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Abstract

:

In this paper, we consider a loss reserving model for a general insurance portfolio consisting of a number of correlated run-off triangles that can be embedded within the quantile regression model for longitudinal data. The model proposes a combination of the between- and within-subportfolios (run-off triangles) estimating functions for regression parameter estimation, which take into account the correlation and variation of the run-off triangles. The proposed method is robust to the error correlation structure, improves the efficiency of parameter estimators, and is useful for the estimation of the reserve risk margin and value at risk (VaR) in actuarial and finance applications.
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1. Introduction


The protection of the policyholders and the financial stability of the insurance market industry is a crucial aspect and regulatory authorities intervene to ensure it. Based on Solvency II and IFRS Phase II regulations, each insurance or reinsurance company is obliged to evaluate its insurance liabilities on a risk-adjusted basis to allow for uncertainty in cash flows that arises from the liability of the insurance contracts. Australian Prudential Regulation Authority (APRA) requires estimating a 75th percentile of the distribution of outstanding claims for recording in profit and loss statements and the risk margin should be established on a basis that is intended to secure the insurance liabilities of the insurance company at a given level of sufficiency    ( 75 %   ).



In recent years, quantile regression has become a very popular methodology that has incorporated several new reforms in insurance and finance. The least squares estimators investigate only changes in the mean when the entire shape of the claims distribution may change dramatically. Quantile regression characterizes any particular point of a distribution and thus provides a more complete description of the distribution in comparison to linear regression. Quantile regression techniques can differentiate risk factors that lead to high level claims from those that lead to low level claims. Quantile regression estimation may be more efficient than the ordinary least squares when the distribution is not normal. Furthermore, quantile regression is more robust against outliers and does not require the specification of any error distribution. Therefore, quantile regression may be more appropriate than least squares estimation in the context of the insurance industry (see Buchinsky 1998; Koenker 2005).



In the actuarial literature, few papers deal with quantiles. Pitt (2006) used censored regression quantiles to analyze claim termination rates at different quantiles of the distribution of claim duration for income protection insurance. Chan et al. (2008) proposed a robust Bayesian analysis of loss reserves data using the generalized   t  -distribution. Dong et al. (2015) presented in detail the use of parametric and nonparametric quantile regression in non-life applications. Nevertheless, the above approaches have been used for univariate quantile regression models and are suitable for a single line of business (single run-off triangle).



In this paper, we consider a quantile regression application in a multivariate context alternative to a multivariate Chain Ladder model for a portfolio of within and between correlated run-off triangles. For a dependent line of business, it is difficult to describe and specify the underlying correlation structure, which may prevent insurance practitioners from using the quantile regression. We propose a reserving problem for a non-life insurance portfolio consisting of several run-off subportfolios corresponding to different lines of business that can be embedded within the quantile regression longitudinal model and can provide solutions to the estimation of more extreme    V a R s    and capital margins.



The remainder of this paper is structured as follows. Section 2 presents the types of dependence (correlation) modeling in loss reserving triangles. In Section 3, we present brief introductions of quantile functions and quantile regression. Section 4 illustrates how correlated run-off triangles can be embedded in a quantile regression longitudinal model. In Section 5, we present a numerical implementation of the longitudinal quantile regression model with two run-off triangles. Section 6 provides the calculation of the risk margin (RM) based on the solvency capital requirement (SCR) estimation and according to the cost-of-capital (CoC) methodology. Finally, in Section 7, some concluding remarks are presented.




2. Dependence (Correlation) Modeling in Loss Run-Off Triangles


In this section, we highlight three types of dependence structures that may appear in loss reserving estimation. In many stochastic claims reserving models, in a single line of business, it is assumed that accident years are independent. In practice, it is evident that different accident years are not independent because of accounting year effects, claims inflation, and other exogenous factors that affect all accident years simultaneously. As pointed out by Ajne (1994) and many other researchers, when dealing with a portfolio with several lines of business, the Chain Ladder predictors for the whole portfolio differ from the sums of the Chain Ladder predictors for the different individual lines of business, because the dependence structure between the subportfolios of a portfolio is not taken into consideration. Dependence modeling was also discussed by Merz et al. (2012).



2.1. Correlation Within Claims Reserving Triangles


Barnett and Zehnwirth (2000) studied calendar year effects within probabilistic trend family models, which allowed calculating distributions of, and correlations between, future payment streams. De Jong (2012), based on time series models, investigated the correlation between accident and calendar years within triangles. In this spirit, Wuthrich (2010) presented a Bayesian inference approach that allows for the study of accounting (calendar) year effects. By restricting to the lognormal approach to chain-ladder-type models, Kuang et al. (2011) proposed a method suitable for cases where there is a sudden change in the economic environment affecting the policies for all accident years in the reserving triangle. Pešta and Okhrin (2014) proposed a generalized time series model that allows for modeling the conditional mean and variance of the claim amounts, for the claims development. They used a copula framework to incorporate modeling dependencies within the loss triangles.




2.2. Correlation Between Claims Reserving Triangles


The dependence structure between lines of business (run-off triangles) that is related to the accurate estimation of risk’s diversification is very important to the solvency capital requirement (SCR) the company should hold in order to remain healthy and avoid holding unnecessarily high levels of capital (see Avanzi et al. (2016b)).



Clark (2006), by using a times series model, estimated the correlation between future payments, due to inflation, in two or more loss reserving run-off triangles, concluding that the payments move with inflation and the variability due to inflation can be related to economic forecast models. When companies have several lines of business, it is useful to examine the presence of possible dependencies within the structure of the company and investigate the financial effect of these dependencies. Barnett and Zehnwirth (2000) proposed a model that allows dependency between all the observations that belong to the same calendar year for each line of business. According to Braun (2004), the correlation between run-off triangles can be attributed to the claims inflation affecting all or most of the run-offs of a portfolio in a similar way. Shi and Frees (2011) used copulas to model the association among multiple run-off triangles and Abdallah et al. (2015) assumed a dependence structure that links the calendar years of different lines of business. Zehnwirth and Barnett (2001) considered a more complicated situation of   n   correlated loss triangles. Braun (2004) extended the distribution-free method of Mack (1993) to estimate the prediction error of the Chain Ladder method for a portfolio of several correlated run-off triangles. Pröhl and Schmidt (2005) proposed a multivariate Chain Ladder method that is suitable for a portfolio consisting of several subportfolios with a certain dependence structure.



By using the theory of linear mixed models, Antonio and Beirlant (2006) built a flexible loss reserving model in the framework of longitudinal data. Quarg and Mack (2004) proposed a bivariate Chain Ladder predictor for the paid and incurred aggregate claims of the same portfolio aiming to reduce the gap between the univariate Chain Ladder predictors for the paid and incurred aggregate claims of the same portfolio. Taylor and Mcguire (2005, 2007) considered the claims reserving problem in a multivariate context and generalized linear models were used to estimate loss reserves of several stochastically dependent lines of business, individually and in aggregate. Schmidt (2006) provided a review on recent multivariate models and methods of loss reserving. Merz and Wüthrich (2008a, 2008b) considered the multivariate Chain Ladder method for a portfolio of   N   correlated run-off triangles based on multivariate age-to-age factors and derived an estimator for the mean square error of prediction for the Chain Ladder predictor of the ultimate claim of the total portfolio. Shi and Frees (2011) demonstrated the role of dependencies in the aggregation of claims from multiple run-off triangles, proposing a copula regression model for the prediction of unpaid losses for dependent lines of business. Zhang (2010) presented a general multivariate stochastic reserving model by using the seemingly unrelated regression technique. This model not only specifies contemporaneous correlation, but also allows structural connections among triangles. Hudecová and Pešta (2013) proposed the application of generalized estimating equations (GEE) for the estimation of claims reserves, where claim triangles are handled as panel data, assuming dependent claim amounts within the same accident year. De Jong (2012) developed and applied a model for loss triangles that facilitates the structuring and measurement of dependence between loss triangles. Bermudez et al. (2013), by using linear regression techniques and copulas, and assuming several dependence structures between lines of business, estimated the risk-based capital reserve for the economic capital requirements under the Standard Model and the Internal Model approach. Their sensitivity analysis on the correlation matrix assumptions between lines of business showed that modifications of the correlation and dependence assumptions have a significant impact on the solvency capital requirement (SCR) estimation, under Solvency II regulations. In insurance applications, normality assumptions may be misleading as a measure of dependency in the tails of the variables. The impact of loss triangle dependence on risk margins was also considered by Hubert et al. (2017), who proposed the FastSUR algorithm, in order to robustify the general multivariate Chain Ladder method of Zhang (2010), where the parameters were estimated using seemingly unrelated regression(SUR). Based on MM-estimators, Peremans et al. (2018) proposed a robust alternative that estimates the SUR parameters in a more outlier resistant way.



Avanzi et al. (2016a, 2016b) proposed a multivariate Tweedie approach to capture cell-wise dependence and the dependency between business segments in the non-life insurance industry, respectively, in loss reserving. In addition, Avanzi et al. (2018) constructed a broad and flexible family of models, where dependency is induced by common shock components. For an extensive analysis of loss reserving techniques, the reader may refer to the books of Taylor (2000), Wuthrich and Merz (2008) and Radtke et al. (2012).




