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Abstract: After a brief overview of aspects of computational risk management, the implementation of
the rearrangement algorithm in R is considered as an example from computational risk management
practice. This algorithm is used to compute the largest quantile (worst value-at-risk) of the sum of
the components of a random vector with specified marginal distributions. It is demonstrated how
a basic implementation of the rearrangement algorithm can gradually be improved to provide a
fast and reliable computational solution to the problem of computing worst value-at-risk. Besides a
running example, an example based on real-life data is considered. Bootstrap confidence intervals
for the worst value-at-risk as well as a basic worst value-at-risk allocation principle are introduced.
The paper concludes with selected lessons learned from this experience.

Keywords: computational risk management; rearrangement algorithm; implementation; R; bootstrap;
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1. Introduction

Computational risk management is a comparably new and exciting field of research at the intersection
of statistics, computer science and data science. It is concerned with computational problems of
quantitative risk management, such as algorithms, their implementation, computability, numerical
robustness, parallel computing, pitfalls in simulations, run-time optimization, software development
and maintenance. At the end of the (business) day, solutions in quantitative risk management are to be
run on a computer of some sort and thus concern computational risk management.

There are various factors that can play a role when developing and implementing a solution to a
problem from computational risk management in practice, for example:

(1) Theoretical hurdles. Some solutions cannot be treated analytically anymore. Suppose X =

(X1, . . . , Xd) is a d-dimensional random vector of risk factor changes, for example negative
log-returns, with marginal distribution functions F1, . . . , Fd and we are interested in computing
the probability P(Xj ∈ (F←j (pj), F←j (qj)], for all j) of the jth risk factor change to take on values
between its pj- and its qj-quantile for all j. Even if we knew the joint distribution function H of X,
computing such a probability analytically involves evaluating H at 2d different values. For d ≈ 32,
this can already be time-consuming (not to speak of numerical inaccuracies appearing, which
render the formula as good as useless) and for d ≈ 260 the number of points at which to evaluate
H is roughly equal to the estimated number of atoms in the universe.

(2) Model risk. The risk of using the wrong model or a model in which assumptions are not fulfilled;
every solution we implement is affected by model risk to some degree. In the aforementioned
example, not knowing the exact H leads to model risk when computing the given probability by
Monte Carlo integration.

(3) The choice of software. The risk of using the wrong software; in the above example, a software
not suitable for simulating from joint distribution functions H. Another example is to use a

Risks 2020, 8, 47; doi:10.3390/risks8020047 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0001-8009-4665
http://dx.doi.org/10.3390/risks8020047
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/8/2/47?type=check_update&version=2


Risks 2020, 8, 47 2 of 28

programming language too low-level for the problem at hand, requiring to implement standard
tasks (sampling, optimization, etc.) manually and thus bearing the risk of obtaining unreliable
results because of many possible pitfalls one might encounter when developing the tools needed
to implement the full-blown solution. These aspects become more crucial nowadays since efficient
solutions to different problems are often only available in one software each but companies need
to combine these solutions and thus the corresponding software in order to solve these different
problems at hand.

(4) Syntax errors. These are compilation errors or execution errors by an interpreter because of a
violation of the syntax of the programming language under consideration. Syntax errors are
typically easy to detect as the program simply stops to run. Also, many programming languages
provide tools for debugging to find the culprits.

(5) Run-time errors. These are errors that appear while a program runs. Quite often, run-time
errors are numerical errors, errors that appear, for example, because of the floating-point
representation of numbers in double precision. Run-time errors can sometimes be challenging
to find, for example, when they only happen occasionally in a large-scale simulation study and
introduce a non-suspicious bias in the results. Run-time errors can sometimes also be hard
to reproduce.

(6) Semantic errors. These are errors where the code is syntactically correct and the program runs,
but it does not compute what is intended (for example, due to a flipped logical statement).
If results do not look suspicious or pass all tests conducted, sometimes measuring run time can
be the only way to find such problems (for example, if a program finishes much earlier than
expected).

(7) Scaling errors. These are errors of an otherwise perfectly fine running code that fails when run at
large scale. This could be due to a lack of numerical robustness, the sheer run time of the code,
an exploding number of parameters involved, etc.

(8) User errors. These are errors caused by users of the software solution; for example, when calling
functions with wrong arguments because of a misinterpretation of their meaning. The associated
risk of wrongly using software can, by definition, often be viewed as part of operational risk.

(9) Warnings. Warnings are important signs of what to watch out for; for example, a warning
could indicate that a numerical optimization routine has not converged after a predetermined
number of steps and only the current best value is returned, which might be far off a local or the
global optimum. Unfortunately, especially in large-scale simulation studies, users often suppress
warnings instead of collecting and considering them.

(10) Run time. The risk of using or propagating method A over B because the run time of A beats the
one of B by a split second or second, not realizing that run time depends on factors such as the
hardware used, the current workload, the algorithm implemented, the programming language
used, the implementation style, compiler flags, whether garbage collection was used, etc. There is
not even a unique concept of time (system vs. user vs. elapsed time).

(11) Development and maintenance. It is significantly more challenging to provide a robust,
well developed, maintained and documented class of solutions as part of a bigger, coherent
software package rather than a single script with hard-coded values to solve a special case of the
same problem. Although stand-alone scripts get specific tasks done by 4 p.m., having a software
package available is typically beneficial mid- to long-term. It can significantly reduce the risk of
the aforementioned errors by reusing code well tested and applied by the users of the package or
it can avoid the temptation of introducing errors long after the code was developed just because it
suddenly looks suspicious although it is actually correct.

At the core of all solutions to problems from computational risk management lies an
algorithm, a well-defined (unambiguous) finite set of instructions (steps) for solving a problem.
An implementation of an algorithm in a programming language allows one to see how a problem is
actually solved, unlike a formulation in pseudo-code, which is often vague and thus opens the door
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for misinterpretation. A classical example is if pseudo-code says “Minimize the function. . . ” without
mentioning how initial values or intervals can be obtained. Another example is “Choose a tolerance
ε > 0. . . ” but one is left in the dark concerning what suitable tolerances ε are for the problem at hand;
they often depend on the unknown output one is interested to compute in the first place, see Step (1)
of Algorithm 1 later. Oftentimes, these are the hardest parts to solve of the whole problem and it
is important for research and scientific journals to accept corresponding contributions as important
instead of brushing them off as “not innovative” or representing “no new contribution”.

A fundamental principle when developing an implementation is that of a minimal working example.
A minimal working example is source code that is a working example in the sense that it allows someone
else to reproduce a problem (sufficiency) and it is minimal in the sense that it is as small and as simple
as possible, without non-relevant code, data or dependencies (necessity). Minimal working examples
are often constructed from existing larger chunks of code by divide and conquer, that is by breaking
down the problem into sub-problems and commenting out non-relevant parts until the code becomes
simple enough to show the problem (which is then easier to grasp and solve or can be sent to an expert
in the field to ask for help).

In this paper, we consider the problem of implementing the rearrangement algorithm (RA)
of Embrechts et al. (2013) as an example from computational risk management. The RA allows one to
compute, for example, the worst value-at-risk of the sum of d risks of which the marginal distributions
are known but the dependence is unknown; it can also be used to compute the best value-at-risk
or expected shortfall, but we focus on the worst value-at-risk. Section 2 contains the necessary
details about the RA. Section 3 addresses how the major workhorse underlying this algorithm can be
implemented in a straightforward way in R. This turns out to be inefficient and Section 4 presents ways
to improve the implementation. Section 5 utilizes the implementations in our R package qrmtools
for tracing and to motivate the chosen default tolerances, and Section 6 considers a real data example,
presents a bootstrap confidence interval for worst value-at-risk and introduces a basic capital allocation
principle based on worst value-at-risk. The lessons learned throughout the paper are summarized in
Section 7.

2. The Rearrangement Algorithm in a Nutshell

Let L1 ∼ F1, . . . , Ld ∼ Fd be continuously distributed loss random variables over a predetermined
period and let L+ = ∑d

j=1 Lj be the total loss over that time period. From a risk management perspective
we are interested in computing value-at-risk (VaRα(L+), VaRα or VaR) at confidence level α ∈ (0, 1),
that is the α-quantile F←L+(α) = inf{x ∈ R : FL+(x) ≥ α} of the distribution function FL+ of L+; in
typical applications, α ∈ [0.99, 1). If we had enough joint observations, so realizations of the random
vector L = (L1, . . . , Ld), we could estimate VaRα(L+) empirically. A major problem is that one often
only has realizations of each of Lj individually, non-synchronized. This typically allows to pin down
F1, . . . , Fd but not the joint distribution function H of L. By Sklar’s Theorem, such H can be written as

H(x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ Rd,

for a unique copula C. In other words, although we often know or can estimate F1, . . . , Fd, we typically
neither know the copula C nor have enough joint realizations to be able to estimate it. However,
the copula C determines the dependence between L1, . . . , Ld and thus the distribution of L+ as the
following example shows.

