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Abstract: We introduce a generalization of the one-dimensional accelerated failure time model
allowing the covariate effect to be any positive function of the covariate. This function and the baseline
hazard rate are estimated nonparametrically via an iterative algorithm. In an application in non-life
reserving, the survival time models the settlement delay of a claim and the covariate effect is often
called operational time. The accident date of a claim serves as covariate. The estimated hazard rate
is a nonparametric continuous-time alternative to chain-ladder development factors in reserving
and is used to forecast outstanding liabilities. Hence, we provide an extension of the chain-ladder
framework for claim numbers without the assumption of independence between settlement delay
and accident date. Our proposed algorithm is an unsupervised learning approach to reserving that
detects operational time in the data and adjusts for it in the estimation process. Advantages of the new
estimation method are illustrated in a data set consisting of paid claims from a motor insurance
business line on which we forecast the number of outstanding claims.

Keywords: accelerated failure time model; chain-ladder method; local linear kernel estimation;
non-life reserving; operational time

1. Introduction

The parametric accelerated failure time (AFT) model has been well established in medical statistics
and other applications (Kalbfleisch and Prentice 2002) for decades. The aim of this paper is to introduce
a nonparametric generalization of the one-dimensional AFT model for right-truncated data and apply
it to estimate the number of outstanding claims in non-life insurance.

Given a covariate X € R? and given no failure has occurred until time t, the AFT specifies
that the probability of a failure between time t and t + dt equals Ox(6t)dt with 6 = exp(—p'X)
for an underlying hazard rate ay and a deterministic vector B € RY. More formally, this model is
expressed through the conditional hazard rate

a(t|X) = 0ap(0t), 6 =exp(—B'X).

Its interpretation is straightforward, for example, in a medical context where failure time T
describes the amount of time for a tumor to reach a critical stage. For each individual i, the value
of 6; depends on its covariate X; (the patient’s medical data). A value of §; = 2, for instance,
means that the development of the tumor happens twice as fast for a patient and 6, = 0.9
means 10% slower development than usual. This is in contrast to the proportional hazard model
a(t|X) = Oug(t), where the interpretation of 6 is non-trivial (Cox 1972). For the statistical analysis
in the AFT model, one can transform the observed failure times through T; — 6;T; (if one knows 6;).
The transformed survival time 6;T; follows the same distribution for all individuals and is independent
of the covariate X;.

Risks 2020, 8, 3; d0i:10.3390/risks8010003 www.mdpi.com/journal/risks


http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-2751-7419
http://www.mdpi.com/2227-9091/8/1/3?type=check_update&version=1
http://dx.doi.org/10.3390/risks8010003
http://www.mdpi.com/journal/risks

Risks 2020, 8, 3 20f17

The AFT model has been studied by various authors including Buckley and James (1979); Louis
(1981); Miller (1976), and Ritov and Wellner (1988). Comprehensive overviews have been given in Cox
and Oakes (1984) and Andersen et al. (1993). The model is still widely used and adapted to new problems
in medical research. A recent modification of the AFT model has been introduced in Li and Jin (2018)
and recent applications include AIDS research (Fulcher et al. 2017) and cancer research (Cho et al. 2018)
among many others.

This article focuses on the one-dimensional case d = 1 and provides a nonparametric generalization
of the parametric AFT model above assuming 6 = 1/ ¢(X). We estimate ¢ nonparametrically and impose
no structural assumption. In a finance or insurance context, the unknown function ¢ is often called
operational time and it can accelerate or slow down the survival time T. However, with our definition,
@(x) has the same effect as 6~ ! in the AFT model, i.e., the effect is reversed. We can transform observed
survival times T; and covariates X; via T; — T;/¢(X;) = T; to obtain identically distributed survival
times T; that are independent of their covariates X; as in the AFT model. In our application of non-life
reserving, X is the accident date of an insurance claim and T is its settlement delay which can be
affected by calendar effects, seasonal effects or a trend in the speed of claims finalization over time,
e.g., due to new organizational structures in the insurance company, more efficient IT systems, or changes
in legislation. The latter trends over time are captured by our operational time function ¢. We estimate
¢ and the marginal hazard rate of T. Together, they yield an estimate of the conditional hazard rate
of T given X, which contains full information of the distribution of T given X. This hazard rate is
used to estimate outstanding claim numbers through extrapolation with a chain-ladder type algorithm.
The proposed algorithm in this article detects the effects of operational time and adjusts for them. If there
is no operational time present, the algorithm still estimates smoothed chain-ladder development factors
for an optimal bandwidth that is selected through cross-validation.

The concept of operational time was originally developed for stochastic processes in Feller (1971).
In actuarial research, it was first used for processes of claim numbers in Bithlmann (1970) and for
non-life reserving in Reid (1978) and Taylor (1981,1982). Comprehensive summaries about operational
time in reserving have been provided in Taylor et al. (2008) and Taylor and McGuire (2016).
For an overview of its use in mathematical finance, we refer to Swishchuk (2016).

The algorithm in this paper is an alternative to the most widely used algorithm in non-life
reserving, the chain-ladder method. The difference is that, in chain-ladder, it is assumed that accident
date and settlement delay are independent, and thus chain-ladder does not account for calendar time
effects like court rulings, emergence of latent claims, or changes in operational time. The first stochastic
model around the chain-ladder method was introduced in Mack (1993). Chain-ladder is still widely
used in the insurance industry and as a benchmark for new methods in research as explained in
overviews of reserving methods in England and Verrall (2002) and, more recently, Taylor (2019). Based
on the idea of chain-ladder, different multiplicative models with independent effects of accident date
and settlement delay were introduced in Kremer (1982); Kuang et al. (2009); Renshaw and Verrall
(1998), and Verrall (1991).