2.3. Correlation Within and Between Claims Reserving Triangles


In actuarial applications, an insurance portfolio is subdivided into several homogeneous lines of business (subportfolios). Losses from a line of business can be viewed as a financial risk. Social and economic environment may affect several lines of business of an insurance portfolio, simultaneously. Thus, we may consider that, in addition to within correlation, insurance lines of business (run-off triangles) are related to each other due to the calendar effects. Zhang et al. (2012) proposed a Bayesian non-linear hierarchical model, where data from individual companies are treated as repeated measurements of various run-off triangles of claims, thus respecting the correlation between successive observations. Shi et al. (2012) examined calendar year effects in a multivariate loss-reserving context through a log-normal model. They used random effects to accommodate the correlation due to accounting year effects within and between run-off triangles. This specification is in line with De Jong (2012), who introduced the calendar year effects through the correlation matrix. In the spirit of Shi et al. (2012), Merz and Wüthrich (2008a) defined a multivariate log-normal model that allows modeling both dependence between different run-off triangles and dependence within run-off triangles, such as claims inflation.




2.4. Why Quantile Regression Models with Correlated Run-off Triangles?


In the insurance practice, some regulation rules indicate that some changes over time occurred across the claim distribution. Therefore, it is very important to investigate these changes at different points of the distributions. For example, Australian insurance regulations require that a risk margin should be established at 75% percentile of the discounted value less than the best estimate (see Pitt (2006)). Most studies consider only correlation as a measure of dependency, focusing on reserving at mid-range    V a R s   . Consideration of capital margins at more extreme    V a R s    opens up the question of tail dependency, and a whole new field of exploration (see Avanzi et al. (2016b)).



Each quantile regression characterizes a particular point of a distribution, and thus provides more complete description of the distribution, taking into account the correlations in the tail of distributions. Furthermore, quantile regression is more robust against outliers and does not require specifying any error distribution (see Fu and Wang (2012)).



One implication of our model is the diversification effect of a portfolio of reserve risks and can be used as a risk measure with applications in actuarial science. Practically, our quantile approach leads to a provision of a specified probability, say 80%, sufficient to cover the run-off claims. Adding the necessary margin to the central estimate, the evaluation of the claims liability is provided and the provision is sufficient to cover the future liabilities.





3. Preliminaries on Quantile Functions and on Quantile Regression


Here, we provide some preliminaries on quantile regression that are needed below for loss reserving estimation.



3.1. Quantile Function


For a random variable   Y   with cumulative distribution function     F Y   ( y )  = P  ( Y ≤ y )    , the   θ  th quantile of   Y   is defined as the inverse function


      Q Y   ( θ )  =  F  Y   − 1    ( θ )  = inf  { y : F  ( y )  ≥ θ }  ,     



(1)




where    0 ≤ θ ≤ 1   . In case that    F ( · )    is a strictly increasing and continuous probability distribution function,     F  Y   − 1    ( θ )     is the unique real number   t   such that    F ( t ) = θ    (Gilchrist 2000).



Quantiles are connected with operations of ordering the sample observations that are used to define them. For a random sample    {  y 1  , ⋯ ,  y n  }    of   Y  , the general   θ  th sample quantile    ξ ( θ )    may be formulated as the solution of the optimization problem


   min  ξ ∈ ℜ    ∑  i = 1  n   ρ θ   (  y i  − ξ )  ,    w h e r e     ρ θ   ( z )  = z  ( θ − I  ( z < 0 )  )   



(2)




and    I ( · )    denotes the indicator function. This loss function is an asymmetric absolute loss function because it is a weighted sum of absolute deviations, where the weight    ( 1 − θ )    is assigned to the negative deviations while the weight   θ   is assigned to the positive deviations.




3.2. Quantile Regression Estimation


In the regression case, we assume a sample    (  Y i  ,  x i  )   ,    i = 1 , . . . , n   , where    Y i    is the dependent variable,    x i    is a    k × 1    vector of explanatory variables, and   β   is a    k × 1    vector of coefficients. The general linear model has the form


   Y i  =  x  i  T  β +  u i  ,    a n d    E  (  Y i  |  x i  )  =  x  i  T  β ,  



(3)




while the   θ  th conditional quantile of    Y i    given    x i    can be written as (see Koenker and Basset 1982)


   Q  Y i    ( θ |  x i  )  =  x  i  T   β θ  .  



(4)







We consider the   θ  th sample quantile      q ^  i   ( θ )    . Mosteller proved the limiting normality of     ξ ^    Y i   |   x i   θ    that provides a realization of the least estimation of the form


    q ^   i  θ  =  x  i  T   β θ  +  u i  ,  



(5)




where    β ( θ )    is a vector to be estimated and    u i    is the error term. The linear conditional quantile function,    Q  ( θ | X = x )  =   x  ′  β  ( θ )    , can be estimated by solving


   min β   1 n   ∑  i = 1  n   ρ θ   (  u i  )  =  min  ( β )     ∑  i :  y i  ≥  x  i    ′   β     θ |   Y i  −  x  i  T   β | +   ∑  i :  Y i  <  x  i  T  β     ( 1 − θ )   |  Y i  −  x  i  T  β |   ,  



(6)




where     ρ θ   ( t )     is already defined in Equation (2) and    I ( · )    is the indicator function for any quantile    θ ∈ ( 0 , 1 )   . The case    θ = 1 / 2   , which minimizes the sum of absolute residuals, corresponds to median regression, which is also known as    L 1    regression. The minimization of Equation (6) was produced by Koenker and D’Orey (1994).



Under certain conditions, for independent observations, the asymptotic variances for    u i    can be obtained as (see Buchinsky 1998)


   w θ  =   θ ( 1 − θ )   n  f 2   (  F  − 1    ( θ )  )     



(7)




and the covariance matrix of     β ^  θ    is


    Σ ^  θ  =   (   X  T   Ω  θ   − 1   X )   − 1   ,    w i t h     Ω θ  =  w θ  .  I  n × n   .  



(8)







With quantile regression, we can show how various financial characteristics are different at different quantiles. Thus, the quantile regression method allows the marginal effects to change for claims at different points in the conditional distribution by estimating    β p    using several different values of   p  ,    p ∈ ( 0 , 1 )   . This means that the quantile regression allows for parameter heterogeneity across different types of claims.





4. Correlated Run-Off Triangles in a Quantile Longitudinal Model


The reserving procedure for multiple run-off triangles is an important issue of an insurance company because the connections among the triangles may show correlations which are initially unknown. The correlations of different lines of business may produce more efficient estimations for the total reserve. If for example the two run-off triangles are positively correlated, then the variability of the total reserves exceeds the sum of variabilities of the total reserve from each triangle. Ajne (1994) noted the commonly used approach in actuarial practice, which is the division of the portfolio into several subportfolios and then making calculations using each single line of business. However, this method ignores the dependencies among the subportfolios.



When the run-off triangles are linked with a known structure, such as the paid and incurred triangles, then the Munich Chain Ladder (MuCL) model by Quarg and Mack (2004) is a good method of estimation. Moreover, instead of studying the structural correlations, the correlations between the triangles is an important issue and several papers have been produced (e.g., Braun (2004); Kremer (2005); Schmidt (2006); Merz and Wüthrich (2008a, 2008b)). According to Holmberg (1994), correlations in a run-off triangle may arise among losses as they develop over time or in different accident years. Other authors have studied correlations over calendar year incorporating the trends of inflation which appear. Harrison and Hulin (1989) used generalized estimating equations (GEE) as a promised analytic tool that takes into consideration the correlation of responses within a specific subject for response variables. A more interesting characteristic of these equations is the flexibility they have to analyze not normally distributed response variables.



Suppose that   N   run-off triangles are available and    i ∈ { 1 , 2 , ⋯ , N }    refers to the   i  th triangle while    r ∈ { 1 , 2 , ⋯ , I }    refers to the accident year and    j ∈ { 1 , 2 , ⋯ , I }    refers to the development year. Denote     Y  r j   =   (  Y  r j   ( 1 )   , ⋯ ,  Y  r j   ( N )   )  T     the     n N  × 1    vector with the incremental losses at accident year   r   and development year   j   for all triangles   N  .



Denote    D = {  Y  r j   ,  r + j ≤ I + 1 ,  1 ≤ r ≤ I ,  1 ≤ j ≤ I }    as the observed losses,     D  · , j   =  {  Y  r j   ,  1 ≤ r ≤ I ,  j ≤ k }     as the losses up to development year   k   (including it), and     D  r , j   =  {  Y  r j   ,  k ≤ j }     as the losses for accident year   r   up to development year   j   (including it). According to the data, the sets    D  · , j     and    D  r , j     are the observed values and should be used to estimate the adequate reserve to fund losses that have been incurred but not yet developed.



Here, we are not going to use a triangulation form to model the data. Let    y  i k     be the   k  th measurement for the   i  th subject (triangle), which describes the total claims amount or the number of claims at the   i   run-off triangle for    i = 1 , ⋯ , N   ,    k = 1 , ⋯ ,  n i     where    n i    is the number of the observed data of the triangle   i  . We consider the case where longitudinal data analyses are based on a linear regression model such as


      y  i k   =   x   i k  T  β +  ϵ  i k   =  β 1   x  i k 1   +  β 2   x  i k 2   + ⋯ +  β p   x  i k p   +  ϵ  i k   ,     



(9)




where    β =   (  β 1  , ⋯ ,  β p  )  T     is a p-vector of unknown regression coefficients while    ϵ  i k     is a random variable with mean zero and represents the deviation of the response from the model prediction      x   i k  T  β   . Usually,     x  i k 1   = 1    for all    i = 1 , ⋯ , N    and all    k = 1 , ⋯ ,  n i     and then the coefficient    β 1    is the intercept term of the regression model. For the rest of the explanatory variables,     x  i k l   = 1   , for    i = 1 , ⋯ , N   ,    k = 1 , ⋯ ,  n i     and    l = 1 , ⋯ p   , if the observation    y  i k     corresponds to   i   triangle, for accident year   r   or development year   j   (in Table 1); otherwise,     x  i k j   = 0   . For more details, see Christofides (1990).



