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Abstract: In this paper, a new heavy-tailed distribution, the mixture Pareto-loggamma distribution,
derived through an exponential transformation of the generalized Lindley distribution is introduced.
The resulting model is expressed as a convex sum of the classical Pareto and a special case of the
loggamma distribution. A comprehensive exploration of its statistical properties and theoretical
results related to insurance are provided. Estimation is performed by using the method of
log-moments and maximum likelihood. Also, as the modal value of this distribution is expressed
in closed-form, composite parametric models are easily obtained by a mode matching procedure.
The performance of both the mixture Pareto-loggamma distribution and composite models are tested
by employing different claims datasets.

Keywords: pareto distribution; excess-of-loss reinsurance; loggamma distribution; composite models

1. Introduction

In general insurance, pricing is one of the most complex processes and is no easy task but a
long-drawn exercise involving the crucial step of modeling past claim data. For modeling insurance
claims data, finding a suitable distribution to unearth the information from the data is a crucial work
to help the practitioners to calculate fair premiums. In actuarial statistics and finance, the classical
Pareto distribution has been deemed better than other models because it provides a good description
of the random behaviour of large claims. Loss data mostly have several characteristics such as
unimodality, right skewness, and a thick right tail. To accommodate these features in a single model,
many probability models have been proposed in the literature.

Over the last decades, different approaches to derive new classes of probability distributions
that could provide more flexibility when modelling large losses has been added to the literature.
This includes transformation method, the composition of two or more distributions, compounding
of distributions or a finite mixture of distributions among other methodologies. In particular for
generalizations of the classical Pareto distribution, the reader is referred to the Stoppa distribution
(see Stoppa 1990), the Pareto positive stable distribution (see Sarabia and Prieto 2009), the Pareto
ArcTan distribution (see Gómez-Déniz and Calderín-Ojeda 2015) and the generalized Pareto
distribution proposed in Ghitany et al. (2018). Obviously, adding a parameter to the parent model
complicates the parameter estimation.

In this paper, a probabilistic family, the mixture Pareto-loggamma distribution, which belongs
to the heavy-tailed class of probabilistic models is introduced. This family is derived by using of an
exponential transformation of the generalized Lindley distribution. It is expressed as a convex sum of
the classical Pareto and a special case of the loggamma distribution similar to the one presented in
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Gómez-Déniz and Calderín-Ojeda (2014). The former model is obtained as a particular case whereas
the latter one is a limiting case. We further present expressions of statistical and actuarial measures such
as moments, variance, cumulative distribution function, hazard rate function, VaR, TVaR and limited
expected values. For many of these distributional characteristics, closed-form expressions are obtained.
Estimation of the parameters of this distribution can be easily calculated by the maximum likelihood
method by using the numerical search of the maximum and also by the method of log-moments.

In many instances, composite distributions give a reasonably good fit as compared to
classical distributions since the former models have the advantage of accommodating both low
magnitude values with a high frequency as well as large magnitude figures with low frequency.
Cooray and Ananda (2005) introduced a composite lognormal-Pareto distribution with restricted
mixing weights. Scollnik (2007) improved the composite lognormal-Pareto model by allowing
flexible mixing weights. Bakar et al. (2015) considered several probabilistic models in place of
lognormal and Pareto distribution using the approach discussed in Scollnik (2007). Recently,
Calderín-Ojeda and Kwok (2016) introduced a new class of composite model using mode-matching
procedure. They derived composite models using lognormal and Weibull distributions with a Stoppa
model, a generalization of the Pareto distribution. As there exists a closed-form expression for the
modal value of this new model, in this article, we use the mode-matching procedure to derive new
composite models based on this distribution.

The structure of the paper is organized as follows. In Section 2, we present the genesis of the
new distribution, and discuss its relationship with other distributions. Besides, the most relevant
distributional properties are studied in the same section. Also, different estimation methods are
examined. Finally, composite models based on the proposed distribution are derived. Next, in Section 3,
some results related to insurance are displayed. Numerical applications are displayed in Section 4
together with the derivation of some income indices. The last section concludes the paper.

2. TheMPLG Distribution and Its Properties

It can be easily seen that the following expression

fX(x|θ, λ, x0) =
θ2

x(θ + λ)

(
x
x0

)−θ (
1 + λ log

(
x
x0

))
x ≥ x0 > 0 (1)

with λ ≥ 0 and θ > 0 is a genuine probability density function (pdf). Here θ, λ are shape parameter
and x0 is scale parameter (see the Appendix A). Note that the pdf (1) can be written as a convex sum of
the classical Pareto distribution and a special case of the loggamma distribution. The former model is
obtained when λ = 0 and the latter one for λ→ ∞. Observe that the pdf of the loggamma distribution
considered in this work is

fX(x|θ, γ, x0) =
θγ

x0 Γ(γ)

(
x
x0

)−(θ+1)
log
(

x
x0

)γ−1
,

with θ, γ > 0 and x ≥ x0. In our model it is assumed that γ = 2.
The cumulative distribution function (cdf), survival function (sf) and hazard rate function of a

random variable (rv) with pdf (1) are respectively given, for x ≥ x0, as

FX(x) = 1−

(
θ + λ + θλ log

(
x
x0

))
θ + λ

(
x
x0

)−θ

, (2)

F̄X(x) =

(
θ + λ + θλ log

(
x
x0

))
θ + λ

(
x
x0

)−θ

, (3)
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hX(x) =
θ

x

1− λ

θ + λ + θλ log
(

x
x0

)
 . (4)

Henceforth, a continuous rv X that follows (1) will be called as mixture Pareto-loggamma
distribution and denoted asMPLG(θ, λ, x0). The shape of the pdf given in (1) is shown in Figure 1
for different values of the parameters θ and λ and a fixed x0. It is observable that the larger is the value
of θ, the thinner is the tail. On the contrary, the thickness of the tail decreases when λ drops.
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Figure 1. Graphs of the pdf (1) for different values of parameter θ, λ and fixed value of x0.