Example 1 (Motivation for rearrangements).
Consider d = 2 and Lj ∼ Fj(x) = 1− x−1/2, x ≥ 1, j = 1, 2, that is both losses are Pareto Type I

distributed with parameter 1/2. The left-hand side of Figure 1 shows n = 1000 realizations of L = (L1, L2) =

(F←1 (U1), F←2 (U2)), once under independence, so for (U1, U2) ∼ U(0, 1)2, and once under comonotonicity,
so for U1 = U2 ∼ U(0, 1). We see that the different dependence structures directly influence the shape of the
realizations of L.



Risks 2020, 8, 47 4 of 28

1 > qF <- function(y) (1-y)^(-2) # quantile function (the same for both margins here)
2 > n <- 1000 # sample size
3 > set.seed(271) # for reproducibility
4 > L1 <- qF(runif(n)) # losses 1
5 > L2 <- qF(runif(n)) # losses 2
6 > L.indep <- cbind(L1, L2)
7 > L.comon <- cbind(L1, sort(L2)[rank(L1)]) # sort L2 comonotone to L1
8 > plot(L.indep, log = "xy", xlab = expression(L[1]), ylab = expression(L[2]))
9 > points(L.comon, pch = 4)

10 > legend("top", bty = "n", pch = c(1, 4),
11 + legend = c("Independence", "Comonotonicity"))
12 > mtext(substitute(n==n.~"samples of two Pareto Type 1 losses with parameter 0.5",
13 + list(n. = n)), side = 4, line = 0.5, adj = 0)

As the middle of Figure 1 shows, the dependence also affects VaRα(L+). This example is chosen to be rather
extreme, (perhaps) in (stark) contrast to intuition, VaRα(L+) under independence is even larger than under
comonotonicity, for all α; this can also be shown analytically in this case in a rather tedious calculation; see
(Hofert et al. 2020, Exercise 2.28).

1 > alpha <- seq(0.5, 0.9999, length.out = 301)
2 > VaR.L.indep.Par <- 2 * (1+sqrt(1-(1-alpha)^2)) / (1-alpha)^2
3 > VaR.L.comon.Par <- 2 * qF(alpha)
4 > plot(alpha, VaR.L.indep.Par, type = "l", log = "y", lty = 2, xlim = range(alpha),
5 + ylim = range(VaR.L.indep.Par, VaR.L.comon.Par),
6 + xlab = expression(alpha), ylab = expression(VaR[alpha](L^{'+'})))
7 > lines(alpha, VaR.L.comon.Par)
8 > legend("topleft", bty = "n", lty = c(2, 1),
9 + legend = c("Independence", "Comonotonicity"))

10 > mtext("Two Pareto Type 1 losses with parameter 0.5", side = 4, line = 0.5, adj = 0)

The right-hand side of Figure 1 shows the same plot with the marginal distributions now being gamma.
In this case, comonotonicity leads to larger values of VaRα(L+) than independence, but only for sufficiently
large α; the corresponding turning point seems to get larger the smaller the shape parameter of the second margin,
for example.

1 > shape <- c(1, 1/2)
2 > VaR.L.indep.Ga <- qgamma(alpha, shape = sum(shape))
3 > VaR.L.comon.Ga <- qgamma(alpha, shape = shape[1]) + qgamma(alpha, shape = shape[2])
4 > plot(alpha, VaR.L.indep.Ga, type = "l", log = "y", lty = 2, xlim = range(alpha),
5 + ylim = range(VaR.L.indep.Ga, VaR.L.comon.Ga),
6 + xlab = expression(alpha), ylab = expression(VaR[alpha](L^{'+'})))
7 > lines(alpha, VaR.L.comon.Ga)
8 > legend("topleft", bty = "n", lty = c(2, 1),
9 + legend = c("Independence", "Comonotonicity"))

10 > mtext(substitute("Two Gamma losses with shapes"~list(s1, s2),
11 + list(s1 = shape[1], s2 = shape[2])), side = 4, line = 0.5, adj = 0)
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Figure 1. One thousand realizations of independent L1, L2 from a Pareto Type I distribution with
parameter 1/2 (left), α 7→ VaRα(L+) for these L1, L2 (middle) and the same for two Gamma losses
with parameters 1 and 1/2 (right).

Note that we did not utilize the stochastic representation (L1, L2) = (F←1 (U), F←2 (U)), U ∼ U(0, 1),
for sampling L = (L1, L2). Instead, we sorted the realizations of L2 so that their ranks are aligned with those
of L1, in other words, so that the ith-smallest realization of L2 lies next to the ith-smallest realizations of L1.
The rows of this sample thus consist of (L(i)1, L(i)2), where L(i)j denotes the ith order statistic of the n realizations
L1j, . . . , Lnj of Lj. Such a rearrangement mimics comonotonicity between the realizations of L1 and L2. Note
that this did not change the realizations of L1 or L2 individually, so it did not change the marginal realizations,
only the joint ones.

As we learned from Example 1, by rearranging the marginal loss realizations, we can mimic
different dependence structures between the losses and thus influence VaRα(L+). In practice, the worst
VaRα(L+), denoted by VaRα(L+), is of interest, that is the largest VaRα(L+) for given margins
L1 ∼ F1, . . . , Ld ∼ Fd. The following remark motivates an objective when rearranging marginal
loss realizations in order to increase VaRα(L+) and thus approximate VaRα(L+).

Remark 1 (Objective of rearrangements).

(1) By Example 1, the question which copula C maximizes VaRα(L+) is thus, at least approximately,
the question of which reordering of realizations of each of L1, . . . , Ld leads to VaRα(L+). For any C,
the probability of exceeding VaRα(L+) is (at most, but for simplicity let us assume exactly) 1− α. How
that probability mass is distributed beyond VaRα(L+) depends on C. If we find a C such that L+ has a
rather small variance var(L+), more probability mass will be concentrated around a single point which can
help to pull VaRα(L+) further into the right tail and thus increase VaRα(L+); Figure 2 provides a sketch
in terms of a skewed t3 density. If that single point exists and if var(L+) = 0, then it must be expected
shortfall ESα(L+) = 1

1−α

∫ 1
α VaRu(L+)du, which provides an upper bound to VaRα(L+).
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fL+(x)

VaRα(L+) ESα(L+)

1 − α

Figure 2. Skewed t3 density of L+ with VaRα(L+) and the probability mass of (at most) 1− α exceeding it.

(2) It becomes apparent from Figure 2 that the distribution of L+ below its α-quantile is irrelevant for the
location of VaRα(L+). It thus suffices to consider losses L1, . . . , Ld beyond their marginal α-quantiles
F←1 (α), . . . , F←d (α), so the conditional losses Lj | Lj > F←j (α), j = 1, . . . , d, and their copula Cα, called
worst VaR copula. Note that since α is typically rather close to 1, the distribution of Lj | Lj > F←j (α)

(the tail of Lj) is typically modeled by a continuous distribution; this can be justified theoretically by the
Pickands–Balkema–de-Haan Theorem, see (McNeil et al. 2015, Section 5.2.1).

(3) In general, if var(L+) = 0 cannot be attained, the smallest point of the support of L+ given that
Lj > F←j (α), j = 1, . . . , d, is taken as an approximation to VaRα(L+).

The RA aims to compute VaRα(L+) by rearranging realizations of Lj | Lj > F←j (α), j = 1, . . . , d,
such that their sum becomes more and more constant, in order to approximately obtain the smallest
possible variance and thus the largest VaRα(L+). There are still fundamental open mathematical
questions concerning the convergence of this algorithm, but this intuition is sufficient for us to
understand the RA and to study its implementation. To this end, we now address the remaining
underlying concepts we need.