In the classical linear model, the    ϵ  i k     would be mutually independent    N ( 0 ,  σ 2  )    random variables and represent the error term of the model. Mathematically, the    C o v (  y  i j   ,  y  i k   )    of two different observations of the same subject, is not equal to zero. In the longitudinal structure the errors    ϵ  i k     are expected to be correlated within subjects (see Diggle et al. 2002). The data for the   N   run off triangles are displayed in Table 2.



Using matrices, the regression equation for the   i  th subject has the following form:


      Y i  =   X  i T  β +  ϵ i  ,     



(10)




where     X  i T    is a     n i  × p    matrix and     ϵ i  =   (  ϵ  i 1   , ⋯ ,  ϵ  i  n i    )  T    .



Let   X   be an     ∑  i = 1  N   n i  × p    matrix of explanatory variables and     σ 2  V    be a block-diagonal matrix with non-zero     n i  ×  n i     blocks     σ 2   V i    , each representing the variance-covariance matrix for the vector of measurements on the   i  th subject. Then,    y =   (  y 1  , ⋯ ,  y N  )  T     is a realization of a multivariate Gaussian random vector   Y  , with


     Y ∼  N p   ( X β ,  σ 2  V )  .     



(11)







In case we want to analyze data generated by the model in Equation (11), the block-diagonal structure of     σ 2  V    is very important, because we use each subject in order to estimate     σ 2  V    without making any parametric assumptions about this form. The replication across the subjects is a very crucial characteristic because it affects the structure of the matrix     σ 2  V    (Diggle et al. 2002).



4.1. Quantile Regression with Longitudinal Data


By considering the linear quantile regression model of Chen et al. (2004), Fu and Wang (2012) proposed a combination of the between and within subject estimating functions for parameter estimation, which takes into account the correlations and variation of the repeated measurements for subjects. Their model is an extension of the univariate quantile regression proposed by Wang et al. (2009) and Pang et al. (2012). Let    y  i k     be the   k  th measurement for the   i  th subject, where    k = 1 , ⋯ ,  n i     and    i = 1 , ⋯ , N   . We also suppose that    x  i k     is the corresponding covariate vector and measurements from the same subject are dependent while those from different subjects are independent. We assume that the    100 θ   th quantile of    y  i k     is     x  i k  T  β   , where   β   is a    p × 1    unknown parameter vector. Using this notation, we consider the following model for the conditional quantile functions


   Q θ   (  y  i k   |  x  i k   )  =  x  i k  T   β 0  ,  



(12)




where    β 0    is the true value of the vector   β  . Let the error term     ϵ  i k   =  y  i k   −  x  i k  T   β 0    , which satisfies the condition    P (  ϵ  i k   ≤ 0 ) = θ   . What is of interest is finding an efficient estimate for the unknown vector   β   for a particular value of   θ  . According to Chen et al. (2004), under the independence working model assumption, the estimates     β ^  I    are obtained by minimizing the function


   L θ   ( β )  =  ∑  i = 1  N    ∑  k = 1   n i     ρ θ   (  y  i k   −  x  i k  T  β )    .  



(13)







We differentiate Equation (13) with respect to   β   and take the following estimating functions to make inferences about the unknown vector   β  :


      W θ   ( β )  =  ∑  i = 1  N    ∑  k = 1   n i     x  i k    S  i k         








where     S  i k   = θ − I  (  y  i k   −  x  i k  T  β ≤ 0 )     is a discontinuous function which takes the value    θ − 1    when     y  i k   −  x  i k  T  β ≤ 0    and the value   θ   otherwise.




4.2. The Uniform Correlation Model


In the uniform correlation model (also known as exchangeable or compound symmetry correlation model), it is assumed that there is correlation,   ρ  , between any two measurements on the same subject. In matrix notation, this corresponds to


      V i  =  ( 1 − ρ )   I  n i   + ρ  J  n i   ,     



(14)




where    I  n i     denotes the     n i  ×  n i     identity matrix and    J  n i     the     n i  ×  n i     matrix all of whose elements are 1 (Searle et al. 1992). To justify the uniform correlation model we should think that the observed measurements,    y  i k    , are realizations of random variables,    Y  i k    . However,


      Y  i k   =  μ  i k   +  U i  +  Z  i k   ,  i = 1 , ⋯ , N ,  k = 1 , ⋯ ,  n i  ,     



(15)




where     μ  i k   = E  [  Y  i k   ]    ,    U i    are mutually independent    N ( 0 ,  v 2  )    random variables,    Z  i k     are mutually independent    N ( 0 ,  t 2  )    random variables, and    U i    and    Z  i k     are independent of each other. We should mention that Equation (15) gives a simple interpretation of the uniform correlation model as one in which a linear regression model for the mean response incorporates a random intercept term which has variance    t 2    between the subjects.



Theorem 1.

In the case of modeling the correlation between the same subject, we assume that    P (  ϵ  i k   ≤ 0 ,  ϵ  i l   ≤ 0 ) = δ    for any    k ≠ l    and the covariance matrix of     S i  =   (  S  i 1   , ⋯ ,  S  i  n i    )  T     is given by


    V i  =  ( θ −  θ 2  )   [  ( 1 − ρ )   I  n i   + ρ  J  n i   ]  ,   



(16)




where   ρ   is the correlation coefficient of    S  i k     and    S  i l     and equals     ( δ −  θ 2  )  /  ( θ −  θ 2  )    ,    I  n i     is the     n i  ×  n i     identity matrix, and    J  n i     is the     n i  ×  n i     matrix of 1 s.





Proof. 

The form of the covariance matrix of    S i    is


   V i  =  σ 2      1   ρ   ρ    …    ρ     ρ   1   ρ    …    ρ      …     …     …     …     …      ρ   ρ   ρ    …    1     ,  



(17)




because there is correlation between    S  i j     and    S  i  j ′      with    j ≠  j ′       j ,  j   ′   = 1 , . . ,  n i    . We have


     ρ = C o r r  (  S  i j   ,  S  i  j ′    )  =   C o v (  S  i j   ,  S  i  j ′    )     V a r (  S  i j   )     V a r (  S  i  j ′    )     =   C o v (  S  i j   ,  S  i  j ′    )   σ 2   .     



(18)







Moreover,


     C o v  (  S  i j   ,  S  i  j ′    )  = E  [  S  i j    S  i  j ′    ]  − E  [  S  i j   ]  E  [  S  i  j ′    ]  = δ −  θ 2  .     



(19)







Using the fact that    P (  ϵ  i k   ≤ 0 ) = θ   , we have


     E [  S  i j    S  i  j ′    ]     = E   [ θ − I  (  ϵ  i j   ≤ 0 )  ]   [ θ − I  (  ϵ  i  j ′    ≤ 0 )  ]            =  θ 2  − θ E  I (  ϵ  i j   ≤ 0 )  − θ E  I (  ϵ  i  j ′    ≤ 0 )  + E  I  (  ϵ  i j   ≤ 0 )  I  (  ϵ  i  j ′    ≤ 0 )            = δ −  θ 2  ,     








and


     E  [  S  i k   ]  = E  θ − I (  ϵ  i j   ≤ 0 )  = θ − E  I (  ϵ  i j   ≤ 0 )  = 0 ,  ∀ k .     











We use the fact that    I (  ϵ  i j   ≤ 0 )    is a binary variable which takes the value 1 when     ϵ  i j   ≤ 0    and the value 0 otherwise with mean   θ   and variance    θ ( 1 − θ )   . Similarly, the variable    I  (  ϵ  i j   ≤ 0 )  I  (  ϵ  i  j ′    ≤ 0 )     is a binary variable with mean   δ   and variance    δ ( 1 − δ )   . Then, we have that


     V a r  (  S  i k   )  = V a r  [ θ − I  (  y  i k   −  x  i k  T  β ≤ 0 )  ]  = V a r  [ θ − I  (  ϵ  i k   ≤ 0 )  ]  = θ  ( 1 − θ )  .     



(20)







From Equation (18), we take that the correlation coefficient is equal to    ρ =   δ −  θ 2    θ −  θ 2      . Moreover, by Equations (17) and (20), the covariance matrix    V i    is


      V i       =  ( θ −  θ 2  )    ( 1 − ρ )      1   0   0   .   0     0   1   0    . . .    0      . . .     . . .     . . .     . . .     . . .      0   0   0    . .    1     + ρ     1   1   1    . . .    1     1   1   1    . . .    1      . . .     . . .     . . .     . . .     . . .      1   1   1    . . .    1               =  ( θ −  θ 2  )    ( 1 − ρ )   I  n i   + ρ  J  n i    .     