Aside from these publications, the greater part of the research on claims reserving can be
summarized into two streams: a Poisson process approach and a two-dimensional kernel estimation
approach for truncated data. The first (older and more extensive) stream of research focuses on Poisson
process models in Antonio and Plat (2014); Avanzi et al. (2016); Huang et al. (2015); Jewell (1989, 1990);
Larsen (2007), and Norberg (1993,1999). Extensions that investigate dependent covariates or marked
Cox processes include Zhao and Zhou (2010); Zhao et al. (2009), or Badescu et al. (2016), respectively.
A semiparametric approach very similar to operational time is given in Crevecoeur et al. (2019),
in which the authors allow time on weekends and public holidays to pass faster in order to make up
for less claim reports on these days while ensuring a continuous distribution of reporting delay.

The approach in this present paper fits into the second stream of reserving research based
on “continuous chain-ladder” (Hiabu et al. (2016); Lee et al. 2015, 2017, Martinez-Miranda
et al. (2013)). In a broader statistical context, the problem was introduced as “in-sample
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forecasting” (Mammen et al. 2015) and said papers applied their results to forecasting problems
beyond actuarial research. These articles have in common that no distributional assumptions are
made and that kernel estimation is performed under the assumption of a structural model for
the joint density or conditional hazard rate. In the operational time model, Lee et al. (2017) assume
the nonparametric factor 0 = ¢(X), i.e., (X) = ¢~1(X), and estimate 1 as well as the two marginal
densities of accident year and settlement delay. The latter is the closest approach to this present paper;
however, we estimate a conditional hazard rate instead of a multivariate density. The advantage of
our approach is that we only estimate two functions (¢ and ag) instead of three, and then extrapolate
claim numbers to estimate the number of outstanding claims. This extrapolation is analogous to
the algorithm in the chain-ladder method. Since our estimated conditional hazard rates are similar
to chain-ladder development factors (Hiabu 2017), we consider it more natural to extrapolate in
a hazard framework than to perform extrapolation with density functions. Therefore, we only forecast
the effect of the accident date X and do not estimate its distribution. All mentioned continuous
chain-ladder publications including this present paper focus on claim numbers instead of payment
amounts. Recently, Bischofberger et al. (2019) have shown how to extend the models and estimators
for payment amounts. This extension is also feasible for our approach; however, adding extensive
additional technicalities is beyond the scope of this paper.

In traditional statistical learning, learning problems are classified as “supervised”
and “unsupervised” (Hastie et al. 2008). For supervised learning algorithms, the goal is to predict
an outcome measure for a given input. For this purpose, the algorithm trains on paired data consisting
of (input, output) and then applies the learned structure to predict an output from a new input.
On the other hand, in unsupervised learning, there is no output in the data and the goal of the algorithm
is often to find patterns in the data minimizing a loss criterion. Nonparametric kernel estimation
is used in both approaches: for nonparametric regression in supervised learning and for kernel
density estimation in unsupervised learning (Hastie et al. 2008). The new forecasting procedure in
this article can be classified as an unsupervised machine learning technique. Although the goal is
to give an estimate of the number of outstanding claims from past data, our algorithm cannot be
trained on a data set of input and output (in form of past claims and future claims) and then applied
to a new input. The presented algorithm estimates the conditional distribution of settlement delay
given the accident date that is specific for the data set it is used on. This estimation involves kernel
hazard estimators and the minimization of a loss function.

Very recently, following a trend in applied statistics, various other machine learning approaches
to claims reserving that do not belong to any of the previous streams have arisen. Soon these articles
may constitute a third big stream of research. Useful machine learning techniques for reserving
include regression trees (Baudry and Robert 2019; Wiithrich 2018) and neural networks (Kuo 2019)
among others. These approaches also take dependence between accident date and delay into account
and are thus more flexible than many of the aforementioned models. In contrast to the algorithm in
this article, they are all based on supervised learning. A neural network architecture based on classical
chain-ladder literature, into which the over-dispersed Poisson reserving model of Renshaw and Verrall
(1998) is embedded, has been introduced in Gabrielli et al. (2019).

This article is structured as follows. The underlying mathematical model is introduced in Section 2.
Section 3 explains an algorithm to estimate operational time and the baseline hazard. Section 4 illustrates
how to estimate outstanding liabilities from an operational time and a baseline hazard estimate.
A data-driven bandwidth selection procedure is introduced in Sections 5 and 6 containing an illustration
for a real data set.

2. Model

We start with a general mathematical model for hazard rates with operational time but without
filtering and afterwards adapt it to observations on a run-off triangle in the context of claims reserving.
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Since this particular triangular data structure can be expressed as truncated data, a counting process
survival model lends itself to our cause.

2.1. General Model

Let (T, X) be a two-dimensional random variable on the square S = {(t,x) : 0 < t,x < T'}) for
T > 0. Suppose that T can be written as

T = Tp(X) D

for a random variable T that is independent of X and a function ¢ : [0, 7] — [0,7/7]. We call
¢ operational time and Equation (1) operational time model. The support of T is [0, 7] for some
0 <7 < T. In the sequel, we define quantities for each realization (Tj, X;) of (T, X) withi =1,...,n.