For each margin j = 1, . . . , d, the RA uses two discretizations of F←j beyond the probability α as
realizations of Lj | Lj > F←j (α) to be rearranged. In practice, one would typically utilize the available
data from Lj to estimate its distribution function Fj and then use the implied quantile function F←j of
the fitted Fj to obtain such discretizations; see Section 6. Alternatively, F←j could be specified by expert

opinion. The RA uses two discretizations to obtain upper and lower bounds to VaRα(L+), which,
when sufficiently close, can be used to obtain an estimate of VaRα(L+), for example, by taking the
midpoint. The two discretizations are stored in the matrices

Xα =
(

F−j
(

α + (1− α)
i− 1

N

))j=1,...,d

i=1,...,N
and Xα

=
(

F−j
(

α + (1− α)
i
N

))j=1,...,d

i=1,...,N
. (1)

These matrices are the central objects the RA works with. For simplicity of the argument, we
write Xα = (Xα

ij) if the argument applies to Xα or Xα. The RA iterates over the columns of Xα

and successively rearranges each column in a way such that the row sums (∑d
j=1 Xα

j )i=1,...,N of the
rearranged matrix have a smaller variance; compare with Remark 1.
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In each rearrangement step, the RA rearranges the jth column Xα
j of Xα oppositely to the vector

of row sums Xα
−j = ∑d

k=1,k 6=j Xα
k of all other columns, where Xα

k = (Xα
1k, . . . , Xα

Nk). Two vectors
a = (a1, . . . , aN) and b = (b1, . . . , bN) are called oppositely ordered if (ai1 − ai2)(bi1 − bi2) ≤ 0 for all
i1, i2 = 1, . . . , N. After oppositely ordering, the (second-, third-, etc.) smallest component of a lies next
to the (second-, third-, etc.) largest of b, which helps decrease the variance of their componentwise
sum. To illustrate this, consider the following example.

Example 2 (Motivation for oppositely ordering columns).
We start by writing an auxiliary function to compute a matrix Xα with the modification that for Xα,

1-quantiles F−j (1) appearing in the last row are replaced by F−j
(
α + (1− α)N−1/2

N
)
= F−j

(
1− 1−α

2N
)

to avoid
possible infinities; we come back to this point later. It is useful to start writing functions at this point, as we
can reuse them later and rely on them for computing partial results, inputs needed, etc. In R, the function
stopifnot() can be used to check inputs of functions. If any of the provided conditions fails, this would produce
an error. For more elaborate error messages, one can work with stop(). Input checks are extremely important
when functions are exported in a package (so visible to a user of the package) or even made available to users by
simply sharing R scripts. Code is often run by users who are not experts in the underlying theory or mechanisms
and good input checks can prevent them from wrongly using the shared software; see Section 1 Point (8). Also,
documenting the function (here: Roxygen-style documentation) is important, providing easy to understand
information about what the function computes, meaning of input parameters, return value and who wrote the
function.

1 > ##' @title Matrix Containing Marginal Quantile Functions Evaluated Beyond
2 > ##' the Confidence Level
3 > ##' @param N integer > 0 giving the number of discretization points used
4 > ##' @param alpha confidence level in (0,1)
5 > ##' @param qF list of marginal quantile functions
6 > ##' @param upper logical indicating whether the matrix for the upper (the default)
7 > ##' or the lower discretization matrix is computed
8 > ##' @return (N, length(qF))-matrix containing in the jth column the jth marginal
9 > ##' quantile function evaluated on an equidistant grid in [alpha, 1];

10 > ##' if upper is TRUE, the last point is treated separately to avoid
11 > ##' 1-quantiles which may be Inf.
12 > ##' @author Marius Hofert
13 > quantile_matrix <- function(N, alpha, qF, upper = TRUE)
14 + {
15 + stopifnot(N > 0, N %% 1 == 0, 0 < alpha, alpha < 1, is.list(qF),
16 + sapply(qF, is.function), is.logical(upper))
17 + p <- alpha + (1-alpha) * (1:(N-1)) / N # grid of probabilities in (alpha, 1)
18 + p <- if(upper) { # for upper bound
19 + c(p, (p[length(p)] + 1) / 2) # attach last point (midpoint)
20 + } else { # for lower bound
21 + c(alpha, p) # attach first point = alpha
22 + }
23 + sapply(qF, function(qF.) qF.(p)) # (N, d)-matrix X^alpha
24 + }

Consider d = 2 and Lj ∼ Fj(x) = 1− (1 + x)−θj , x ≥ 0, j = 1, 2, that is each of the two losses is Pareto
distributed; we choose θ1 = 3/2 and θ2 = 2 here. We start by building the list of marginal quantile functions
and then compute the corresponding (here: upper) quantile matrix Xα(= Xα

) for α = 0.9 and N = 10 000.

1 > library(qrmtools)
2 > qF <- lapply(c(1.5, 2), function(th) function(p) qPar(p, shape = th))
3 > X <- quantile_matrix(1e4, alpha = 0.9, qF = qF)
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The columns in Xα are sorted in increasing order, so mimic comonotonicity in the joint tail, which leads to
the following variance estimate of the row sums.

1 > var(rowSums(X))

[1] 3519.706

If we randomly shuffle the first column, so mimicking independence in the joint tail, we obtain the following
variance estimate.

1 > X. <- X
2 > set.seed(271) # for reproducibility
3 > X.[,1] <- sample(X.[,1]) # randomly shuffling the first column
4 > var(rowSums(X.)) # estimate the variance of the row sums

[1] 2664.61

Now if we oppositely order the first column with respect to the sum of all others, here the second column,
we can see that the variance of the resulting row sums will decrease; note that we mimic countermonotonicity in
the joint tail in this case.

1 > X. <- X
2 > set.seed(271) # for reproducibility
3 > X.[,1] <- sort(X.[,1], decreasing = TRUE)[rank(X.[,2])] # opposite reordering
4 > var(rowSums(X.)) # estimate the variance of the row sums

[1] 2614.33

The two marginal distributions largely differ in their heavy-tailedness, which is why the variance of their
sum, even when oppositely reordered is still rather large. For θ1 = θ2 = 2, one obtains 138.6592, for two
standard normal margins 0.0808 and for two standard uniform distributions 0.

As a last underlying concept, the RA utilizes the minimal row sum operator

s(X) = min
1≤i≤N

∑
1≤j≤d

Xij for X ∈ RN×d,

which is motivated in Remark 1 Part (3). We are now ready to provide the RA.
The RA as introduced in Embrechts et al. (2013) states that sN ≤ sN and in practice sN ≈ sN ≈

VaRα(L+). Furthermore, the initial randomizations in Steps (2.2) and (3.2) are introduced to avoid
convergence problems of sN − sN → 0.

3. A First Implementation of the Basic Rearrangement Step

When implementing an algorithm such as the RA, it is typically a good idea to divide and conquer,
which means breaking down the problem into sub-problems and addressing those first. Having
implemented solutions to the sub-problems (write functions!), one can then use them as black boxes to
implement the whole algorithm. In our case, we can already rely on the function quantile_matrix()
for Steps (2.1) and (3.1) of the RA and we have already seen how to oppositely order two columns in
Example 2. We also see that apart from which matrix is rearranged, Steps (2) and (3) are equal. We thus
focus on this step in what follows.

Example 3 (Basic rearrangements).
We start with a basic implementation for computing one of the bounds sN , sN of the RA.
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1 > ##' @title Basic Rearrangements
2 > ##' @param X (N, d)-matrix of marginal quantiles beyond the confidence level
3 > ##' @param tol convergence tolerance determining when to stop rearranging columns;
4 > ##' can also be NULL in which case the algorithm runs until there was no change
5 > ##' in the matrix of rearranged columns after one iteration over all columns.
6 > ##' @return list with the minimal row sums after the algorithm terminates and the
7 > ##' corresponding rearranged matrix X
8 > ##' @author Marius Hofert
9 > basic_rearrange <- function(X, tol)

10 + {
11 + ## Random column permutations and basic setup
12 + X <- apply(X, 2, function(x) x[sample(seq_along(x))]) # randomly permute each column
13 + d <- ncol(X)
14 + Y <- X
15 + Y.rs <- rowSums(Y) # Y row sums
16 + m.rs.old <- min(Y.rs) # initial minimal row sums (to compare against later)
17 +
18 + ## Main
19 + while (TRUE) {
20 + ## Loop over all columns and oppositely reorder the jth with respect to
21 + ## the sum of all others
22 + for(j in 1:d) {
23 + Y.rs.mj <- rowSums(Y[,-j, drop = FALSE]) # row sums of all but the jth column
24 + ## Oppositely order the jth column with respect to the sum of all others
25 + Y[,j] <- sort(Y[,j], decreasing = TRUE)[rank(Y.rs.mj, ties.method = "first")]
26 + }
27 + Y.rs <- rowSums(Y) # update row sums after reordering the jth column
28 + m.rs.new <- min(Y.rs) # update minimal row sum
29 +
30 + ## Check stopping criterion
31 + tol. <- abs((m.rs.new - m.rs.old) / m.rs.old) # relative change of minimal row sum
32 + tol.reached <- if(is.null(tol)) { # if NULL
33 + identical(Y, X) # stop only if matrix did not change after d iterations
34 + } else { tol. <= tol } # reached tolerance if tol. <= tol
35 +
36 + ## If fulfilled, stop, otherwise update and continue
37 + if(tol.reached) { # if tolerance was reached
38 + break # break while()
39 + } else { # update (and continue)
40 + m.rs.old <- m.rs.new
41 + X <- Y
42 + }
43 + }
44 +
45 + ## Return
46 + list(worst.VaR = min(rowSums(Y)), X.rearranged = Y)
47 + }

In comparison to Algorithm 1, our basic implementation already uses a relative rather than an absolute
convergence tolerance ε (more intuitively named tol in our implementation), the former is more suitable here as
we do not know VaRα(L+) and therefore cannot judge whether an absolute tolerance of, say, 0.001 is reasonable.
Also, we terminate if the attained relative tolerance is less than or equal to tol since including equality allows
us to choose tol = 0; see Steps (2.4) and (3.4) of Algorithm 1. Furthermore, we allow the tolerance to be NULL
in which case the columns are rearranged until all of them are oppositely ordered with respect to the sum of all
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other. The choice tol = NULL is good for testing, but typically results in much larger run times and rarely has
an advantage over tol = 0.

