total Deposits/TA

Subordinated_debt_TA Quantitative Subordinated Debt/TA

Average_Assets_TA Quantitative Average Assets till 2017/Total Assets

Tier1CAR Quantitative Tier1 risk-based capital/Total Assets

Tier2CAR Quantitative Tier 2 risk-based capital/Total Assets

IntincExp_Income Quantitative Total interest expense/total interest income

Provision_for_loan_Interest_income Quantitative Provision for loan and lease losses/total
interest income

Nonintinc_intIncome Quantitative Total noninterest income/total
interest income

Return_on_capital_employed Quantitative Salaries and employee benefits/total
interest income

Operating_income_T_Interest_income Quantitative net operating income/total interest income

Cash_dividend_T_Interest_Income Quantitative Cash dividends/total interest income

Operating_income_T_Interest_income Quantitative Net operating income/total interest income

Net_Interest_margin Quantitative Net interest margin earned by bank

Return_on_assets Quantitative Return on total assets of firm



Risks 2020, 8, 52 18 of 22

Table A1. Cont.

Name Type Definition

Equity_cap_TA Quantitative Equity capital to assets

Return_on_Assets Quantitative Return on total assets of banks

Noninteerst_Income Quantitative Noninterest Income earned by banks

Treasury_income_T_Interest_income Quantitative Net income attributable to bank/total
interest income

Net_loans_Deposits Quantitative Net loans and leases to deposits

Net_Interest_margin Quantitative Net interest income expressed as a
percentage of earning assets.

Salaries_employees_benefits_Int_income Quantitative Salaries and employee benefits/total
interest income

TA_employee Quantitative Total assets per employee of bank

Appendix B

Table A2. List of 100 features and weights calculated by the relief algorithm.

Variables Name Relief Score

Tier1CAR(t−1) 0.18
Subordebt_TA(t−1) 0.12

Tier2CAR(t−2) 0.1
Provision_for_loan_Interest_income(t−4) 0.1

Subordebt_TA(t−3) 0.09
Provision_for_loan_Interest_income(t−1) 0.08
Provision_for_loan_Interest_income(t−2) 0.08
Provision_for_loan_Interest_income(t−3) 0.07

TA_emplyee(t−3) 0.07
TA_emplyee(t−2) 0.06

Tier2CAR(t−1) 0.06
TA_emplyee(t−4) 0.05
TA_emplyee(t−1) 0.05

Noninterest_expences_Int_income(t−3) 0.04
Subordebt_TA(t−4) 0.02

Salaries_and_employees_benefits_Int_income(t−3) 0.01
Tier2CAR(t−3) 0.00

Return_on_capital_employed_(t−2) 0.00
Operating_income_T_Interest_income(t−4) 0.00

Cash_TA(t−3) 0.00
Noninterest_expences_Int_income(t−4) 0.00

Deposits_TA(t−2) 0.00
Return_on_advances_adjusted_to_cost_of_funds(t−1) 0.00

Operating_income_T_Interest_income(t−3) 0.00
Return_on_capital_employed(t−3) 0.00

Salaries_and_employees_benefits_Int_income(t−4) 0.00
Net_loans_TA(t−3) 0.00
Deposits_TA(t−1) 0.00
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Table A2. Cont.

Variables Name Relief Score

Treasury_income_T_Interest_income(t−4) 0.00
Return_on_assets(t−3) 0.00

Net_loans_TA(t−2) 0.00
Net_loans_TA(t−1) 0.00

Return_on_assets(t−1) 0.00
Return_on_capital_employed(t−4) 0.00

IntincExp_Income(t−2) 0.00
Cash_TA(t−2) 0.00

IntincExp_Income(t−4) 0.00
Noninterest_expences_Int_income(t−1) 0.00

Return_on_advances_adjusted_to_cost_of_funds(t−2) 0.00
Nonintinc_intIncome(t−4) 0.00
Nonintinc_intIncome(t−1) 0.00

Deposits_TA(t−3) 0.00
Equity_cap_TA(t−1) 0.00

IntincExp_Income(t−3) 0.00
Operating_income_T_Interest_income(t−1) 0.00

Avg_Asset_TA(t−2) 0.00
Total_Assets(t−3) 0.00

Noninteerst_Income(t−3) 0.00
Provision_for_loan(t−2) 0.00

Total_Assets(t−4) 0.00
Salaries_and_employees_benefits_Int_income(t−1) 0.00

Noninteerst_Income(t−2) 0.00
Total_Assets(t−1) 0.00

Return_on_capital_employed(t−1) 0.00
Noninteerst_Income(t−4) 0.00

Subordebt_TA(t−2) 0.00
Total_Assets(t−2) 0.00

Noninterest_expences_Int_income(t−2) 0.00
Equity_cap_TA(t−2) 0.00

Noninteerst_Income(t−1) 0.00
Salaries_and_employees_benefits_Int_income(t−2) 0.00

Nonintinc_intIncome(t−3) 0.00
Treasury_income_T_Interest_income(t−3) 0.00

Return_on_assets(t−4) 0.00
Treasury_income_T_Interest_income(t−1) 0.00

Tier1CAR(t−3) 0.00
Avg_Asset_TA(t−3) 0.00

Tier1CAR(t−4) 0.00
Equity_cap_TA(t−3) 0.00

IntincExp_Income(t−1) 0.00
Return_on_assets(t−2) 0.00

Treasury_income_T_Interest_income(t−2) 0.00
Net_Interest_margin(t−4) 0.00

Tier1CAR(t−2) 0.00
Cash_TA(t−1) 0.00

Provision_for_loan(t−4) 0.00
Net_Interest_margin(t−2) 0.00
Net_Interest_margin(t−1) 0.00

Cash_TA(t−4) 0.00
Deposits_TA(t−4) 0.00

Equity_cap_TA(t−4) 0.00
Net_loans_TA(t−4) 0.00
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Table A2. Cont.

Variables Name Relief Score

Return_on_advances_adjusted_to_cost_of_funds(t−4) 0.00
Return_on_advances_adjusted_to_cost_of_funds(t−3) 0.00

Provision_for_loan(t−3) 0.00
Avg_Asset_TA(t−4) 0.00

Operating_income_T_Interest_income(t−2) 0.00
Net_loans_Deposits(t−3) 0.00

Nonintinc_intIncome(t−2) 0.00
Net_Interest_margin(t−4) 0.00
Net_loans_Deposits(t−4) 0.00

Avg_Asset_TA(t−1) 0.00
Tier2CAR(t−4) −0.01

Net_loans_Deposits(t−2) −0.01
Cash_dividend_T_Interest_Income(t−2) −0.01
Cash_dividend_T_Interest_Income(t−1) −0.01
Cash_dividend_T_Interest_Income(t−4) −0.01

Net_loans_Deposits(t−1) −0.01
Cash_dividend_T_Interest_Income(t−3) −0.02
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