In a counting process framework, we identify the survival time with T; and treat X;
as a one-dimensional covariate. We first define the counting process setting before linking it to
the random variable (T;, X;). Suppose we observe a counting process {N;(t) : 0 < t < T} with respect
to a suitable filtration {.7-'; :0 <t < T} (Andersen et al. 1993, p. 60). The intensity of N; at time ¢ is
defined as

Ai(t) = Hm AT EIN; (¢ + 1) =) = Ni(t=)] Fip- .

To illustrate the effect of operational time on the intensity, we start with a simple model for
unfiltered data, denoted by the superscript "ilt. We use the notation with superscripts since we will
focus on a specific hazard later on, for which we want to reserve the plain notation A and N.
For illustration, we define the counting process N*™ilt(t) = [(T; < t) with the adapted filtration
]-"l-‘ff‘ﬁ“ = o({Nfilt(s), X;(s),s < t}). The intensity of N*™i* given X;(t) = x satisfies Aalen’s
multiplicative model (Aalen 1980) with

A;mfilt(t) _ aunﬁlt(”x)l(t <T),
t

¢(x)

where a"ilt(¢t|x) = limy, o h~'P(T € [t,t + h)| T > t, X = x) is the conditional hazard of T given X
and a§i(F) = limy,)oh~'P(T € [f,F+h)|T > f) is the marginal hazard of T. We want to emphasize
that the hazard rate ai!t of T is in particular not conditioned on X because T and X are independent.
The fact that ai™ is a function of just one argument is the advantage of assuming the structural

Model (1) because one can now easily derive an estimator for ai™'. For unique identification of ¢,
we choose the normalization ¢(0) = 1 in the sequel.

The advantage of this framework is that we can easily handle certain filtering schemes
like right-censoring and left-truncation. If the observations of T are right-censored, we observe
(X;, T}, 6;) where T} = min{T;,C} is the censored value of T; with respect to some censoring
time C and 6; = I(T; < C) is the corresponding censoring variable. Moreover, suppose our
observations to be left-truncated. In particular, we assume the special case of left-truncation X; < T;.
Hence, we use the counting process Nfilt(t) = I(T; < t)é; with respect to its adapted filtration
fl-f,itlt = o({Nflt(s), X;(s),s < t}) and with intensity

A (1) = a1, () 280 (1),

for exposure Z1'(t) = I(X; < t < T}). The conditional hazard has the same structure as in the last case,

il p) = L e E
19 = 5 (5 @
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The model in Equation (2) has been investigated for nonparametric regression
in Linton et al. (2011); however, their model did not allow for right-truncation in run-off triangles.
The next chapter introduces the operational time hazard model for right-truncation, which will be
used in the sequel.

2.2. Model on the Run-Off Triangle with Right-Truncation

When estimating future claim numbers, reserving departments in the non-life insurance industry
work with data of historical claims aggregated in two dimensions: the accident date of the claim
and the settlement delay, i.e., the time between accident date and payment to the policy holder.
Note that, as in the chain-ladder method, we will not need the number of individuals under
risk (the number of underwritten policies) for the estimation of future claim numbers. Therefore,
we suppose the data contain only paid claims.

We denote by X the underwriting date of the policy and by T the settlement delay. Hence,
adopting the notation from above, we follow the settlement delay as survival time and the accident
date as covariate on which we will condition. In Model (1), the operational time function ¢ links
a non-observable random delay T to the observed settlement delay depending on the accident date.
The independent delay T can be seen as pure delay, cleared of all external factors. A value ¢(x) > 1
implies a larger delay T with the heuristic that “time is running slower” and vice versa. This is
best explained on the data set that is used in Section 6. The estimator of ¢ has values smaller
than 1 for accident dates after January 2006 (see Section 6). This phenomenon is most likely due to
the improved use of technology in the insurance company and has also been observed on the same
data setin Lee et al. (2017). Instead of treating this as a special case, we let time run faster in this period
and use the same delay throughout the whole range of accident dates. In particular, this does prevent
discontinuities in the distribution of the delay. Since time was running faster for accident dates in
2006 and later, their actual delay effect T, cleared of operational time, is larger (and sometimes even
beyond the diagonal in the run-off triangle) in Figure 1. The operational time estimate already has
a downwards trend for accident dates in 2004 and 2005; however, values in 2004 and and at the end
of 2005 are larger than 1. On these dates, time was running slower in our model which is why
the independent delay T for early accidents is slightly shorter than in the original data.

To adapt the operational time hazard Model (2) to the needs of our application, we assume
pairs of observations (T;, X;), i = 1,...,n, on the triangle Z = {(t,x) € § : 0 < x+t < T}
Hence, we have right-truncated observations of T because it now holds T; < T — X;. To circumvent
this difficulty, we invert time and look at observations (7 — T;, X;) which are left-truncated in 7 —
T; (Ware and DeMets 1976), so we can apply Model (2). Note that our observations (X;, T;) only have
the same distribution as (X, T) if conditioned on {X + T < T }. We do not assume any censoring in
the following.

As before, we focus on a counting process N;(t) = I(T —T; < t). The intensity of
the time-reversed counting process N; with respect to its natural filtration now equals

Ailt) = a(t|x) Zi(t),

where a(t|x) is the conditional hazard of T — T given X = xand Z;(t) = [(t + X; < T,t < T — T)).