 □





Now, let     X i  =   {  X  i 1   , ⋯ ,  X  i  n i    }  T    . To obtain efficient estimators, we should incorporate an appropriate weighted function that takes into account the correlation for each subject. According to Jung (1996), based on the exchangeable correlation structure assumption


  C o r r  (  S  i j   ,  S  i k   )  =      1 ,     j = k ,      0    j ≠ k ,       



(21)




the generalized least squares estimate of   β   obtained by minimizing


   S i   V i  − 1    S i   



(22)




and differentiating with respect to   β  , we have the following weighted functions


   U θ   ( β )  =  ∑  i = 1  N    X i T   V i  − 1    S i   ,  



(23)




where    V i  − 1     is the inverse matrix of    V i   .



Proposition 1.

The inverse matrix of    V i    can be written as


        V   − 1   =  1  θ −  θ 2      W  i   b e t   +  W  i   w i t    ,      



(24)




where    W  i   b e t     and    W  i   w i t     are quantities related to information from different subjects and from the same subject, respectively


       W  i   b e t   =   J  n i     n i   [ 1 +  (  n i  − 1 )  ρ ]        a n d     W  i   w i t   =  1  1 − ρ     I  n i   −  1  n i    J  n i    .      



(25)









Proof. 

Suppose   A   is an invertible square matrix and    u ,  w    are column vectors. Suppose furthermore that    1 +   w  T    A   − 1   u ≠ 0   . Then, the Sherman–Morrison formula (Bartlett 1951) states that


    ( A + u   w  T  )   − 1   =   A   − 1   −     A   − 1   u   w  T    A   − 1     1 +   w  T    A   − 1   u   .  



(26)







Starting from


   V i  =  σ 2    ( 1 − ρ )   I  n i   + ρ  J  n i     








and supposing that    ρ  J  n i   = u   w  T     where    u = w =   { ρ , ρ , ⋯ , ρ }  T     is a     n i  × 1    vector, by Equation (26), we take


     V i  − 1      =  1  σ 2     1  1 − ρ    I  n i   −     1  1 − ρ    I  n i    ρ  J  n i    1  1 − ρ    I  n i     1 +    n i  ρ   1 − ρ               =  1  σ 2     1  1 − ρ    I  n i   −  1  1 − ρ     ρ  1 + (  n i  − 1 ) ρ     J  n i             =  1  σ 2     1  1 − ρ    I  n i   +  1  1 − ρ       n i   ( 1 − ρ )  −  n i  −  n i   (  n i  − 1 )  ρ    ( 1 +  (  n i  − 1 )  ρ )   n i 2      J  n i    .          =  1  σ 2     1  1 − ρ    I  n i   +  1  1 − ρ     I  n i     1 − ρ    [ 1 +  (  n i  − 1 )  ρ ]   n i    −  1  n i    I  n i     J  n i             =  1  σ 2     1  1 − ρ    I  n i   +   J  n i     [ 1 +  (  n i  − 1 )  ρ ]   n i    −  1   n i   ( 1 − ρ )     I  n i             =  1  σ 2      J  n i     [ 1 +  (  n i  − 1 )  ρ ]   n i    +  1  1 − ρ     I  n i   −  1  n i    J  n i         








that provides Equation (24).  □





If there is no correlation between the same subject, then the correlation coefficient   ρ   is zero and the inverse matrix of    V i    is equal to


   V  i   − 1   =  1  σ 2    I  n i   ,  








and     U θ   ( β )     is equivalent to the estimating functions     W θ   ( β )    . Furthermore, from Equation (23), using the result of Equation (24), we take


      U θ   ( β )      =  ∑  i = 1  N    X i T   V i  − 1    S i            =  ∑  i = 1  N    X i T   1  σ 2      J  n i     n i   [ 1 +  (  n i  − 1 )  ρ ]    +  1  1 − ρ     I  n i   −  1  n i    J  n i      S i            =  1  σ 2    ∑  i = 1  n    X i T     J  n i     n i   [ 1 +  (  n i  − 1 )  ρ ]      S i   +  1  σ 2    ∑  i = 1  N    X i T    1  1 − ρ     I  n i   −  1  n i    J  n i      S i            =  1  σ 2    ∑  i = 1  N    X i T    1  1 + (  n i  − 1 ) ρ     J  n i    ∑  k = 1   n i    S i  /  n i   +  1   ( 1 − ρ )   σ 2     ∑  i = 1  N    X i T    S i  −  1  n i    ∑  k = 1   n i    S i  /  n i    ,     



(27)




where    1  n i     is a     n i  × 1    vector of 1s. Then, from Equations (27) and (25), we can extract the following two estimating functions:


          U   b e t    ( β )  =  ∑  i = 1  N    1  1 + (  n i  − 1 ) ρ    X i T   1  n i    ∑  k = 1   n i    S i  /  n i   =  ∑  i = 1  N    X i T   W  i   b e t w e e n    S i   ,            U   w i t    ( β )  =  1  1 − ρ    ∑  i = 1  N    X i T    S i  −  1  n i    ∑  k = 1   n i    S i  /  n i    =  ∑  i = 1  N    X i T   W  i   w i t h i n    S i   .     



(28)







Remark 1.

Note that the estimating functions      U   w i t    ( β )     indicate the differences within a subject while      U   b e t    ( β )     indicate the information which comes from different subjects.






4.3. Parameters Estimation for QR Longitudinal Model


Generally, the most difficult issue when using quantile regression is the estimation of the covariance matrix of the parameter estimators because it involves the unknown density functions of the errors. Resampling methods have been proposed to estimate the covariance matrix (Parzen et al. 1994). These methods are useful because the parameter estimates can be easily obtained but the variance is difficult to be estimated. Moreover, there is no analytical proof for the validation of the traditional bootstrap technique for the quantile regression model (see Yin and Cai 2005). Fu and Wang (2012) extended the smoothing method of quantile regression with independent data proposed by Wang et al. (2009) and proposed a method for longitudinal data.



Suppose that     β u  ^    is the estimator which results from     U θ   ( β )    . Then, under some regularity conditions,     β u  ^   , is a consistent estimator of    β 0    and


      N   (   β u  ^  −  β 0  )  → N  ( 0 , Λ )  .     



(29)







For the proof of the consistency of    β u    and the asymptotic normality of    β 0   , see the work by Fu and Wang (2012). For the definition of covariance matrix   Λ  , we refer to the works of Wang et al. (2009) and Koenker (2005).



Thus, the resulting estimator     β ^  u    from Equation (27) can be approximated by    β +   Λ   1 / 2   Z    where   Z   is the standard normal distribution    N ( 0 ,  I p  )    and      Λ   1 / 2   Z    is a disturbance quantity to   β  . Moreover, according to Equation (13), the estimating functions     U θ   ( β )     can be defined as      U ˜  θ   ( β )   =   E Z   {  U θ   ( β +   Λ   1 / 2   Z )  }     where expectation is over   Z  . Nevertheless, the variance-covariance matrix   Λ   is unknown, which means that the expectation cannot be computed. For that reason, Brown and Wang (2005) suggested the use of a known matrix   Γ   instead of   Λ   and using appropriate iterative algorithms in order to estimate the matrix   Λ  . Thus, the objective function is      U ˜  θ   ( β )   =   E Z   {  U θ   ( β +   Γ   1 / 2   Z )  }    .



Note that


     E {  L θ   ( β +   Γ   1 / 2   Z )  }     = θ − P  {  x  i k  T    Γ   1 / 2   Z ≥  b  i k   }  = θ − 1 + Φ    b  i k    σ  i k     ,     



(30)




where     b  i k   =  y  i k   −  x  i k  T  β    and     σ  i k  2  =  x  i k  T  Γ  x  i k     . Then,


       U ˜  θ   ( β )  =  ∑  i = 1  N    X i T   V i  − 1     S ˜  i   ,     



(31)




where      S ˜  i  =  (   S ˜   i 1   , ⋯ ,   S ˜   i  n i    )     with      S ˜   i k   = θ − 1 + Φ    b  i k    σ  i k       . Differentiating Equation (31) with respect to   β  , we take


    D ˜  θ   ( β )  = −  ∑  i = 1  N    X i T   V i  − 1     Λ ˜  i   X i   ,  



(32)




where     Λ ˜  i    is a diagonal     n i  ×  n i     matrix with diagonal element     σ  i k   − 1   ϕ  [   b  i k    σ  i k    ]    .



To produce the estimators and the corresponding covariance matrix, we need iterative methods. We adopt the algorithm of Fu and Wang (2012) who extended the induced smoothing method of Wang et al. (2009) and Pang et al. (2012). A similar algorithm is applied for the analysis of clustered data: a combined estimating equations approach by Stoner and Leroux (2002). The steps of the algorithm are the following:




	
Step 1. Produce some initial values      β ˜  0  =   β ^  I    , which have been obtained by the independence working model and      Γ  0  =  n  − 1    I p    .



	
Step 2. Given     β ˜   k − 1     and     Γ   k − 1     from the    k − 1    step, update     δ ^   k − 1    , using the following equation:


       δ ^   k − 1   =     ∑  i = 1  N    ∑  k = 1   n i     ∑  l ≠ k   n i    I [   ϵ ^   i k   ≤ 0 ,   ϵ ^   i l   ≤ 0 ]       ∑  i = 1  N    n i   (  n i  − 1 )      .     