Algorithm 1: Rearrangement algorithm for computing bounds on VaRα(L+)

(1) Fix a confidence level α ∈ (0, 1), marginal quantile functions F−1 , . . . , F−d , a number of
discretization points N ∈ N and an absolute convergence tolerance ε ≥ 0.

(2) Compute the lower bound:

(2.1) Define the matrix Xα as in (1).
(2.2) Permute randomly the elements in each column of Xα.
(2.3) Set Yα = Xα. For 1 ≤ j ≤ d, rearrange the jth column of the matrix Yα so that it becomes

oppositely ordered to the sum of all other columns.
(2.4) While s(Yα)− s(Xα) ≥ ε, set Xα to Yα and repeat Step (2.3).
(2.5) Set sN = s(Yα).

(3) Compute the upper bound:

(3.1) Define the matrix Xα as in (1).
(3.2) Permute randomly the elements in each column of Xα.
(3.3) Set Yα

= Xα. For 1 ≤ j ≤ d, rearrange the jth column of the matrix Yα so that it becomes
oppositely ordered to the sum of all other columns.

(3.4) While s(Yα
)− s(Xα

) ≥ ε, set Xα to Yα and repeat Step (3.3).
(3.5) Set sN = s(Yα

).

(4) Return (sN , sN).

The opposite ordering step in our basic implementation contains the argument ties.method = "first"
of rank(), which specifies how ties are handled, namely those ties with smaller index get assigned the smaller
rank. Although this was not a problem in Example 2, when N is large and d > 2, ties can quickly arise
numerically. It can be important to use a sorting algorithm that has deterministic behavior in this case,
as otherwise, the RA might not terminate or not as quickly as it could; see the vignette VaR_bounds of the R
package qrmtools for more details.

Finally, we can call basic_rearrange() on both matrices in Equation (1) to obtain the lower and upper
bounds sN , sN and thus implement the RA. We would thus reuse the same code for Steps (2) and (3) of the RA,
which means less code to check, improve or maintain.

Example 4 (Using the basic implementation).
To call basic_rearrange() in a running example, we use the following parameters and build the input

matrix Xα.

1 > alpha <- 0.99 # confidence level
2 > d <- 128 # number of margins considered
3 > theta <- 1 + 2 * (1:d)/(d) # Pareto parameter vector (from heavy- to more light-tailed)
4 > qF <- lapply(theta, function(th) # list of marginal quantile functions
5 + function(p) qPar(p, shape = th))
6 > N <- 1e4 # number of discretization points (= number of rows)
7 > eps <- 0 # tolerance to determine numerical convergence
8 > X <- quantile_matrix(N, alpha = alpha, qF = qF) # build input matrix

We can now call basic_rearrange() and also measure the elapsed time in seconds of this call.
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1 > set.seed(271) # for reproducibility
2 > time.basic <- system.time(res.basic <- basic_rearrange(X, tol = eps))[["elapsed"]]
3 > res.basic[["worst.VaR"]] # worst VaR (upper) approximation for the given setup

[1] 7635.74

1 > time.basic # elapsed time in seconds

[1] 10.719

4. Improvements

It is always good to have a first working version of an algorithm, for example, to compare against
in case one tries to improve the code and it becomes harder to read or check. However, as we saw in
Example 4, our basic implementation of Example 3 is rather slow even if we chose a rather small N
in this running example. Our goal is thus to present ideas how to improve basic_rearrange() as a
building block of the RA.

4.1. Profiling

As a first step, we profile the last call to see where most of the run time is spent.

1 > Rprof(profiling <- tempfile()) # enable profiling
2 > res.basic.prof <- basic_rearrange(X, tol = eps) # call
3 > Rprof(NULL) # disable profiling
4 > prof <- summaryRprof(profiling)[["by.self"]] # get a summary
5 > prof[order(prof[,"total.pct"], decreasing = TRUE),] # nicer print (here)

self.time self.pct total.time total.pct
"basic_rearrange" 0.14 1.75 8.02 100.00
"rowSums" 0.42 5.24 4.10 51.12
"is.data.frame" 3.68 45.89 3.68 45.89
"sort" 1.74 21.70 2.42 30.17
"rank" 0.38 4.74 1.28 15.96
"order" 1.08 13.47 1.08 13.47
"sort.int" 0.46 5.74 0.68 8.48
"apply" 0.02 0.25 0.08 1.00
"is.na" 0.04 0.50 0.04 0.50
"sample" 0.02 0.25 0.04 0.50
"aperm.default" 0.02 0.25 0.02 0.25
"sample.int" 0.02 0.25 0.02 0.25

Profiling writes out the call stack every so-many split seconds, so checks where the execution
currently is. This allows one to measure the time spent in each function call. Note that some functions
do not create stack frame records and thus do not show up. Nevertheless, profiling the code is often
helpful. It is typically easiest to consider the measurement in percentage (see second and fourth
column in the above output) and often in total, so the run time spent in that particular function or the
functions it calls (see the fourth column). As this column reveals, two large contributors to run time
are the computation of row sums and the sorting.

4.2. Avoiding Summations

First consider the computation of row sums. In each rearrangement step, basic_rearrange()
computes the row sums of all but the current column. As we explained, this rearrangement step is
mathematically intuitive but it is computationally expensive. An important observation is that the row
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sums of all but the current column is simply the row sums of all columns minus the current column;
in short, Xα

−j =
(
∑N

k=1 Xα
k
)
− Xα

j . Therefore, if we, after randomly permuting each column, compute
the total row sum once, we can subtract the jth column to obtain the row sums of all but the jth column.
After having rearranged the jth column, we then add the rearranged jth column to the row sums of all
other columns in order to obtain the updated total row sums.

Example 5 (Improved rearrangements).
The following improved version of basic_rearrange() incorporates said idea; to save space, we omit the

function header.

1 > improved_rearrange <- function(X, tol)
2 + {
3 + ## Random column permutations and basic setup
4 + X <- apply(X, 2, function(x) x[sample(seq_along(x))]) # randomly permute each column
5 + d <- ncol(X)
6 + Y <- X
7 + Y.rs <- rowSums(Y) # Y row sums (only computed once)
8 + m.rs.old <- min(Y.rs) # initial minimal row sums (to compare against)
9 +

10 + ## Main
11 + while (TRUE) {
12 + ## Loop over all columns and oppositely reorder the jth with respect to
13 + ## the sum of all others
14 + for(j in 1:d) {
15 + Y.j <- Y[,j] # jth column
16 + Y.rs.mj <- Y.rs - Y.j # row sums without jth = total row sums - jth column
17 + ## Oppositely order the jth column with respect to the sum of all others
18 + Y[,j] <- sort(Y.j, decreasing = TRUE)[rank(Y.rs.mj, ties.method = "first")]
19 + Y.rs <- Y.rs.mj + Y[,j] # update total row sum
20 + }
21 + m.rs.new <- min(Y.rs) # update minimal row sum
22 +
23 + ## Check stopping criterion
24 + tol. <- abs((m.rs.new - m.rs.old) / m.rs.old) # relative change of minimal row sum
25 + tol.reached <- if(is.null(tol)) { # if NULL
26 + identical(Y, X) # stop only if matrix did not change after d iterations
27 + } else { tol. <= tol } # reached tolerance if tol. <= tol
28 +
29 + ## If fulfilled, stop, otherwise update and continue
30 + if(tol.reached) { # if tolerance was reached
31 + break # break while()
32 + } else { # update (and continue)
33 + m.rs.old <- m.rs.new
34 + X <- Y
35 + }
36 + }
37 +
38 + ## Return
39 + list(worst.VaR = min(Y.rs), # we can also reuse the last updated total row sums here
40 + X.rearranged = Y)
41 + }

Next, we compare improved_rearrange() with basic_rearrange(). We check if we obtain the same
result and also measure run time as a comparison.
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1 > set.seed(271) # for reproducibility
2 > time.imp <- system.time(res.imp <- improved_rearrange(X, tol = eps))[["elapsed"]]
3 > stopifnot(all.equal(res.imp[["X.rearranged"]], res.basic[["X.rearranged"]])) # comparison
4 > time.imp # elapsed time in seconds

[1] 1.652

Run time is substantially improved by about 85%. This should be especially helpful for large d, so let us
investigate the percentage improvement; here only done for rather small d to show the effect. Figure 3 shows the
relative speed-up in percentage of improved_rearrange() over basic_rearrange() as a function of d for
the running example introduced in Example 4.