In particular, we get
1 T—t
a(tx —ao<T—>, 3)
= 5wm T e
with the marginal hazard ag(z) = limy, o h'P(T —T € [z,z+h)|T — T > z) of T — Tsince T — T
and X are independent. We will also refer to « as a baseline hazard in the following. The reason for
the unintuitive argument of a is that operational time is defined for T in “forward time”; however, ag
is the hazard rate in reversed time but cleared of operational time, c.f., Equation (2).
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Figure 1. Original data and data with unobservable delay T cleared of operational time. The operational
time in (b) is estimated in Section 6. Claim counts are aggregated into monthly bins for visualization,
and settlement delay is displayed in years. The red line represents the date of data collection
and the green points are the date of data collection cleared of operational time effects (with respect to
accident date). (a) original data; (b) data cleared of operational time.

It can be easily derived that our model coincides with the structured model f(x,t) =
f1(x) f2(ty(x)) on the joint density f considered in Lee et al. (2017) for the choice f; and f, being
the marginal densities of X, T, respectively, and ¢(x) = ¢(x)~!. The advantage of our approach
is that we only estimate two functions ¢ and «( instead of three because we use the algorithm
illustrated in Section 4 to estimate the outstanding reserve. Hence, we only forecast the effect of given
underwriting data X = x and do not estimate the distribution of X. For full inference on X, the roles
of T and X have to be swapped.

Note that a multivariate extension of the operational time Model (1) for covariates X &€ R4
and ¢ : R? — R with d > 1 is possible and would result in the same hazard Model (3) with analogous
baseline hazard « if right-truncation is well-defined (for instance 7 — T; < X; 1 with X; 1 being first
component of X;). However, the estimation of ¢ and «( explained in the next section would get rather
involved including a d-dimensional numerical minimization for the estimation of ¢.

3. Estimation of Baseline Hazard and Operational Time

In this section, we show how to estimate the components ¢ and & and then combine the estimators
into a structured estimator of the conditional hazard. We want to recall that the whole estimation
procedure is done in reversed time 7 — T instead of T for the reporting delay. Hence, the following
estimators are defined for N;(t) = I(T — T; < t) and Z;(t) = I(t + X; < T,t < T — T;). This technical
difficulty is necessary because of the right-truncation described in the last section. However, it does not
constitute an issue since, once the components are estimated, we can evaluate all functions at 7 — ¢ to
get the results for t. We also want to remark again that the underwriting date X is always considered in
“forward time”. In the following, we see the conditional hazard a(t|x) as a function of two arguments
a(t, x) and denote its estimators by &(t, x). The unstructured hazard estimator in step 1 is analogously
denoted by a1l (t, x).

The proposed estimation procedure is as follows. The necessary expressions (7) and (10), and the loss
criterion (11) will be introduced below:
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Estimate the (unstructured) conditional hazard by alol (t, x) through Equation (7).
Set pl% =1 and r = 1.

[r]

Estimate &" through Equation (10) using ¢l

1]

Estimate ¢") by minimizing the loss in (11) numerically for every x using &y
Repeat steps 3 and 4 for r = 2, 3,4, ... until the convergence criterion

Gl LN

./O.T(g?)[’](x) 9l () dr <1077

is satisfied in iteration r*.
6. Set the final conditional hazard estimator to

. 1 T—t)
tx) = — 7171, 4
a{t,x) ¢<x>“°< 00 @
for
ga:(p[r*], (5)
o =al'l. )

The final estimator in (non-reversed) “forward time” is set to
& (t,x) = &(T —t,x).

Note that the first conditional estimator &/ (t, x) in step 1 is unstructured, which means that, in general,
it does not satisfy Equation (3). We also want to remark that the final estimator & (t, x) is used to
extrapolate claim numbers in the next section. Despite being more intuitive, it does not occur in
a well-defined model because of the right-truncation T < 7 — X.

All estimators &% (£, x), &g], ¢!l are defined via integrated quadratic loss criteria and the hazard

estimators & (¢, x), &g] have closed form representations as local linear kernel estimators.

3.1. Pre-Step: Unstructured Conditional Hazard

We start with the unstructured conditional hazard estimator. Let U;(t) = (t, X;(¢)) and u = (¢, x)
to simplify the notation. For convenience, we will also write u = (11, up). For any (¢, x), the local linear

kernel hazard estimator &% (#, x) is defined as the first component 6y minimizing the loss function

n s+¢ 2
L(6o,61) = Z;/ [(1 i ’ dN;(v) — 6o — 61 (u — Ui(S))> —&(e) | Kyp(u — Ui(s))Zi(s)ds,

for 6p,0; € R. Moreover, we use a two-dimensional kernel K and bandwidth b = (by,b,)
for by, by > 0 as well as the common notation K, (u1,uz) = by 'by 'K(u1/by,uz/bs). The term
&(e) = (et f:“ dN i(s))z is needed to make the expression well-defined. The loss criterion L results
in the closed form solution

&[O]UIX) = ), (7)

for occurrence and exposure estimators

Our,uz) = + 37 [[1 = (= Ui(s) D) ex ()] Ky (1 — Ui(s))Ni(s),
i=1

n ®)
B(ur, ) = 3 3 [ [1= (0= U(9)D(w) ex ()| Ko — Ui(s)) ()3,

i=1
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where the components of the two-dimensional vector ¢; are
cyj(u /Kb u—U(s))(uj — Ujj(s))Zi(s)ds, j=0,...,d,

and the entries (dj);x—1,2 of the (2 x 2)-dimensional matrix D(u) are given by
n
=n"! Z/Kb(u — U;(s)) (uj — Uyj(s)) (ugx — Uik (s)) Zi(s)ds.
i=1

The closed form solution &% has been derived in Nielsen (1998). This paper focusses on the local
linear kernel estimator because of its good performance at boundaries. The simpler and more intuitive
(Nadaraya—Watson type) local constant hazard estimator is given in Appendix A as an alternative.
However, on bounded support, it is known to suffer from bias at boundaries (Nielsen 1998; Nielsen
and Tanggaard 2001).