	
Step 3. Update the estimation parameters     β ˜  k    and the matrix     Γ  k    using the equations


          β ˜  k  =   β ˜   k − 1   +   {   D ˜  θ   (   β ˜   k − 1   ,   Γ   k − 1   )  }   − 1     U ˜  θ   (   β ˜   k − 1   ,   Γ   k − 1   ,   δ ^   k − 1   )  ,            Γ  k  =   D ˜   θ   − 1    (   β ˜   k − 1   ,   Γ   k − 1   )  V  (   β ˜   k − 1   ,   δ ^   k − 1   )    D ˜   θ   − 1    (   β ˜   k − 1   ,   Γ   k − 1   )  .     











	
Step 4. Repeat Steps 2 and 3 until convergence.








Remark 2.

The final values of    β ˜    and   Γ   (Step 3) are taken as the smoothed estimators of   β   and its covariance matrix, respectively. Under some regularity conditions, Fu and Wang (2012) established the consistency and asymptotic normality, i.e.,     n  − 1 / 2    {   U ˜  θ  −  U θ  }  =  o p   ( 1 )     and the smoothing estimator     β u  →  β 0     in probability, and     N   (  β u  −  β 0  )     converges in distribution to    N ( θ ,  V u  )   .







5. Numerical Illustrations


In this section, we present a numerical implementation of longitudinal quantile regression model with two correlated run-off triangles. The codes of this paper were implemented in R, using own routines, the “ChainLadder" (Gesmann et al. 2018) and the “quantreg" (Koenker 2018) packages.



5.1. Numerical Example Based on Average Premium Per Exposure


In this section, based on average premium per exposure, the loss reserving model is implemented by using the longitudinal quantile regression model. We suppose that we have two blocks of business for which we are trying to calculate reserve indications. Both companies operate in Greece. Company A mainly focuses on motor business and underwrites all vehicle categories apart from taxis and trucks while Company B underwrites all vehicle categories for motor business. Table 3 and Table 4 show the triangles of the incremental incurred claims (paid and outstanding claims) for both companies.



In the sequel, we apply the following regression setting in a quantile longitudinal form,


      Y  i r j   =  μ i  +  a  i r   +  b  i j   +  e  i r j   ,   f o r  i = 1 , 2 ;   r = 2 , . . . , 10 ;   j = 2 , . . . , 10 ,     








where, for the   i   triangle,    Y  i r j     is the average premium per exposure of the r   t h    accident year and of the j   t h    development year,    μ i    is the overall mean,    a  i r     is the effect of the r   t h    accident year,    b  i j     is the effect of the j   t h    development year,    e  i r j     is the error term, and the design matrix is of dimension    ( 2 × 55 ) × 18   .



It is obvious that, for Company A, for the accident year 2007, a big claim has been paid 10 years after the accident date (the amount of this claim is embedded at the total incremental amount of 10,190) and could be represented as an outlier claim. This claim will dramatically change the development pattern of the payments in case of using the Chain Ladder method because the loss development factor for this year increases from 1.0117 to 1.0171 (see Table 5). This is commonly observed in motor business where claims are settled many years later, especially when accidents with large compensations (such as partial or total disability, deaths, etc.) are observed. This can also be observed in accident year 2008 where a large amount is observed at the last known development year (13,809). We have a similar situation for the run-off triangle for Company B, but not to that extent as for Company A. For Company B, the data of the triangle seem to be more stable. Moreover, the premiums of the companies by accident year are presented at the run-off triangles. For the implementation of the dataset, we divided the payments by exposures for each year of business before the analysis was carried out.



The number of exposures (counts of incurred losses) for each accident year is also provided (see Table 6 and Table 7) for each lines of business.



If we were trying to calculate the expected value of the reserve run-off, we could simply calculate the expected value for each line of business separately and add all the expectations together. However, when we quantify a value other than the mean, such as a quantile, we cannot simply sum across the lines of business. In such a case, we would overstate the aggregate reserve need.



Remark 3.

The only time the sum of a   θ  th quantile would be appropriate for the aggregate reserve indication is when all the lines of business are fully correlated with each other which is of course a highly unlikely situation.





Figure 1 and Figure 2 show claims development charts of Companies A and B, respectively, with individual panels for each origin period. Chain Ladder loss development factors for each company are also presented in Table 5. According to the claims development chart, we observe that the patterns of Companies A and B appear similar (see Figure 3).



Table 8 and Table 9 display the values of reserves and ultimate paid claims based on individual quantile regression method, for Companies A and B, respectively, for different quantiles. Loss ratios for each quantile are also provided at the end of each of the Tables. Table 10 and Table 11 display the values of reserves and ultimate paid claims based on longitudinal quantile regression method, for Companies A and B, respectively, for different quantiles.



Loss ratios (   L R   ) for motor car insurance typically range from 40% to 60%. In this case, insurance companies are collecting more premiums than the amount paid in claims. Loss ratio is considered as one of the tools which explains a company’s suitability for coverage. A high loss ratio means is considered bad, which leads to bad financial health because the insurance company may not collect enough premiums to pay claims and expenses while also making a reasonable profit.



Table 12 provides the values of reserves based on the individual quantile regression (IQR) and based on longitudinal quantile regression (LQR). To examine the role of dependence, it is important to calculate the reserves for each IQR, and then use the sum to compare it with the sum of the run-off triangles resulting from the LQR (last line of Table 12).



Applying individual quantile regression, a higher quantile leads to larger total reserve. Nevertheless, for Company A, quantiles over 95% provide equal values of reserves, while, for Company B, quantiles over 90% provide equal values of reserves. The longitudinal algorithm gives different estimations for each quantile. Applying longitudinal quantile regression, the estimated ultimate reserves for both Companies A and B are smaller than the sum of individual estimated reserves for each of Companies A and B based on individual quantile regression.




5.2. Comparison Criteria


For model comparison, four criteria, namely the root mean squared error (RMSE), the percentage total (PT), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), were used.



RMSE is a measure of accuracy and is useful for comparing different models for a particular dataset (Hyndman and Koehler 2006). RMSE is the square root of the average of squared errors. The effect of each error on RMSE is proportional to the size of the squared error. Thus, larger errors have a disproportionately large effect on RMSE. Consequently, RMSE is sensitive to outliers (Pontius et al 2008; Willmott and Matsuura 2006).



RMSE for one triangle and for many run-off triangles is given, respectively, by


     R M S E =     1 m    ∑  i = 1  n    ∑  j = 1   n − i + 1     (  y  i j   −   y ^   i j   )  2     1 / 2    a n d   R M S  E N  =     1  m N     ∑  k = 1  N    ∑  i = 1  n    ∑  j = 1   n − i + 1     (  y  i j   −   y ^   i j   )  2      1 / 2   ,     








where    m =    n + 1  2      represents the total number of the known incremental data (the left upper triangle) and   k   is the counter for each triangle.



The percentage total (PT) was also a comparison criterion, which is defined for one and for many triangles, respectively, as


     P T =     ∑  i = 1  n    ∑  j = 1   n − i + 1     y ^   i j       ∑  i = 1  n    ∑  j = 1   n − i + 1    y  i j          a n d     P  T N  =     ∑  k = 1  N    ∑  i = 1  n    ∑  j = 1   n − i + 1     y ^   i j        ∑  k = 1  N    ∑  i = 1  n    ∑  j = 1   n − i + 1    y  i j        .     











RMSE and PT measure the model-fit with respect to observations, where a PT value closer to 100 is accepted, while, for RMSE, we prefer the smallest values.



According to the comparison criteria, the longitudinal algorithm provides the smaller RMSE when using the 75% quantile, resulting to better fit of the data. Thus, a combination of different companies or lines of business provides a better estimation of the total reserve. In case of using the PT criterion, we take exactly the same results and the 75% quantile produces the best fit. If we make estimations separately, the suggested models for both triangles use quantiles below 75% which means weak prudence (Table 13).



The MAE calculates the average amount of the errors by computing the absolute differences between prediction and actual observation divided by the total number of the observations. The lower the value of MAE is, the better the model fits.



Finally, the MAPE is the average of absolute percentage errors. MAPE has the significant disadvantage of producing infinite or undefined values when the actual values are zero or close to zero (Kim and Kim 2016). If the actual values are very small, then MAPE yields extremely large percentage errors (outliers).



The MAE criterion for single run-off triangle and the total MAE for   N   run-off triangles is calculated, respectively, by


  M A E =  1 m   ∑  i = 1  n    ∑  j = 1   n − i + 1     y  i j   −   y  i j   ^      a n d    M A  E N  =  1  m N    ∑  k = 1  N    ∑  i = 1  n    ∑  j = 1   n − i + 1     y  i j  k  −   y  i j  k  ^     .  











The MAPE criterion for single run-off triangle and the total MAPE for   N   run-off triangles, is given, respectively, by


  M A P E =   100 %  m   ∑  i = 1  n    ∑  j = 1   n − i + 1    |    y  i j   −   y  i j   ^    y  i j    |     a n d   M A P  E N  =   100 %   m N    ∑  k = 1  N    ∑  i = 1  n    ∑  j = 1   n − i + 1    |    y  i j  k  −   y  i j  k  ^    y  i j  k   |    .  











For the MAPE and MAE criteria, the smallest values indicate the best fit. The computations of the values for each criterion are given in Table 14. According to the MAE criterion, the 60% quantile is the suggested value to be used, while, based on MAPE, the 50% quantile is the most appropriate. Nevertheless, the difference between the MAE values for 50% and 60% is not so big, which means that 60% could also be a good choice.