1 > d <- round(2^seq(3, 7, by = 0.5)) # dimensions d considered here
2 > num.d <- length(d) # number of dimensions
3 > time <- matrix(, nrow = num.d, ncol = 2) # (num.d, 2)-matrix (initialized with NAs)
4 > colnames(time) <- c("basic", "improved")
5 > ## Loop over the dimensions and measure elapsed time
6 > for(j in seq_along(d)) { # loop over dimensions
7 + set.seed(271) # for reproducibility
8 + time[j, "basic"] <-
9 + system.time(basic_rearrange(X[,1:d[j]], tol = eps))[["elapsed"]]

10 + set.seed(271) # for reproducibility and a fair comparison
11 + time[j, "improved"] <-
12 + system.time(improved_rearrange(X[,1:d[j]], tol = eps))[["elapsed"]]
13 + }
14 > ## Plot of percentage improvement in elapsed time
15 > plot(d, y = ((time[,"basic"] - time[,"improved"]) / time[,"basic"]) * 100,
16 + type = "b", log = "x", ylim = c(0, 100),
17 + xlab = "Dimension d", ylab = "Relative speed-up (in %)")
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Figure 3. Relative speed-up in percentage of improved_rearrange() over basic_rearrange() as a
function of the dimension for the running example introduces in Example 4.

We can infer that the percentage improvement of improved_rearrange() in comparison to
basic_rearrange() converges to 100% for large d. This is not a surprise since determining the row
sums of all but a fixed column requires basic_rearrange() to compute N(d − 1)-many sums whereas
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improved_rearrange() requires only N-many. This is an improvement by O(d), which especially starts to
matter for large d.

A quick note on run-time measurement is in order here. In a more serious setup, one would take repeated
measurements of run time (at least for smaller d), determine the average run time for each d and perhaps empirical
confidence intervals for the true run time based on the repeated measurements. Also, we use the same seed for
each method, which guarantees the same shuffling of columns and thus allows for a fair comparison. Not doing
so can result in quite different run times and would thus indeed require repeated measurements to get more
reliable results.

Finally, the trick of subtracting a single column from the total row sums in order to obtain the row sums of
all other columns comes at a price. Although the RA as in Algorithm 1 works well if some of the 1-quantiles
appearing in the last row of Xα are infinity, this does not apply to improved_rearrange() anymore since if
the last entry in the jth column is infinity, the last entry in the vector of total row sums is infinity and thus
the last entry in the vector of row sums of all but the jth column would not be defined (NaN in R). This is why
quantile_matrix() avoids computing 1-quantiles; see Example 2.

4.3. Avoiding Accessing Matrix Columns and Improved Sorting

There are two further improvements we can consider.
The first concerns the opposite ordering of columns. It so far involved a call to sort() and one to

rank(). It turns out that these two calls can be replaced by a nested order() call, which is slightly faster
than rank() alone. We start by demonstrating that we can replicate rank(, ties.method = "first")
by a nested order() call based on standard uniform data.

1 > set.seed(271) # for reproducibility
2 > x <- runif(1e5) # generate U(0,1) data
3 > stopifnot(order(order(x)) == rank(x, ties.method = "first")) # check for equality

Providing rank() with a method to deal with ties is important here as the default assigns average
ranks on ties and thus can produce non-integer numbers. One would not guess to see ties in such a
small set of standard uniform random numbers, but that is not true; see Hofert (2020) for details.

To see how much faster the nested order() call is than rank(), we consider a small simulation
study. For each of the two methods, we measure elapsed time in seconds when applied 20 times to
samples of random numbers of different sizes.

1 > B <- 20 # number of replications
2 > i <- 5:7 # powers of 10
3 > n <- 10^i # sample sizes considered
4 > res <- array(, dim = c(2, length(n), B), # result object
5 + dimnames = list(Method = c("rank", "order") , "n" = n, "Replication" = 1:B))
6 > set.seed(271) # for reproducibility
7 > for(b in 1:B) { # loop over the number of replications
8 + x <- runif(max(n)) # generate U(0,1) data
9 + res[1,,b] <- sapply(n, function(n.) # measure run time when using rank()

10 + system.time(rank(x[1:n.], ties.method = "first"))[["elapsed"]])
11 + res[2,,b] <- sapply(n, function(n.) # measure run time when using order()
12 + system.time(order(order((x[1:n.]))))[["elapsed"]])
13 + }
14 > stopifnot(res > 0) # sanity check for logarithmic y-axis later

Figure 4 provides a summary in terms of a box plot. We see that the nested order() call is faster
than rank(); percentages by how much the latter is worse are displayed in the labels.
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1 > res.ave <- apply(res, 1:2, mean) # average elapsed times
2 > rank.worse <- round(100 * (res.ave["rank",] - res.ave["order",]) / res.ave["order",])
3 > tab <- as.data.frame.table(res, responseName = "Elapsed") # all results as a table
4 > center <- seq_along(n) # x ticks centers
5 > offset <- c(-0.2, 0.2) # deviations from the center
6 > x.ticks <- as.vector(outer(offset, center, function(e, c) e+c)) # where to put x axis ticks
7 > x.tick.labs <- rep(c("rank()", "order()"), length(n)) # x-axis labels
8 > boxplot(Elapsed ~ Method + n, data = tab, log = "y",
9 + xlab = "", ylab = "Elapsed time in seconds",

10 + at = x.ticks, names = x.tick.labs, boxwex = rep(0.35, 2 * length(n)))
11 > x.labs <- as.expression(lapply(seq_along(n), function(k) # labels for secondary first axis
12 + substitute(atop(italic(n)==10^i., "rank() worse by "*p*"%"),
13 + list(i. = i[k], p = rank.worse[k]))))
14 > axis(1, at = center, tick = FALSE, line = 3, labels = x.labs) # secondary first axis
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Figure 4. Box plot showing elapsed times in seconds when calling rank(, ties.method = "first")
and order(order()) on samples of random numbers of size n. The labels indicate percentages of how
much worse the former is in comparison to the latter.

As a second improvement, recall that the RA naturally works on the columns of matrices. Matrices
or arrays are internally stored as long vectors with attributes indicating when to “wrap around”.
Accessing a matrix column thus requires to determine the beginning and the end of that column in
the flattened vector. We can thus speed-up improved_rearrange() by working with lists of columns
instead of matrices.

The following example incorporates these two further improvements and some more.

Example 6 (Advanced rearrangements).
The following implementation saves column-access time by working with lists rather than matrices. We also

use the slightly faster .rowSums() (as we know the dimensions of the input matrix) instead of rowSums() for
computing the initial row sums once in the beginning, and we incorporate the idea of a nested order() call
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instead of rank(). Furthermore, before shuffling the columns, we also store their original sorted versions, which
allows us to omit the call of sort() in improved_rearrange().

1 > advanced_rearrange <- function(X, tol)
2 + {
3 + ## Setup
4 + X.lst <- split(X, col(X)) # split 'matrix' X in columns
5 + X.lst.sorted <- X.lst # X is assumed to be sorted
6 + X.lst <- lapply(X.lst, sample) # randomly permute each 'column' (element of X.lst)
7 + N <- nrow(X)
8 + d <- ncol(X)
9 + X.rs <- .rowSums(do.call(cbind, X.lst), N, d) # compute initial row sums

10 + m.rs.old <- min(X.rs) # initial minimal row sums (to compare against)
11 +
12 + ## Main
13 + while (TRUE) {
14 + ## Update
15 + Y.lst <- X.lst # define list representing the 'matrix' Y (former 'matrix' X)
16 + Y.rs <- X.rs # row sums of Y (= row sums of X)
17 +
18 + ## Loop over all columns and oppositely reorder the jth with respect to
19 + ## the sum of all others
20 + for(j in 1:d) {
21 + Y.j <- Y.lst[[j]] # jth column
22 + Y.rs.mj <- Y.rs - Y.j # row sums without jth = total row sums - jth column
23 + ## Oppositely order the jth column with respect to the sum of all others
24 + Y.j. <- X.lst.sorted[[j]][order(order(Y.rs.mj, decreasing = TRUE))]
25 + ## Update the working 'matrix' and vector of row sums
26 + Y.lst[[j]] <- Y.j. # update with rearranged jth column
27 + Y.rs <- Y.rs.mj + Y.j. # update total row sum
28 + }
29 + m.rs.new <- min(Y.rs) # update minimal row sum
30 +
31 + ## Check stopping criterion
32 + tol. <- abs((m.rs.new - m.rs.old) / m.rs.old) # relative change of minimal row sum
33 + tol.reached <- if(is.null(tol)) { # if NULL
34 + identical(Y.lst, X.lst) # stop only if no change after d iterations
35 + } else { tol. <= tol } # reached tolerance if tol. <= tol
36 +
37 + ## If fulfilled, stop, otherwise update and continue
38 + if(tol.reached) { # if tolerance was reached
39 + break # break while()
40 + } else { # update (and continue)
41 + X.rs <- Y.rs # update the row sums
42 + m.rs.old <- m.rs.new # update minimal row sum
43 + X.lst <- Y.lst # update 'matrix' X
44 + }
45 + }
46 +
47 + ## Return
48 + list(worst.VaR = min(Y.rs), X.rearranged = do.call(cbind, Y.lst))
49 + }

We now check for correctness of advanced_rearrange() and measure its run time in our running
example. Concerning correctness, for the more involved advanced_rearrange() it is especially useful to have
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simpler versions available to check against; we use the result of improved_rearrange() here as we already
checked it, but could have equally well used the one of basic_rearrange().