3.2. Estimation of Baseline Hazard Given Operational Time
Starting with the pilot estimator ¢[*) = 1, we calculate the first iteration 54([)1] and then recursively

Al A[]

update &’ making use of @'~ For the r-th iteration, we define &

the loss

as the hazard rate oy minimizing

I(ao, 9, & //[ x)oco<7'—7(;(;)t)]2(&(t,x))1§(t,x)w(t,x)dxdt, )

for operational time ¢ = @"~1! and the conditional hazard estimate & = &[°). The loss function reflects
the principle of minimizing a chi-square criterion (Berkson 1980) in which a least squares criterion is
weighted by an estimate of the inverse of the asymptotic variance of &(t, x)), here (&(t, x)) *E(t, x).
The function w is a weighting function, which is used to ensure that the resulting hazard estimator
is a ratio between an occurrence estimator and an exposure estimator. It will be specified later.
The minimization of (9) has the analytic solution

Jr—1] Jr—1]
)= fo (@! 1t x), ) <;o* (1), x)dx

Jo E@ (1 x), 1)@ 1,20, x)p ()19l (1 2), )M
where (pL ](t, x) =T — (T — ) ~(x) for t € [0 T]. The derivation is analogous to Linton et al.
(2011). Now, setting the weighting w(t, x) = ¢~ (x)a(t, x) results in

_ o qoL” (t,x),x)¢l1 (x)dx
JTEQ (%), x)dx

The transformation ¢.(t,x) = T — (T —t)p(x) = te(x) + (1 — ¢(x))7T adds the effect of
operational time to occurrence and exposure estimators that were constructed with respect to T.
The function qA)L] is the estimate of ¢, in the r-th iteration. Hence, we evaluate O and E at x but
at the value of ¢ that was corrected with the operational time effect.

It is worth pointing out that we do not get two marginal one-dimensional hazard estimator
despite X and the cleared delay T = T/¢(X) being independent. This makes the implementation

quite involved.

(10)
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3.3. Estimation of Operational Time Given Baseline Hazard

To estimate ¢ in the r-th iteration, we minimize the loss function in Equation (9) in ¢ given
the baseline hazard ag = Bcg_l] and the conditional hazard estimate & = #%. Since there is no closed
form solution to this problem (Linton et al. 2011), one has to minimize it numerically point-wise
in x. Moreover, we set w(t, x) = @I'~1(x)a(t, x) with the last estimator ¢/"~1 of ¢ as above. Hence,

for every x € [0, 7], we minimize

N . T, 1. 11 T—-t\1*._ N
l(P[,l](zxg ],B,x,oc):/o {a(t,x)—etxg }(T—Gﬂ U (x)E(t, x)dt (11)

numerically for values 6 € [c1,¢z]. The values c; < 1 < ¢, have to be chosen manually. We define
#!"! to be the function minimizing (11) point-wise in x. For unique identification of ¢ and ag, we set
the normalization ¢(0) = 1.

Since there is no closed form solution of ¢! and the occurrence and exposure estimators Oand E
in Equation (10) depend on both t and x, asymptotic theory of our results is not straightforward
and thus beyond the scope of this present paper. These difficulties arise due to the time-reversion
that was necessary to derive estimators for right-truncated data. Asymptotic properties for analogous
estimators on observations that are not right-truncated have been derived in Linton et al. (2011)
in a non-parametric regression context. The fact that we cope with both right-truncation as present
in run-off triangles and operational time distinguishes this present paper from preceding work.
For a straightforward derivation of asymptotic properties of &y with standard counting process
arguments as in Andersen et al. (1993), one would have to make further assumptions. A feasible
approach would be to assume that ¢ can be estimated at a parametric n~!/2-rate, which is possible for
instance in a finite parametrization. Being against the distribution-free nature of this paper (and its
benchmark the chain-ladder method), we decided against this simplification.

A modification of the proposed hazard estimator &(t, x) that has been proved efficient for large
sample sizes would be a two-step multiplicative bias correction, which has been introduced for local
linear kernel hazard estimators in Nielsen and Tanggaard (2001). Since this paper aims at explaining
a new model and estimation procedure, and a bias correction method would add a lot of notation
and complexity that might distract from our new idea, such an extension is left for future research.

4. Estimating Outstanding Claim Amounts

We use our hazard estimator &(t, x) to forecast outstanding claim amounts in a similar way
development factors are used in the chain-ladder method. In chain-ladder with yearly aggregated
data, the j-th development factor }L]- is effectively the ratio between claims whose payments are up to
j + 1 years delayed and those whose payments are up to j years delayed. For each claim, this yields
an estimate of the probability that the payment will be j + 1 years delayed given it has not been made
within the first j years. Certainly, for more granular data, the time periods are shorter, but the principle
stays the same.