Figure 4 and Figure 5 display the reserve estimation for each accident year using the individual quantile regression and the longitudinal quantile regression. Each plot provides the reserve values in different quantiles for each accident year.



Figure 6 illustrates the values of the ultimate reserves, for different quantiles, based on the individual and the longitudinal quantile regression models, in comparison to the ultimate reserves based on the Chain Ladder method for Companies A and B. The ultimate reserves based on the Chain Ladder estimation for Company A is 1,624,721 and for Company B is 1,901,883. More specifically, for Company A, the Chain Ladder reserve value coincides with the individual quantile regression reserve value at 50-quantile, and with the longitudinal quantile regression reserve value around the 80-quantile. For Company B, the Chain Ladder reserve value coincides with the individual quantile regression reserve value around 50-quantile, and with the longitudinal quantile regression reserve value around the 60-quantile.





6. Risk Capital Requirement and Risk Margin


Solvency II and IFRS bring some significant changes, particularly in relation to the estimation of insurance liabilities. Generally, the Probability of Sufficiency is a measure of solvency in liability valuation (DalMoro and Krvavych 2017):




	
Probability of sufficiency below 50% indicates that the technical provisions are set below the central estimate, which leads to an under-reserved position.



	
Probability of sufficiency with values between 50% and 60% indicates that the technical provisions are approximately at the level of central estimate, which leads to weak prudence.



	
For values of probability of sufficiency around 75%, the technical provisions are above the central estimate, which leads to adequate prudence.



	
Finally, if the probability of sufficiency is above 75%, the technical provisions are enough to lead to strong prudence.








Risk Margin


Based on Solvency II directive, risk margin represents the potential costs to transfer the insurance obligations to a third party and it is calculated based on the cost-of-capital (CoC) method. Solvency II considers risk over a one-year time horizon.



According to this approach, when the capital requirements for each future year are given, the risk margin is equal to the sum of the discounted costs of capital, which are the capital requirements multiplied by the cost-of-capital rate (6%). The risk margin (RM) is exclusively based on the solvency capital requirement (SCR) estimation and according to the cost-of-capital (CoC) methodology is calculated as follows (CEIOPS 2009):


     R M =  ∑  t ≥ 0      S C R ( t )    ( 1 +  r t  )   t + 1    × C o C  =  ∑  t ≥ 0      V a  R  99.5 %    (  R t  )  − m e a n  (  R t  )     ( 1 +  r t  )   t + 1    × C o C  ,     








where    R t    is the estimated reserve for the accident year   t  ,    r t    is the risk-free rate for maturity,    S C R ( t )    is the Solvency Capital Requirement for the accident year   t  , and    C o C    is the cost of capital rate. The solvency capital requirement is the difference between the 99.5% quantile and the 50% quantile of the reserves. The cost of capital is 6% (as Solvency II suggests) and we suppose that the risk-free rate for maturity is     r t  = 1 %    for all accident years (the real risk-free rate for maturity is given by EIOPA).



Along with the best estimate (BE), risk margin makes up the technical provisions and ensures that their value is equivalent to the amount that an (re)insurer would be expected to require in order to take over and meet the insurance obligations. Generally, risk margin increases the value of the technical provisions from the BE up to an amount which is equivalent to a theoretical level needed to transfer obligations to another (re)insurer. Risk margin represents what an (re)insurer would have to pay to the market to take on the BE liabilities. When the market takes on your BE liabilities, they will have to set aside capital to cover the SCR. Therefore, holding the SCR incurs a cost. Risk margin represents this cost. Dong et al. (2015) showed how one can provide an accurate estimation of risk margin and hence provision, instead of estimating the mean and then applying a risk margin. Their method is more robust when the data are heavy tailed. Their approach has been used for the univariate quantile regression model and is suitable for a simple line of business (single run-off triangle).



Table 15 presents the calculated risk margins for each individual line of business (Companies A and B), based on the univariate quantile regression model and Table 16 presents the corresponding risk margin for each individual line of business based on our longitudinal model.



Finally, Table 17 presents the calculated risk margins based on the bootstrap method and the resulting Figure 7 and Figure 8 illustrate: (a) the histograms of total simulated IBNRs; (b) the empirical cumulative distribution functions of IBNRs; (c) the simulated ultimate claim cost against ultimate claim cost; and (d) the latest actual incremental claims cost for the latest available calendar period against latest incremental claims, for Companies A and B, respectively.



From histograms and the empirical cumulative distribution functions, we observe that the IBNRs may follow distributions with positive skewness. We also observe that the simulated data may not follow the same trend as the actual data (specifically in Company B). It indicates that the original data might have some trends that are not reflected in the model.



Remark 4.

If the distribution of the reserves were known, then the mean of this distribution would be the BE, i.e., the amount to be paid as compensation to the beneficiaries. Nevertheless, this distribution is not known and for that reason many methodologies are used to estimate the BE such as the bootstrap method. In case of quantile regression models, a specific quantile, which provides estimations close to the mean, would be used to estimate the BE. For that reason, we use the 50% quantile, but a larger one could be used especially for long tail distributions.







7. Concluding Remarks


We propose quantile regression for longitudinal data in the framework of a general multivariate loss reserving model. Our model considers a combination of the between and within lines of business, taking into account the correlations and variation of run-off triangles. We investigated a general insurance portfolio that consists of two correlated subportfolios (two auto run-off triangles). The least squares estimators investigated only changes in the mean, while the quantile regression characterized a particular point of a distribution, which provides a more complete description of the entire shape of the claims distribution. According to Solvency II and IFRS, the solvency capital requirement (SCR) was provided based on the best estimate (BE) and, in the sequel, the overall risk margin (RM), based on the cost-of-capital (CoC) methodology, was calculated.
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Figure 1. Claims development chart of Company A with individual panels for each origin period. 
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Figure 2. Claims development chart of Company B with individual panels for each origin period. 
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Figure 3. Claims development chart of the triangles with one line per origin period. 
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Figure 4. Reserves estimation for individual QR and longitudinal QR (Company A). 
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Figure 5. Reserves estimation for individual QR and longitudinal QR (Company B). 
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Figure 6. Ultimate reserves for individual QR and longitudinal QR. 
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Figure 7. Bootstrap graphs for Company A. 
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Figure 8. Bootstrap graphs for Company B. 
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Table 1. Representation of   N   run-off triangles.






Table 1. Representation of   N   run-off triangles.





	
Accident

	
Development Year j
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Table 2. N Run-off Triangles in a Longitudinal Form.
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Table 3. Motor triangle and premiums for Company A.
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Accident

	
Development Year

	






	
Year

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
Premium




	
2007

	
58,134

	
162,688

	
101,105

	
100,964

	
61,591

	
71,009

	
34,024

	
2746

	
646

	
10,190

	
1,051,637




	
2008

	
51,437

	
197,139

	
120,641

	
74,807

	
76,771

	
77,276

	
39,070

	
4396

	
13,809

	

	
1,190,965




	
2009

	
57,906

	
116,191

	
143,953

	
103,883

	
70,760

	
177,194

	
35,341

	
6088

	

	

	
1,327,568




	
2010

	
40,352

	
121,837

	
88,389

	
320,429

	
75,127

	
70,190

	
63723

	

	

	

	
1,418,348




	
2011

	
82,227

	
279,591

	
151,260

	
230,293

	
82,378

	
47,315

	

	

	

	

	
1,504,056




	
2012

	
196,417

	
119,755

	
228,499

	
99,894

	
44,266

	

	

	

	

	

	
1,580,233




	
2013

	
67,161

	
107,098

	
198,252

	
75,172

	

	

	

	

	

	

	
1,619,382




	
2014

	
78,293

	
141,865

	
106,150

	

	

	

	

	

	

	

	
1,727,540




	
2015

	
74,472

	
118,886

	

	

	

	

	

	

	

	

	
1,820,104




	
2016

	
43,281

	

	

	

	

	

	

	

	

	

	
1,883,017
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Table 4. Motor triangle and premiums for Company B.
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Accident

	
Development Year

	






	
Year

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
Premium




	
2007

	
63,078

	
143,002

	
144,235

	
75,007

	
60,775

	
70,804

	
27,508

	
4757

	
3172

	
6385

	
1,633,833




	
2008

	
65,567

	
177,292

	
107,870

	
137,305

	
72,741

	
68,708

	
102,864

	
4335

	
6107

	

	
1,675,707




	
2009

	
87,394

	
146,346

	
158,876

	
199,846

	
53,161

	
72,764

	
42,915

	
10,898

	

	

	
1,636,855




	
2010

	
70,017

	
153,893

	
119,028

	
93,771

	
49,600

	
185,689

	
28,331

	

	

	

	
1,689,715




	
2011

	
104,638

	
186,326

	
335,477

	
136,857

	
87,941

	
69,248

	

	

	

	

	
1,649,386




	
2012

	
76,390

	
190,629

	
192,606

	
121,704

	
66,297

	

	

	

	

	

	
1,712,587




	
2013

	
58,620

	
184,557

	
135,174

	
118,180

	

	

	

	

	

	

	
2,105,361




	
2014

	
87,845

	
166,511

	
145,385

	

	

	

	

	

	

	

	
2,265,432




	
2015

	
53,616

	
152,751

	

	

	

	

	

	

	

	

	
1,976,188




	
2016

	
62,904

	

	

	

	

	

	

	

	

	

	
1,351,719
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Table 5. Chain ladder: loss development factors.






Table 5. Chain ladder: loss development factors.