1 > set.seed(271) # for reproducibility
2 > time.adv <- system.time(res.adv <- advanced_rearrange(X, tol = eps))[["elapsed"]]
3 > stopifnot(all.equal(res.adv[["X.rearranged"]], res.imp[["X.rearranged"]], # comparison
4 + check.attributes = FALSE))
5 > time.adv # elapsed time in seconds

[1] 0.632

Although the gain in run time is not as dramatic as before, we still see an improvement of about 62% in
comparison to improved_rearrange().

4.4. Comparison with the Actual Implementation

The computational improvements so far have already lead to a percentage improvement of 94%
in comparison to basic_rearrange() in our running example. The following example compares our
fastest function advanced_rearrange() so far with our implementation rearrange() in the R package
qrmtools whose development was motivated by a risk management team at a Swiss bank.

Example 7 (Comparison with rearrange()).
To save even more run time, the function rearrange() from the R package qrmtools splits the input

matrix into its columns at C level. It also uses an early stopping criterion in the sense that after all columns have
been rearranged once, stopping is checked after every column rearrangement. Because of the latter, the result is
not quite comparable to our previous versions.

1 > library(qrmtools)
2 > set.seed(271) # for reproducibility
3 > res.rearr <- rearrange(X, tol = eps)
4 > all.equal(res.rearr[["X.rearranged"]], res.adv[["X.rearranged"]], # comparison
5 + check.attributes = FALSE)

[1] "Mean relative difference: 5.611011e-05"

We did not measure run time here since, similar to Heisenberg’s uncertainty principle, the difference in run
time becomes more and more random; this is in line with the point we made about run-time measurement in the
introduction. In other words, the two implementations become closer in run time. This can be demonstrated by
repeated measurements.

1 > B <- 20 # number of replications
2 > res <- matrix(, nrow = B, ncol = 2,
3 + dimnames = list(Replication = 1:B, Method = c("advanced", "rearrange")))
4 > set.seed(271) # for reproducibility
5 > res[,"advanced"] <-
6 + replicate(B, expr = system.time(advanced_rearrange(X, tol = eps))[["elapsed"]])
7 > set.seed(271) # for reproducibility
8 > res[,"rearrange"] <-
9 + replicate(B, expr = system.time(rearrange(X, tol = eps))[["elapsed"]])

10 > tab <- as.data.frame.table(res, responseName = "Elapsed") # all results as a table
11 > boxplot(Elapsed ~ Method, data = tab, xlab = "", ylab = "Elapsed time in seconds",
12 + names = c("advanced_rearrange()", "rearrange()"), boxwex = rep(0.35, 2))

As we see from the box plot in Figure 5, on average, rearrange() is slightly faster than
advanced_rearrange(). Although rearrange() could even be made faster, it also computes and returns
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more information about the rearrangements than advanced_rearrange(); for example, the computed minimal
row sums after each column rearrangement and the row of the final rearranged matrix corresponding to the
minimal row sum in our case here. Given that this is a function applied by users who are not necessarily familiar
with the rearrangement algorithm, it is more important to provide such information. Nevertheless, rearrange()
is still faster than advanced_rearrange() on average.
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Figure 5. Box plot showing elapsed times in seconds when calling advanced_rearrange() and
rearrange() of the R package qrmtools in our running example.

The function rearrange() is the workhorse underlying the function RA() that implements the
rearrangement algorithm in the R package qrmtools. The adaptive rearrangement algorithm (ARA)
introduced in Hofert et al. (2017) improves the RA in that it introduces the joint tolerance, that is the
tolerance between sN and sN ; the tolerance used so far is called individual tolerance. The ARA applies
column rearrangements until the individual tolerance is met for each of the two bounds and until the
joint tolerance is met or a maximal number of column rearrangements has been reached. If the latter
is the case, N is increased and the procedure repeated. The ARA implementation ARA() in qrmtools
also returns useful information about how the algorithm proceeded. Overall, ARA() neither requires to
choose a tolerance nor the number of discretization points, which makes this algorithm straightforward
to apply in practice where the choice of such tuning parameters is often unclear. Finding good tuning
parameters (adaptively or not) is often a significant problem in newly suggested procedures and not
rarely a question open for future research by itself.

5. The Functions rearrange() and ARA()

In this section we utilize the implementations rearrange() and ARA() of the rearrangement step
and the adaptive rearrangement algorithm.

Example 8 (Tracing rearrange()).
The implementation rearrange() has a tracing feature. It can produce a lot of output but we here consider

the rather minimal example of rearranging the matrix

X =

1 1 1
2 2 2
3 3 3

 .
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The following code enables tracing (trace = TRUE) to see how the column rearrangements proceed; to
this end we rearrange until all columns are oppositely ordered to the sum of all other columns (tol = NULL),
disable random permutation of the columns (sample = FALSE) and provide the information that the columns
are already sorted here (is.sorted = TRUE).

1 > trace <- rearrange(matrix(rep(1:3, times = 3), ncol = 3), tol = NULL,
2 + sample = FALSE, is.sorted = TRUE, trace = TRUE)

[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
| -col sum
[1,] 3 1 1 2 5
[2,] 2 2 2 4 6
[3,] 1 3 3 6 7
= -col sum
[1,] 3 1 1 4 5
[2,] 2 2 2 4 6
[3,] 1 3 3 4 7
= -col sum
[1,] 3 1 1 4 5
[2,] 2 2 2 4 6
[3,] 1 3 3 4 7
= -col sum
[1,] 3 1 1 2 5
[2,] 2 2 2 4 6
[3,] 1 3 3 6 7

A “|” or “=” symbol over the just worked on column indicates whether this column was changed (“|”) or
not (“=”) in this rearrangement step. The last two printed columns provide the row sums of all other columns as
well as the new updated total row sums after the rearrangement. As we can see from this example, the rearranged
matrix has minimal row sum 5 and is given by3 1 1

2 2 2
1 3 3

 , whereas the matrix

1 2 3
2 3 1
3 1 2


would have led to the larger minimal row sum 6; this rather constructed example for when the greedy column
rearrangements of the RA can fail to provide the maximal minimal row sum was provided by Haus (2015).
As more interesting example to trace is to rearrange the matrix

1 1 1
2 3 2
3 5 4
4 7 8

 ;

see the vignette VaR_bounds of the R package qrmtools.

Example 9 (Calling ARA()).
We now call ARA() in the case of our running example in this paper.
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1 > ARA. <- ARA(alpha, qF = qF)
2 > str(ARA.)

List of 10
$ bounds : Named num [1:2] 7596 7638
..- attr(*, "names")= chr [1:2] "low" "up"
$ rel.ra.gap : num 0.00558
$ tol : Named num [1:3] 0 0 0.00558
..- attr(*, "names")= chr [1:3] "low" "up" "joint"
$ converged : Named logi [1:3] TRUE TRUE TRUE
..- attr(*, "names")= chr [1:3] "low" "up" "joint"
$ N.used : num 8192
$ num.ra : Named int [1:2] 767 879
..- attr(*, "names")= chr [1:2] "low" "up"
$ opt.row.sums :List of 2
..$ low: num [1:767] 5547 5924 6193 6396 6562 ...
..$ up : num [1:879] 5553 5939 6205 6408 6570 ...
$ X :List of 2
..$ low: num [1:8192, 1:128] 92.2 92.2 92.2 92.2 92.2 ...
..$ up : num [1:8192, 1:128] 92.2 92.2 92.2 92.2 92.2 ...
$ X.rearranged :List of 2
..$ low: num [1:8192, 1:128] 797 457 138 202 170 ...
..$ up : num [1:8192, 1:128] 135 107 191 113 963 ...
$ X.rearranged.opt.row:List of 2
..$ low: num [1:128] 107.2 99.5 92.6 86.5 80.9 ...
..$ up : num [1:128] 129 116 106 98 823 ...