In order to formally define development factors, one must first introduce the way data are
aggregated in run-off triangles (England and Verrall 2002). The data are given as (T;, X;) € Z,
i =1,...,n, for the triangle Z = {(t,x) € S : 0 < x+t < T}. The accident date X; is given in
days from the beginning of data collection and settlement delay T; is given in days. The last day of
data collection 7T is also expressed in days since day 0, and it is implicitly assumed to be the largest
possible delay. The last assumption is commonly made in industry for data sets covering large enough
time periods (usually if 7 > 7 years or 7 > 10 years). It is then said that the triangle 7 is “fully
run off”.

We adopt the notation of England and Verrall (2002) to introduce development factors.
Suppose our data have been aggregated into m x m bins with edge length 4. In the (m x m)-matrix
C, we count the number of observations per bin. Its entries Cy; are defined as the number of claims
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i for which T; is in bin j and X; is in bin k. In another matrix D, the cumulative numbers of events
with respect to T are given by Dy; = Z{Zl Cy for j,k = 1,...,m. The triangle {Dy; : j+k > T}
represents the future and therefore contains no claim counts. This is the part we want to forecast.
Now, the development factors {)\j :j=1,...,m—1} are defined as

i = ka;}]jDk,jJrl _ Z,z_fjﬂ;i Ckl, i1 m—t.
Ly—1 Dx,j L1 =1 Cu
For the calculation of )A\j, the last available entry with claims that were delayed j — 1 years
(Dyi—jy2,j inrow m — j + 2) is omitted, which can be seen as scaling by exposure. In the chain-ladder
method, the development factors A; are then used to extrapolate the claim numbers in the cumulative
matrix D into the future via

CL B .
Diym_ki2 = Dim—k+1Am—k+1/

! o (12)
DIS,ZL:DISZL—1AI—1/ l=m—k+3,...,m,

and for k = 2,...,n. The total number of outstanding claims is then given by the last column of
the estimated cumulative aggregated data Z}ﬂ:z DI%L
We now link development factors to hazard estimation. Hiabu (2017) has proved the

asymptotic relationship
A 1

A= — 1 tieL:
J 1—5&H(T—tj) or(l), A

for &y being a histogram-type hazard estimator of the delay in reversed time, I; the j-th bin of
the aggregated data, and ¢ the bin width that satisfies 6 = J,, — 0 for n — co. However, this relationship
was introduced under the assumption that accident date and settlement delay are independent.
As an alternative for our Model (1), we define granular time-dependent development factors as

1
1-— (5&(7-— t]‘, xk)'

Apj = (xx, 1)) € Ik x Jj,

where [; is the j-th bin for the delay and Ji the k-th one for accident date for k = 2,...,m.
Then, we use our time-dependent development factors to forecasts reserves from a granular cumulative
triangle D via

wop B .
Dy'—ki2 = Diem—k+1 e m—k+1

DZT;:DZﬁ—l;\k/l*l’ l=m—k+3,...,m,

(13)

and for k = 2,...,m. The difference to chain-ladder is that our development factors additionally
depend on the row k and that we calculate them on a finer grid, i.e., smaller ¢, larger m, and more
granular matrices C and D. In the application in Section 6, we use monthly aggregated data for
the operational time hazard estimator and quarterly aggregated data for chain-ladder. Ideally, daily or
even more granular data should be used for the proposed hazard estimator; however, this was
practically computationally infeasible in our application. Analogously to chain-ladder, our final
estimate for the number of outstanding payments is the last column in the estimated cumulative
triangle Z}'":z DZ’;

Figure 2 illustrates how development factors are used for extrapolation. The cumulated data is given
in black, forecasts are in red and all development factors are given in blue. Our proposed time-dependent
development factors can be used like traditional development factors but vary for different rows of
the cumulative triangle. The illustration in Figure 2 does not show the fact that our time-dependent
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development factors are computed on a finer scale than for chain-ladder. Moreover, the shift x-direction
through operational time ¢(x) cannot be seen in the illustration.

1 2 3 4 5 1 2 3 4 5
2004 | Dy7 D1 D1z Dy Dis 2004 | D;1 Dipp D13 D1y D15
2005 | Dyy Dy Dy Dy DY 2005 | Dyy Dx Dy Dy DS

~_ v
A0p Apa AOP ACL Ay BCL

2006 | D Dy, Ds3  DF24D 2006 | D D D DEL A D
31 \A—/b?ﬁ 31 32 bbjﬁ
2007 | Dy Dy DY DYMADY 2007 | Dy Dy DSEN DGR M DSE
2008 | D5, D2 Ma por A por 2008 | Dsy D§F %2 DGE A DY A+ DSE

D N D A N S~ O~ N A~

;\5,1 ;\5,2 }\5/3 ;\5,4 ;\1 ;\2 /A\? ;\4
(a) (b)

Figure 2. Forecasting outstanding claim numbers with time-dependent development factors
and chain-ladder development factors. Illustrative example with five accident years and maximum
settlement delay of five years. (a) forecasting with time-dependent development factors via Equation (13);
(b) forecasting with chain-ladder development factors via Equation (12).