	Company
	0–1
	1–2
	2–3
	3–4
	4–5
	5—6
	6-7
	7–8
	8–9





	A
	2.9324
	1.6060
	1.3737
	1.1265
	1.1491
	1.0677
	1.0068
	1.0117
	1.0171



	B
	3.2502
	1.6822
	1.3042
	1.1188
	1.1541
	1.0782
	1.0096
	1.0069
	1.0107
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Table 6. Counts of incurred claims for Company A.
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Accident

	
Development Year






	
Year

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
2007

	
118

	
272

	
241

	
169

	
103

	
106

	
71

	
4

	
3

	
5




	
2008

	
134

	
287

	
235

	
192

	
121

	
117

	
84

	
14

	
13

	




	
2009

	
129

	
254

	
267

	
193

	
110

	
136

	
80

	
16

	

	




	
2010

	
87

	
255

	
218

	
152

	
111

	
86

	
52

	

	

	




	
2011

	
148

	
285

	
277

	
212

	
127

	
94

	

	

	

	




	
2012

	
108

	
255

	
227

	
185

	
103

	

	

	

	

	




	
2013

	
129

	
215

	
220

	
150

	

	

	

	

	

	




	
2014

	
128

	
277

	
234

	

	

	

	

	

	

	




	
2015

	
122

	
236

	

	

	

	

	

	

	

	




	
2016

	
94
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Table 7. Counts of incurred claims for Company B.
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Accident

	
Development Year






	
Year

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
2007

	
139

	
286

	
276

	
170

	
137

	
140

	
74

	
15

	
8

	
6




	
2008

	
143

	
337

	
258

	
224

	
158

	
158

	
90

	
20

	
13

	




	
2009

	
151

	
273

	
310

	
239

	
145

	
135

	
81

	
11

	

	




	
2010

	
138

	
285

	
273

	
182

	
122

	
127

	
70

	

	

	




	
2011

	
161

	
372

	
349

	
282

	
185

	
129

	

	

	

	




	
2012

	
131

	
327

	
297

	
237

	
150

	

	

	

	

	




	
2013

	
144

	
345

	
284

	
222

	

	

	

	

	

	




	
2014

	
146

	
337

	
295

	

	

	

	

	

	

	




	
2015

	
130

	
301

	

	

	

	

	

	

	

	




	
2016

	
155
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Table 8. Reserves and ultimate claims of Company A based on Individual Quantile Regression.
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Accident

	
Quantile 50%

	
Quantile 60%

	
Quantile 75%

	
Quantile 90%

	
Quantile 95%

	
Quantile 99.5%






	
Year

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate




	
2007

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097




	
2008

	
11,702

	
667,049

	
11,496

	
666,843

	
12,348

	
667,695

	
12,348

	
667,695

	
12,348

	
667,695

	
12,348

	
667,695




	
2009

	
25,522

	
736,838

	
25,770

	
737,085

	
30,734

	
742,050

	
30,734

	
742,050

	
30,734

	
742,050

	
30,734

	
742,050




	
2010

	
30,123

	
810,171

	
32,114

	
812,161

	
48,436

	
828,484

	
48,436

	
828,484

	
61,841

	
841,888

	
61,841

	
841,888




	
2011

	
84,962

	
958,027

	
86,226

	
959,291

	
102,917

	
975,981

	
102,917

	
975,981

	
102,917

	
975,981

	
102,917

	
975,981




	
2012

	
144,793

	
833,624

	
150,033

	
838,863

	
295,824

	
984,655

	
485,528

	
1,174,359

	
485,528

	
1,174,359

	
485,528

	
1,174,359




	
2013

	
218,293

	
665,976

	
223,617

	
671,300

	
222,374

	
670,057

	
485,688

	
933,370

	
485,688

	
933,370

	
485,688

	
933,370




	
2014

	
376,255

	
702,563

	
396,658

	
722,966

	
439,704

	
766,012

	
439,675

	
765,983

	
400,741

	
727,049

	
400,741

	
727,049




	
2015

	
433,878

	
627,236

	
514,291

	
707,648

	
547,762

	
741,119

	
519,185

	
712,542

	
482,151

	
675,508

	
482,151

	
675,508




	
2016

	
364,632

	
407,912

	
377,312

	
420,592

	
439,462

	
482,742

	
396,155

	
439,435

	
374,632

	
417,912

	
374,632

	
417,912




	
Total

	
1,690,161

	
7,012,491

	
1,817,516

	
7,139,846

	
2,139,562

	
7,461,893

	
2,520,666

	
7,842,996

	
2,436,579

	
7,758,909

	
2,436,579

	
7,758,909




	
LR

	
46.37%

	
47.21%

	
49.34%

	
51.86%

	
51.31%

	
51.31%











[image: Table] 





Table 9. Reserves and ultimate claims of Company B based on Individual Quantile Regression.
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Accident

	
Quantile 50%

	
Quantile 60%

	
Quantile 75%

	
Quantile 90%

	
Quantile 95%

	
Quantile 99.5%






	
Year

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate




	
2007

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722




	
2008

	
7915

	
750,705

	
8760

	
751,550

	
9338

	
752,128

	
7642

	
750,431

	
7642

	
750,431

	
7642

	
750,431




	
2009

	
15,633

	
787,833

	
15,012

	
787,213

	
14,631

	
786,831

	
20,011

	
792,211

	
20,011

	
792,211

	
20,011

	
792,211




	
2010

	
16,638

	
716,969

	
16,780

	
717,111

	
20,452

	
720,783

	
19,694

	
720,025

	
19,694

	
720,025

	
19,694

	
720,025




	
2011

	
64,164

	
984,651

	
77,249

	
997,735

	
156,940

	
1,077,426

	
232,413

	
1,152,900

	
232,413

	
1,152,900

	
232,413

	
1,152,900




	
2012

	
124,174

	
771,801

	
131,694

	
779,320

	
212,699

	
860,326

	
348,719

	
996,345

	
348,719

	
996,345

	
348,719

	
996,345




	
2013

	
184,956

	
681,488

	
196,298

	
692,830

	
270,111

	
766,642

	
413,334

	
909,865

	
413,334

	
909,865

	
413,334

	
909,865




	
2014

	
326,036

	
725,777

	
308,932

	
708,673

	
422,205

	
821,946

	
621,763

	
1,021,504

	
621,763

	
1,021,504

	
621,763

	
1,021,504




	
2015

	
398,134

	
604,501

	
382,772

	
589,139

	
477,907

	
684,274

	
614,736

	
821,104

	
614,736

	
821,104

	
614,736

	
821,104




	
2016

	
514,302

	
577,206

	
499,960

	
562,864

	
588,777

	
651,681

	
742,201

	
805,105

	
742,201

	
805,105

	
742,201

	
805,105




	
Total

	
1,651,953

	
7,199,653

	
1,637,457

	
7,185,156

	
2,173,060

	
7,720,759

	
3,020,513

	
8,568,213

	
3,020,513

	
8,568,213

	
3,020,513

	
8,568,213




	
LR

	
40.68%

	
40.60%

	
43.63%

	
48.42%

	
48.42%

	
48.42%











[image: Table] 





Table 10. Reserves and ultimate claims of Company A based on Longitudinal Quantile Regression.






Table 10. Reserves and ultimate claims of Company A based on Longitudinal Quantile Regression.





	
Accident

	
Quantile 50%

	
Quantile 60%

	
Quantile 75%

	
Quantile 90%

	
Quantile 95%

	
Quantile 99.5%






	
Year

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate




	
2007

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097

	
0

	
603,097




	
2008

	
10,465

	
665,812

	
13,163

	
668,509

	
14,614

	
669,961

	
14,998

	
670,344

	
16,354

	
671,701

	
14,284

	
669,631




	
2009

	
15,332

	
726,647

	
19,519

	
730,834

	
24,491

	
735,807

	
25,753

	
737,069

	
27,823

	
739,139

	
24,671

	
735,987




	
2010

	
18,773

	
798,820

	
24,548

	
804,595

	
30,472

	
810,519

	
33,114

	
813,161

	
36,000

	
816,047

	
31,594

	
811,641




	
2011

	
109,292

	
982,356

	
146,947

	
1,020,012

	
162,394

	
1,035,459

	
280,876

	
1,153,941

	
270,861

	
1,143,926

	
271,168

	
1,144,233




	
2012

	
142,717

	
831,548

	
195,409

	
884,240

	
227,356

	
916,187

	
388,819

	
1,077,650

	
534,912

	
1,223,743

	
535,184

	
1,224,015




	
2013

	
121,615

	
569,298

	
164,628

	
612,311

	
205,183

	
652,866

	
313,448

	
761,131

	
303,832

	
751,515

	
304,086

	
751,769




	
2014

	
143,793

	
470,101

	
216,128

	
542,436

	
274,426

	
600,734

	
369,152

	
695,460

	
398,023

	
724,331

	
624,747

	
951,055




	
2015

	
156,935

	
350,292

	
245,965

	
439,323

	
255,528

	
448,885

	
319,659

	
513,016

	
354,969

	
548,327

	
355,450

	
548,807




	
2016

	
108,851

	
152,131

	
205,266

	
248,546

	
205,286

	
248,567

	
211,902

	
255,182

	
211,842

	
255,123

	
211,977

	
255,257




	
Total

	
827,771

	
6,150,102

	
1,231,572

	
6,553,903

	
1,399,751

	
6,722,081

	
1,957,720

	
7,280,050

	
2,154,617

	
7,476,947

	
2,373,161

	
7,695,491




	
LR

	
40.67%

	
43.34%

	
44.45%

	
48.14%

	
49.44%

	
50.89%
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Table 11. Reserves and ultimate claims of Company B based on Longitudinal Quantile Regression.