As we can see, the implementation returns a list with the computed bounds sN , sN , the relative
rearrangement gap (sN − sN)/sN , the two individual and one joint tolerance reached on stopping,
a corresponding vector of logicals indicating whether the required tolerances have been met, the number N of
discretization points used in the final step, the number of considered column rearrangements for each bound,
vectors of computed optimal (for worst VaR this means “minimal”) row sums after each column rearrangement
considered, a list with the two input matrices Xα, Xα, a list with the corresponding final rearranged matrices
Yα, Yα and the rows corresponding to their optimal row sums. An estimate of VaR0.99(L+) in our running
example can then be computed as follows.

1 > worst.VaR <- mean(ARA.[["bounds"]]) # estimate of worst VaR
2 > stopifnot(all.equal(worst.VaR, res.adv[["worst.VaR"]], tol = 5e-3)) # comparison
3 > worst.VaR

[1] 7617.149

Figure 6 shows the minimal row sum as a function of the number of rearranged columns for each of the
two bounds sN and sN on VaR0.99 in our running example. We can see that already after all columns were
rearranged once, the actual value of the two bounds does not change much anymore in this case, yet the algorithm
still proceeds until the required tolerances are met.
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1 > opt <- ARA.[["opt.row.sums"]] # 2-list with minimal row sums for each bound
2 > ylim <- range(opt) # range of all minimal row sums
3 > len <- sapply(opt, length) # length of the components of the 2-list
4 > ii <- which.min(len) # index of the shorter one
5 > n <- max(len) # length of the longer one
6 > opt[[ii]] <- c(opt[[ii]], rep(NA, n - length(opt[[ii]]))) # fill with NA
7 > min.row.sums <- matrix(unlist(opt), ncol = 2, dimnames = list(NULL, c("low", "up")))
8 > iter <- seq_len(n) # sequence from 1 to the maximal length
9 > plot(iter, min.row.sums[,"up"], type = "l", log = "x", # upper bound

10 + xlab = "Number of column rearrangements", ylab = "Minimal row sum")
11 > lines(iter, min.row.sums[,"low"], type = "l", lty = 2) # lower bound
12 > mtext(substitute("Individual and joint tolerances = ("*tol.*"), N used ="~N.,
13 + list(tol. = paste(round(ARA.[["tol"]], 4), collapse = ", "),
14 + N. = ARA.[["N.used"]])),
15 + side = 4, line = 0.5, adj = 0)
16 > legend("bottomright", bty = "n", lty = 1:2,
17 + legend = c(expression("Upper bound"~bar(s)[N]),
18 + expression("Lower bound"~underline(s)[N])))
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Figure 6. Minimal row sums after each column rearrangement for the lower and upper bounds sN and
sN on VaR0.99 in our running example.

6. Applications

We now consider a real data example and introduce bootstrap confidence intervals for VaR0.99 as
well as a basic worst VaR allocation principle.

Example 10 (A real-life example).
We consider negative log-returns of Google, Apple and Microsoft stocks from 2006-01-03 to 2010-12-31.
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1 > library(qrmdata)
2 > data("SP500_const") # load the constituents of the S&P 500
3 > stocks <- c("GOOGL", "AAPL", "MSFT") # stocks we consider (Google, Apple, Microsoft)
4 > d <- length(stocks) # dimension
5 > time <- c("2006-01-03", "2010-12-31") # time period considered
6 > S <- SP500_const[paste0(time, collapse = "/"), stocks] # pick out data
7 > stopifnot(all(!is.na(S))) # check that there is no missing data
8 > X <- -returns(S) # -log-returns

We treat the negative log-returns as (roughly) stationary here and consider mean excess plots in Figure 7 to
determine suitable thresholds for applying the peaks-over-threshold method.

1 > mean_excess_plot(X[X[,"GOOGL"] > 0, "GOOGL"])
2 > abline(v = 0.012) # threshold choice
3 > mean_excess_plot(X[X[,"AAPL"] > 0, "AAPL"])
4 > abline(v = 0.021) # threshold choice
5 > mean_excess_plot(X[X[,"MSFT"] > 0, "MSFT"])
6 > abline(v = 0.017) # threshold choice
7 > u <- c(0.012, 0.021, 0.017)
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Figure 7. Mean excess plots for the negative log-returns of GOOGL (left), AAPL (middle) and MSFT
(right) with chosen thresholds indicated by vertical lines.

We then fit generalized Pareto distributions (GPDs) to the excess losses over these thresholds.

1 > fit <- lapply(1:d, function(j) fit_GPD_MLE(X[X[,j] > u[j],j] - u[j]))
2 > params <- sapply(fit, function(x) x$par)
3 > colnames(params) <- names(X)

We consider the corresponding quantile functions as approximate quantile functions to our empirical losses;
see (McNeil et al. 2015, Section 5.2.3).

1 > p.exceed <- sapply(1:d, function(j) mean(X[,j] > u[j])) #probability of exceeding threshold
2 > stopifnot(alpha >= max(1 - p.exceed)) # check validity condition of tail approximation
3 > qF <- lapply(1:d, function(j) function(p) # list of quantile functions
4 + qGPDtail(p, threshold = u[j], p.exceed = p.exceed[j],
5 + shape = params["shape",j], scale = params["scale",j]))

Based on these quantile functions, we can then compute VaR0.99(L+) with ARA().
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1 > alpha <- 0.99 # confidence level
2 > ARA. <- ARA(alpha, qF = qF) # compute worst VaR
3 > mean(ARA.[["bounds"]]) # worst VaR estimate

[1] 0.2541438

Given the additional information obtained from ARA(), we can also visualize a (pseudo-)sample from the
worst VaR copula Cα, see Figure 8. Such a sample is obtained by computing the pseudo-observations, that is
componentwise ranks scaled to (0, 1), of the rearranged matrix Yα corresponding to the upper bound sN ; we
could have also considered Yα here.

1 > library(copula)
2 > U <- pobs(ARA.[["X.rearranged"]]\$up) # pseudo-observations of Y for the upper bound
3 > colnames(U) <- paste0("U[", 1:3, "]")
4 > pairs2(U) # worst VaR dependence as a pairs plot
5 > cloud2(U, screen = list(z = -30, x = -60)) # worst VaR dependence as a 3d plot
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Figure 8. Pairs plot (left) and 3D scatter plot (right) of the pseudo-observations of the rearranged Yα,
so a sample from the worst VaR copula Cα.

Also, we can investigate how much the VaR0.99(L+) bounds sN and sN change with changing individual
relative tolerance. Figure 9 motivates the use of 0 as individual relative tolerance; this is often quite a bit faster
than NULL and provides similar VaR0.99(L+) bounds.

1 > itol <- c(NA, seq(0, 0.5, length.out = 21)) #individual tolerances used; NA encodes 'NULL'
2 > res <- t(sapply(itol, function(t) # worst VaR bounds for all individual tolerances
3 + ARA(alpha, qF = qF, reltol = c(if(is.na(t)) NULL else t, 0.01))[["bounds"]]))
4 > colnames(res) <- c("low", "up")
5 > plot(itol, res[,"up"], type = "b", log = "y", ylim = range(res),
6 + xlab = "Individual relative tolerance",
7 + ylab = substitute("Bounds on"~bar(VaR)[a](L^{"+"}), list(a = alpha)))
8 > lines(itol, res[,"low"], type = "b", lty = 2)
9 > points(c(0, 0), res[1,], pch = 3) # add 'NULL' case at 0

10 > legend("topright", bty = "n", lty = c(1:2, NA), pch = c(NA, NA, 3),
11 + legend = c(expression("Upper bound"~bar(s)[N]),
12 + expression("Lower bound"~underline(s)[N]), "case 'NULL'"))
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Figure 9. Bounds sN and sN on VaR0.99(L+) as functions of the chosen individual relative tolerance.

Example 11 (Bootstrap confidence interval for worst VaR).
As in Example 10 and mentioned in Section 2, the marginal quantile functions used as input for the

rearrangement algorithm may need to be estimated from data. The corresponding estimation error translates to a
confidence interval for VaR0.99(L+), which we can obtain from a bootstrap. To this end, we start by building B
bootstrap samples from the negative log-returns; we choose a rather small B = 20 here to demonstrate the idea.

1 > B <- 20 # bootstrap sample size
2 > set.seed(271) # for reproducibility
3 > X.boot <- lapply(1:B, function(b) # B-list of (nrow(X), d)-matrices
4 + apply(X, 2, function(x.) sample(x., replace = TRUE)))

Next, we build excess losses over 90% thresholds (a typical broad-brush choice in practice), fit GPDs to the
d component samples for each of the B bootstrap samples and construct the corresponding quantile functions.