5. Bandwidth Selection

For computational reasons, bandwidth selection is done via K-fold cross-validation
(Lee et al. 2017) for K = 20. The set of observations is randomly split into K disjoint parts of equal size
via{1,...,n} = [U...Ulk. To find the optimal bandwidth, we minimize the score function

A

K
Q) =n"" Z% Q;(b)
=

for partial validation scores

) T/ L 2 _I
Qi(b) = Z/O (a,E If](t,ui)> Yi(s)ds—ZZ/OTaclE LUTRIAEINADY

iel]' IGI]
_I.
The estimator &£ il is the estimator & defined in Equation (4) with bandwidth b, but computed
for observations i € {1,...,n}\ [; only. It is being validated against the observations I;.
Being asymptotically equivalent, the estimate Q(b) is a proxy to the first two terms of the validation score

Q(b) = n! Z/OT (ap(t, 1) — a(t, U;))*Yi(s)ds
i=1

that occur after solving the quadratic expression in the integral, in which the true hazard « is
unknown (Gamiz et al. 2013; Nielsen and Linton 1995). The preferred alternative, leave-one-out
cross-validation, is practically unfeasible since the algorithm in Section 3 is too computationally expensive.

6. Application: Estimation of Outstanding Liabilities

We apply our estimation procedure on a data set from a Cypriot motor insurance business line.
This data set contains n = 51,216 paid claims that were recorded between 1 January 2004
and 31 December 2013. First, we estimate operational time ¢ and the baseline hazard «( on the data set.
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Making use of the resulting structured conditional hazard estimate &, we estimate outstanding liabilities
through the approach with time-dependent development factors ;\k,j illustrated in Section 4.

Foreachclaimi =1, ..., n, the data set contains the accident date and the payment date. Instead of
the settlement date, we define the settlement delay as the difference between payment date and accident
date. Afterwards, we normalize the data such that the accident date X; and settlement delay T; take
values in 0, ...,3652. Now, the data are arranged on a triangular shaped support 7% = {(x,t) € S :
x+t < T} for T = 3652 days with accident date x and settlement delay ¢ as described in Section 2.2.
For computational reasons, the data are aggregated into a monthly run-off triangle

I={Cix:jk=1,..,120;j+k—1 <120},

on which ¢ and «( are estimated. As the kernel function, we choose a multiplicative kernel K(u1,uy) =
k(u1)k(up) with k being the Epanechnikov kernel k(s) = 0.75(1 — s?)I(|s| < 1). The data-driven
bandwidth selection procedure in Section 5 leads to the optimal bandwidths b; = 5 months and b, = 8
months for delay and accident date, respectively. For the estimation of ¢, we minimize the loss
functions (11) in the interval [0.5,1.5] for every x = 1,...,120 in every iteration of the algorithm.

The estimated baseline hazard and operational time are shown in Figure 3. For the operational
time estimate ¢ in Figure 3a, the settlement delay at 1 January 2004 is used as benchmark and claim
settlement for most accident dates between February 2004 and December 2005 is slightly slower than
this benchmark. In November 2004, the operational time estimator catches a trend towards faster
settlement of claims despite short declines in 2005 and 2009. This phenomenon is most likely due to
the improved use of technology in the insurance company and has also been observed on the same
data set in Lee et al. (2017). The decrease of speed in claims finalization at the end of 2005 and 2009
could be due to new employees in the reserving department who are training in their first months.
The average accident that happened after January 2006 was settled faster than our benchmark with
the value of the operational time estimate ¢ being below 1 for this period. After 2010, our model shows
the fastest processing and payments of claims. Due to high variation in the estimation of ¢ in the lower
corner of the run-off triangle, we recommend to set ¢ to the value of the previous month for the last
five months (about the last 5% of the support of ¢). Note that this adjustment is still in the spirit of
our approach to improve in the estimation by chain-ladder (and even multiplicative nonparametric
methods as in Martinez-Miranda et al. (2013) and Hiabu et al. (2016)) because a constant operational
time value corresponds to the case where T and X are independent and we still allow for dependency
through operational time for 95% of the accident dates. We want to remark that this issue does not
occur if un-truncated data (on a squared support instead of a triangular one) is given. The baseline
hazard estimate &o(7 — t) of the payment delay (in forward time) in Figure 3b has the expected
shape with a steep decrease for short delays and a value close to zero for delays larger than 1.5 years.
This shape indicates that the vast majority of the claims in this data set were paid off within the first
year as can be seen in Figure 1.

The estimated outstanding liabilities by accident year and by payment year are given in Table 1.
The results from the chain-ladder method with quarterly aggregated data are used as a benchmark.
The shift through operational time yields less claims than chain-ladder for all payment years except
for 2016. Since the value of the operational time estimate (Figure 3a) is below the benchmark 1
for all claims with accident year later than 2005, these claims were settled faster than older claims.
These claims constitute the majority of outstanding claims since most claims are estimated to be settled
within one and a half years (Figure 3b). Hence, most claims are expected to be paid out earlier than
estimated through average payment delay in the chain-ladder method. The same effect can be seen
with respect to accident years. On 31 December 2013, the date of data collection, our operational time
estimator forecasts old claims from accidents before 2009 to be paid off since their settlement delay
is expected to be shorter than average settlement. On the other hand, chain-ladder still estimates
a few claims from accidents between 2005 and 2008. In total, for this data set, the estimated number
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of outstanding payments by operational time is lower (1054) than the reserve estimate by quarterly
chain-ladder (1414).