Table 11. Reserves and ultimate claims of Company B based on Longitudinal Quantile Regression.





	
Accident

	
Quantile 50%

	
Quantile 60%

	
Quantile 75%

	
Quantile 90%

	
Quantile 95%

	
Quantile 99.5%




	
Year

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate

	
Reserves

	
Ultimate






	
2007

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722

	
0

	
598,722




	
2008

	
14,812

	
757,602

	
19,390

	
762,179

	
21,292

	
764,082

	
21,818

	
764,608

	
23,573

	
766,363

	
20,865

	
763,655




	
2009

	
23,811

	
796,012

	
31,465

	
803,665

	
38,726

	
810,927

	
40,529

	
812,730

	
43,425

	
815,625

	
38,967

	
811,168




	
2010

	
31,032

	
731,363

	
42,019

	
742,349

	
51,128

	
751,459

	
54,931

	
755,262

	
59,120

	
759,451

	
52,655

	
752,985




	
2011

	
146,138

	
1,066,624

	
203,353

	
1,123,839

	
221,691

	
1,142,178

	
370,226

	
1,290,712

	
358,282

	
1,278,769

	
358,674

	
1,279,161




	
2012

	
220,915

	
868,541

	
313,593

	
961,219

	
357,766

	
1,005,392

	
589,509

	
1,237,135

	
806,340

	
1,453,966

	
806,747

	
1,454,373




	
2013

	
197,552

	
694,083

	
279,346

	
775,877

	
337,958

	
834,489

	
497,873

	
994,404

	
484,759

	
981,290

	
485,153

	
981,684




	
2014

	
217,454

	
617,195

	
342,324

	
742,065

	
418,633

	
818,374

	
541,538

	
941,279

	
583,882

	
983,622

	
899,021

	
1,298,762




	
2015

	
243,640

	
450,007

	
397,190

	
603,557

	
410,815

	
617,182

	
490,441

	
696,808

	
541,561

	
747,928

	
542,253

	
748,621




	
2016

	
189,118

	
252,022

	
356,630

	
419,534

	
356,665

	
419,569

	
368,159

	
431,063

	
368,056

	
430,960

	
368,290

	
431,194




	
Total

	
1,284,472

	
6,832,172

	
1,985,308

	
7,533,008

	
2,214,675

	
7,762,375

	
2,975,023

	
8,522,722

	
3,268,999

	
8,816,698

	
3,572,625

	
9,120,325




	
LR

	
38.61%

	
42.57%

	
43.86%

	
48.16%

	
49.82%

	
51.54%
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Table 12. Estimated reserves using Individual Quantile Regression (IQR) and the Longitudinal Quantile Regression (LQR).






Table 12. Estimated reserves using Individual Quantile Regression (IQR) and the Longitudinal Quantile Regression (LQR).














	
	Quantile 50%
	Quantile 60%
	Quantile 75%
	Quantile 90%
	Quantile 95%
	Quantile 99.5%





	Company A IQR
	1,690,161
	1,817,516
	2,139,562
	2,520,666
	2,436,579
	2,436,579



	Company B IQR
	1,651,953
	1,637,457
	2,173,060
	3,020,513
	3,020,513
	3,020,513



	Company A LQR
	827,771
	1,231,572
	1,399,751
	1,957,720
	2,154,617
	2,373,161



	Company B LQR
	1,284,472
	1,985,308
	2,214,675
	2,975,023
	3,268,999
	3,572,625



	sumIQR-sumLQR
	1,229,871
	238,092
	698,196
	608,436
	33,477
	  −  488,694
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Table 13. RMSE and PT for Individual and Longitudinal Quantile Regression.






Table 13. RMSE and PT for Individual and Longitudinal Quantile Regression.





	

	
Root Mean Square Error (RMSE)

	
Percentage Total (PT)






	
Quantile

	
Company A

	
Company B

	
Longitudinal

	
Company A

	
Company B

	
Longitudinal




	
50%

	
457.52

	
248.60

	
398.07

	
82.78

	
90.37

	
84.02




	
60%

	
455.12

	
244.40

	
389.59

	
90.26

	
93.66

	
93.32




	
75%

	
511.97

	
263.43

	
388.36

	
123.37

	
106.04

	
106.02




	
90%

	
730.79

	
466.38

	
536.24

	
158.87

	
139.59

	
151.32




	
95%

	
693.67

	
466.38

	
762.02

	
158.87

	
139.59

	
185.72




	
99.5%

	
730.79

	
466.38

	
789.86

	
158.87

	
139.59

	
186.01
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Table 14. MAE and MAPE for Individual and Longitudinal Quantile Regression.






Table 14. MAE and MAPE for Individual and Longitudinal Quantile Regression.





	

	
Mean Absolute Error (MAE)

	
Mean Absolute Percentage Error (MAPE)






	
Quantile

	
Company A

	
Company B

	
Combined

	
Company A

	
Company B

	
Combined




	
50%

	
272.30

	
158.31

	
212.53

	
38.00%

	
27.86%

	
31.99%




	
60%

	
274.38

	
155.00

	
210.89

	
39.13%

	
27.19%

	
32.60%




	
75%

	
375.69

	
178.86

	
233.63

	
62.06%

	
33.69%

	
39.49%




	
90%

	
521.73

	
336.46

	
441.93

	
93.37%

	
66.41%

	
84.37%




	
95%

	
520.07

	
336.46

	
610.00

	
92.54%

	
66.41%

	
83.07%




	
99.5%

	
522.96

	
336.46

	
614.50

	
93.53%

	
66.41%

	
84.38%
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Table 15. Risk Margin based on Individual Quantile Regression.






Table 15. Risk Margin based on Individual Quantile Regression.





	

	
Company A

	
Company B






	
Accident Year

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge




	
1% Discount Rate

	
(1% Discount Rate)




	
1

	
340,874

	
20,452

	
20,452

	
383,015

	
22,981

	
22,981




	
2

	
231,100

	
13,866

	
13,594

	
287,630

	
17,258

	
16,919




	
3

	
93,717

	
5623

	
5405

	
259,313

	
15,559

	
14,955




	
4

	
52,555

	
3153

	
2971

	
208,157

	
12,489

	
11,769




	
5

	
40,749

	
2445

	
2259

	
170,761

	
10,246

	
9465




	
6

	
55,963

	
3358

	
3041

	
57,434

	
3446

	
3121




	
7

	
5585

	
335

	
298

	
2310

	
139

	
123




	
8

	
3663

	
220

	
191

	
60

	
4

	
3




	
9

	
1672

	
100

	
86

	
0

	
0

	
0




	
Total

	
825,879

	
49553

	
RM = 48,297

	
1,368,680

	
82,121

	
RM = 79,337











[image: Table] 





Table 16. Risk Margin based on Longitudinal Quantile Regression.






Table 16. Risk Margin based on Longitudinal Quantile Regression.





	

	
Company A

	
Company B






	
Accident Year

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge




	
1% Discount Rate

	
(1% Discount Rate)




	
1

	
389,957

	
23,397

	
23,397

	
511,493

	
30,690

	
30,690




	
2

	
321,754

	
19,305

	
19,114

	
436,219

	
26,173

	
25,914




	
3

	
244,764

	
14,686

	
14,396

	
368,081

	
22,085

	
21,650




	
4

	
118,911

	
7135

	
6925

	
162,896

	
9774

	
9486




	
5

	
73,566

	
4414

	
4242

	
116,999

	
7020

	
6746




	
6

	
12,598

	
756

	
719

	
19,949

	
1197

	
1139




	
7

	
1699

	
102

	
96

	
2103

	
126

	
119




	
8

	
554

	
33

	
31

	
550

	
33

	
31




	
9

	
0

	
0

	
0

	
0

	
0

	
0




	
Total

	
1,163,802

	
69,828

	
RM =68,921

	
1,618,289

	
97,097

	
RM = 95,774
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Table 17. Risk Margin based on Bootstrap (Poisson).






Table 17. Risk Margin based on Bootstrap (Poisson).





	

	
Company A

	
Company B






	
Accident Year

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge

	
SCR

	
Capital Charge 6%

	
Discounted Capital Charge




	
1% Discount Rate

	
(1% Discount Rate)




	
1

	
2,79,592

	
16775

	
16775

	
369922

	
22195

	
12797




	
2

	
245258

	
14715

	
14570

	
362541

	
21752

	
11567




	
3

	
209005

	
12540

	
12293

	
287763

	
17266

	
9251




	
4

	
168286

	
10097

	
9800

	
213236

	
12794

	
7042




	
5

	
147734

	
8864

	
8518

	
215192

	
12912

	
6485




	
6

	
93559

	
5614

	
5341

	
142384

	
8543

	
4099




	
7

	
63681

	
3821

	
3599

	
80768

	
4846

	
2289




	
8

	
56266

	
3376

	
3149

	
75132

	
4508

	
1842




	
9

	
37758

	
2265

	
2092

	
69887

	
4193

	
1515




	
Total

	
1301139

	
78068

	
RM = 76138

	
1816825

	
109009

	
RM = 56886
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