1 > u.prob <- 0.9 # threshold as probability
2 > stopifnot(alpha >= u.prob) # check validity condition
3 > qF.boot <- lapply(X.boot, function(x) { # x is a d-list of resampled -log-returns
4 + lapply(1:d, function(j) { # going over all margins
5 + u <- quantile(x[,j], probs = u.prob, names = FALSE) # threshold
6 + excesses <- x[x[,j] > u, j] - u # excess losses
7 + params <- fit_GPD_MLE(excesses)\$par # fitted GPD (shape, scale) vector
8 + function(p) qGPDtail(p, threshold = u, p.exceed = 1 - u.prob,
9 + shape = params[["shape"]], scale = params[["scale"]])

10 + })
11 + }) # B-list of d-lists (one for each stock) of quantile functions

Now we can call ARA() with each of the B sets of marginal quantile functions.

1 > worst.VaR.boot <- lapply(qF.boot, function(qFs) ARA(alpha, qF = qFs)) #B-list of ARA() obj.

And then extract the computed estimates of VaR0.99(L+).

1 > worst.VaRs <- sapply(worst.VaR.boot, function(ara) mean(ara[["bounds"]]))
2 > summary(worst.VaRs) # a summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2215 0.2355 0.2417 0.2444 0.2522 0.2841
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A bootstrap 95%-confidence interval for VaR0.99(L+) is thus given as follows.

1 > quantile(worst.VaRs, probs = c(0.025, 0.975))

2.5% 97.5%
0.2226960 0.2761207

Note that our run-time improvements of Section 4 are especially useful here as a bootstrap would otherwise
be relatively time-consuming.

Example 12 (Basic worst VaR allocation).
Capital allocation concerns the allocation of a total capital K to d business lines so that K = AC1 + · · ·+

ACd (the full allocation property), where ACj denotes the capital allocated to business line j. As the RA uses the
minimal row sum as VaRα(L+) estimate, the rows in the final rearranged matrices Yα, Yα provide an allocation
of K = VaRα(L+) one can call worst VaR allocation. There could be multiple rows in Yα, Yα leading to the
minimal row sum in which case the componentwise average of these rows is considered. The resulting two
rows are returned by (rearrange() and) ARA() in qrmtools version 0.0.13. By componentwise averaging,
the latter two rows we obtain an approximate worst VaR allocation. Given that we already have a bootstrap
sample, we can average the B computed allocations componentwise to obtain the bootstrap mean of the worst
VaR allocation.

1 > stopifnot(packageVersion("qrmtools") >= "0.0.13") # package version check
2 > worst.VaR.rows <- t(sapply(worst.VaR.boot, function(ara) { # (B, d)-matrix
3 + opt.rows <- ara[["X.rearranged.opt.row"]] # 2-list (lower/upper bound) of d-vectors
4 + rowMeans(matrix(unlist(opt.rows), ncol = 2)) # average over both bounds
5 + }))
6 > colnames(worst.VaR.rows) <- stocks # name columns according to the stocks
7 > (worst.VaR.alloc <- colMeans(worst.VaR.rows)) # estimated worst VaR allocation

GOOGL AAPL MSFT
0.08067026 0.08612456 0.07756922

We can also compare the corresponding estimate of the total allocation AC1 + · · ·+ ACd with the average
of the B optimal row sums computed by the ARA to check the full allocation property; to this end, we first
compute the B averages of the optimal row sums over the lower and upper bounds for each replication.

1 > worst.VaR.row.sums <- sapply(worst.VaR.boot, function(ara) # B-vector
2 + mean(sapply(ara[["opt.row.sums"]], function(v) tail(v, n = 1))))
3 > ave.row.sum <- mean(worst.VaR.row.sums) # average optimal row sum over B replications
4 > stopifnot(all.equal(sum(worst.VaR.alloc), ave.row.sum))

Bootstrap 95%-confidence intervals for each of AC1, . . . , ACd can be obtained as follows.

1 > apply(worst.VaR.rows, 2, quantile, probs = c(0.025, 0.975))

GOOGL AAPL MSFT
2.5% 0.06659040 0.07376124 0.06471199
97.5% 0.09593365 0.09654867 0.09201542
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For other applications of the RA, see, for example, Embrechts and Jakobsons (2016),
Bernard et al. (2017), Bernard et al. (2018) and, most notably, Ramsey and Goodwin (2019) where
the RA is applied in the context of crop insurance.

7. Selected Lessons Learned

After using R to motivate column rearrangements and opposite ordering for finding the worst VaR
for given marginal distributions in Section 2, we considered a basic implementation of such rearrangement
in Section 3. We profiled the code in Section 4 and improved the implementation step-by-step by avoiding
unnecessary summations, avoiding accessing matrix columns and improving the sorting step. In Section 5
we then used the implementations rearrange() and ARA() in our R package qrmtools to trace the
rearrangement steps and to motivate the use of the default tolerances used by ARA(). A real data example
was considered throughout Section 6 where we computed the worst VaR with ARA(), visualized a sample
from the corresponding worst VaR copula and assessed the sensitivity of the computed worst VaR with
respect to the individual convergence tolerance. To incorporate the uncertainty due to the estimation error
of the marginal distributions, we used a bootstrap idea to obtain a confidence interval for the true worst
VaR. We also introduced worst VaR allocation as a capital allocation principle and computed bootstrap
confidence intervals for the allocated capitals.

Our experiments reveal lessons to learn that frequently appear in problems from the realm of
computational risk management:

We can and should use software to learn about new problems and communicate their solutions.
Implementing an algorithm often helps to fully comprehend a problem, experiment with it and
get new ideas for practical solutions. It also allows one to communicate a solution since an
implementation is unambiguous even if a theoretical presentation or pseudo-code of an algorithm
leaves questions unanswered (such as how to choose tuning parameters); the latter is often the
case when algorithms are provided in academic research papers.
Both for understanding a problem and for communicating its solution, it is paramount to use
visualizations. Creating meaningful graphs is unfortunately still an exception rather than the
rule in academic publications where tables are frequently used. Tables mainly allow one to see
single numbers at a time, whereas graphs allow one to see the “bigger picture”, so how results are
connected and behave as functions of the investigated inputs.
Given an algorithm, start with a basic, straightforward implementation and make sure it is
valid, ideally by testing against known solutions in special cases; we omitted that part here,
but note that there are semi-analytical solutions available for computing worst VaR in the case of
homogeneous margins.
Learn from the basic implementation, experiment with it and improve it, for example,
by improving numerical stability, run time, maintenance, etc. If you run into problems along the
way, use minimal working examples to solve them; they are typically constructed by divide and
conquer. As implementations get more involved, compare them against the basic implementation
or previously checked improved versions.
When improving code, be aware of the issues mentioned in the introduction and exploit the fact
that mathematically unique solutions often allow for different computational solutions. Also,
computational problems (ties, parts of domains close to limits, etc.) can arise when there are
none mathematically. These are often the hardest problems to solve, which is why it is important
to be aware of computational risk management problems and their solutions. Implementing a
computationally tractable solution is often one “dimension” more complicated than finding a
mathematical solution—also literally, since a random variable (random vector) is often replaced
by a vector (matrix) of realizations in a computational solution.
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Results in academic research papers are often based on an implementation of a newly presented
algorithm that works only under specific conditions with parameters found by experimentation
(often hard-coded) under such conditions in the examples considered. A publicly available
implementation in a software package needs to go well beyond this point; for example, as users
typically do not have expert knowledge of problems the implementation intends to solve and
often come from different backgrounds altogether in the hope to find solutions to challenging
problems in their field of application. On the one hand, the amount of work spent on development
and maintenance of publicly available software solutions is largely underestimated. On the
other hand, one can sometimes benefit from getting to know different areas of application or
valuable input for further theoretical or computational investigation through user feedback. Also,
ones own implementation often helps one to explore potential further improvements or new
solutions altogether.
Optimizing run time to be able to apply solutions in practical situations can be important but is
not all there is. Providing a readable, comprehensible and numerically stable solution is equally
important, for example. Code optimized solely for run time typically becomes less transparent
and harder to maintain, is thus harder to adapt to future conceptual improvements and more
prone to semantic errors. Also, a good solution typically not only provides a final answer but
useful by-products and intermediate results computed along the way, just like a good solution in
a mathematical exam requires intermediate steps to be presented in order to obtain full marks
(which also simplifies to find the culprit if the final answer is erroneous).
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The following abbreviations are used in this manuscript:

ARA adaptive rearrangement algorithm
RA rearrangement algorithm
VaR value-at-risk
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