0.6-

operational time
hazard rate
°
R

0.2~

2004 2006 2008 2010 2012 2014 0 1 2 3 4 5 6 7 8 9 10
accident date payment delay in years

(a) (b)

Figure 3. Estimated components of hazard rate of the payment delay T: (a) operational time estimate
¢(t) with optimal bandwidths; (b) baseline hazard estimate &y(7 — t) of payment delay (in forward
time) with optimal bandwidths.

Table 1. Estimated number of outstanding claims through hazard with operational time (op. time)
and quarterly chain-ladder (CL) by accident year and payment year.

Accident Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total

Op. Time 0 0 0 0 0 23 92 171 254 513 1054
CL 0 2 8 20 32 54 75 128 224 871 1414
Payment Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total
Op. Time 590 256 143 58 5 0 0 0 0 0 1054
CL 856 261 130 71 45 27 16 7 2 0 1414

Although the comparison might seem unfair at first due to different levels of aggregation, more
granular aggregation for chain-ladder would not improve the quality of its estimates. As shown
in a simulation study in Baudry and Robert (2019), even when enough data are available for
monthly aggregation, chain-ladder reserve estimates based on monthly data show very high variance,
making them effectively unreliable in practice; however, monthly data are necessary for chain-ladder
if one is interested, for instance, in the estimation of monthly cash-flows. This phenomenon has been
confirmed in a simulation in Bischofberger et al. (2019), in which kernel estimators picked larger
bandwidths while still being able to yield monthly cash-flow predictions. Furthermore, chain-ladder
is typically used on at least quarterly aggregated data to prevent columns that contain only zeros in
the run-off triangle. Where the chain-ladder algorithm cannot handle this issue, our operational time
hazard estimator can cope with it.

In an independence test based on Conditional Kendall’s tau for truncated data (Austin and
Betensky 2014; Martin and Betensky 2005), the hypothesis of independent settlement delay T
and accident date X was rejected. Hence, the assumptions of the chain-ladder model of Mack (1993)
are violated (Hiabu 2017) and one cannot rely on its estimate in this data set. Since the chain-ladder
model with independent variables is nested within our prosed operational time Model (1),
we recommend our model—although inference for our operational time structure has not been
carried out. With the hazard Model (3) being rather involved, the theory for a hypothesis test for
the operational time structure is beyond the scope of this article.

Choices of bandwidths with higher validation scores can lead to unrealistic reserve estimates that
differ from the chain-ladder estimate by up to 100%. On the one hand, the operational time hazard
estimator is sensitive to the choice of bandwidth. On the other hand, the result obtained through
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cross-validation is stable with four bandwidth choices close to the optimal validation score Q resulting
in very similar estimates of the number of outstanding claims.

7. Conclusions

We introduced a new hazard model that allows for operational time in right-truncated data
as present in run-off triangles. In a structured hazard model, the conditional hazard rate of
the settlement delay given the accident date is expressed through operational time (a function of
the accident date) and the baseline hazard of the settlement delay (cleared of effects from accident date).
Minimizing an integrated squared loss, we define nonparametric estimators of operational time
and the baseline hazard. These estimators are calculated through an iterative algorithm that updates
the estimates of operational time and the baseline hazard in each iteration until it converges. If no
right-truncation is present, our hazard model is a nonparametric extension of the accelerated failure
model with a one-dimensional covariate.

Our estimation procedure detects operational time in the data and corrects for it in
the estimation process. Therefore, it can be classified as an unsupervised machine learning technique.
Since operational time is a common source of dependence between accident date and settlement date
in the data, we recommend the approach illustrated here if one cannot prove independent covariates
in the date through hypothesis testing (and other structural dependencies like seasonal effects can be
ruled out). Even if the accident date and settlement are independent, our estimator works and estimates
operational time ¢ ~ 1. However, in the latter case or if independence is not rejected by a statistical
test, estimation via chain-ladder tends to be more stable than our operational time hazard estimates
and should be considered.

In an application in a real data set of paid claims, we forecast the number of outstanding claims
for a motor insurance business line. For this purpose, we suggested to transform our operational time
and baseline hazard estimators into time-dependent development factors. These are then used to
extrapolate the claim numbers in the data set analogously to what is done in the chain-ladder method.

The downsides of the approach illustrated here are computational complexity and numerical
instability of the operational time estimator on the data in the last 5-10% of accident dates,
i.e., in the lower corner of the run-off triangle. The latter issue also arises in many other approaches
to non-life claims reserving. Our suggested way to deal with it in our model is to set the value of
operational time to the last stable value for the affected dates, which corresponds to the assumption
of independent accident date and settlement delay on the most recent accident dates. Therefore, our
approach still corrects for operational time on more than 90-95% of the data and in the remaining data
it is as good as kernel hazard methods that assume independent variables.
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Training Group RTG 1953.
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Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Alternative Local Constant Estimators

As an alternative to the local linear estimator of «(t, x) in Equation (7), one could use the local
constant estimator N
OLC(t, x)

~LC
B (tx) = =—"2,
(t,%) ELC(t,x)
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with
ALC . T
0 (s uz) = ) [ Kyl = Uy(s))dNi(s),
i=1
rLC - T
B () = 1 [ Kyl = Ui(s)Zi(s)ds,
i=1
It is defined through the integrated squared loss minimization

argmini/OT l(l /SSH dN;(v) — 9)2 —&(e)

Ky (u — Ui(s))Zi(s)ds,
PeER =1

for u = (t,x) and U;(t) = (t, X;(t)) as before. The term ¢(e) = (e~ [*** dNi(s))2 is again needed to
make the expression well-defined.
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