Undoubtedly, the single parameter Pareto distribution is one of the most attractive distributions
in statistics; a power-law probability distribution found in a large number of real-world situations
inside and outside the field of economics. Furthermore, it is usually used as a basis for Excess of Loss
quotations as it gives a pretty good description of the random behavior of large losses. In this sense,
many probability distributions can be used for modelling single loss amounts. Then, if the loss is
assumed to follow the pdf (1), we have that θ defines the tail behavior of the distribution.

Below, the hazard rate function has been plotted in Figure 2 for different values of the parameters
θ and λ for fixed x0. It is observable that the hazard rate function increases when the parameter θ

grows and the parameter λ declines.
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Figure 2. Graphs of the hazard rate function (4) for different values of parameter θ, λ and for fixed
value of x0.

The next result shows the relationship between the MPLG and the Generalized Lindley
distribution, which is extensively used in lifetime analysis and reliability.

Remark 1. The MPLG(θ, λ, x0) distribution can be also obtained by taking X = x0 exp{Y}, where Y
follows a generalized Lindley distribution with density

gY(y) =
θ2

(θ + λ)
(1 + λy) exp{−θy}, y > 0, λ, θ > 0. (5)



Risks 2019, 7, 99 4 of 17

From this result, it is straightforward to generate random variates from the MPLG(θ, λ, x0)

distribution by observing that the pdf given in (5), can be rewritten as

w(y) = p a1(y) + (1− p)a2(y),

where p =
θ

θ + λ
, a1(·) is the pdf of the exponential distribution with mean 1/θ and a2(·) is the pdf of

the Erlang distribution with shape parameter 2 and rate parameter θ. Then, a random variate from
theMPLG distribution, x, can be generated following a modification of the algorithm presented in
Ghitany et al. (2008) as shown below.

• Generate two random numbers u1 and u2 from the standard uniform distribution, U(0, 1).
• Generate random variates ã1 from the exponential distribution with mean 1/θ and ã2 from the

Erlang distribution with shape parameter 2 and rate parameter θ by using u1.
• If u2 ≤ p, then set y = ã1; otherwise, set y = ã2.
• Generate x = x0 exp{y}.

Observe that an analogous algorithm could be implemented by using the fact that (1) is a convex
sum of the densities of Pareto and loggamma distributions.

2.1. Moments and Log-Moments

The rth raw moment ofMPLG(θ, λ, x0) is given by

E(Xr) =
θ2xr

0(θ + λ− r)
(θ + λ)(r− θ)2 θ 6= r.

In particular, we have that

µ = E(X) =
θ2xo(θ + λ− 1)
(θ − 1)2(θ + λ)

, θ 6= 1 and

E(X2) =
θ2x2

0(θ + λ− 2)
(θ + λ)(2− θ)2 , θ 6= 2.

The variance is given by

V(X) =
θ2x2

0(θ + λ− 2)
(θ + λ)(2− θ)2 −

(
θ2x0(θ + λ− 1)
(θ + λ)(1− θ)2

)2

, θ 6= 1, 2. (6)

Remark 1 can be used to obtain the rth raw log-moment of the density (1)

ls = E
(

log
(

X
x0

))s
=

s!(θ + λ + λs)
θs(θ + λ)

. (7)

The moment estimator of θ and λ with known x0 can be simply derived from (7).

2.2. Unimodality

The modal value of theMPLG distribution can be found by taking the first derivative of the
pdf (1),

f ′(x) =
θ2xθ

0x−θ−2

θ + λ

(
λ− (1 + θ)

(
1 + λ log

(
x
x0

)))
, (8)

then, by setting (8) equal to zero and solving for x, the mode is xm = x0 exp
{

λ−θ−1
λ(θ+1)

}
. If λ ≤ θ + 1,

then the mode is at xm = x0.



Risks 2019, 7, 99 5 of 17

2.3. Stochastic Ordering

Many parametric families of distributions can be ordered by some stochastic orders according
to the value of their parameters. A rv X1 is said to be stochastically smaller (X1 ≤st X2) than X2 if
FX1(x) ≥ FX2(x) for all x. The formal definition of stochastic ordering is

Definition 1. Let X1 and X2 be continuous random variables with densities f1 and f2, respectively, such that
f2(x)
f1(x) is non-decreasing over the union of the supports of X1 and X2. Then X1 is said to be smaller than X2 in
the likelihood ratio order. (X1 ≤lr X2) (see Section 1.C of Shaked and Shanthikumar (2007)).

Similarly, a rv can be also ordered for stochastic (distribution function), hazard rate and mean
excess orders when the following results hold:

(i) Stochastic order (X1 ≤st X2) if FX1(x) ≥ FX2(x) for all x.
(ii) Hazard rate order (X1 ≤hr X2) if hX1(x) ≥ hX2(x) for all x.

(iii) Mean excess order (X1 ≤me X2) if eX1(x) ≥ eX2(x) for all x, where eX(·) is mean excess function
given in expression (17).

Using Theorem 1.C.1 and Theorem 2.A.1 of Shaked and Shanthikumar (2007), the above stochastic
orders hold following implications result

(X1 ≤lr X2)⇒ (X1 ≤hr X2)⇒ (X1 ≤me X2)

⇓
(X1 ≤st X2).

(9)

This gives rise to Proposition 1.

Proposition 1. Let X1 and X2 be two rv’s havingMPLG distribution with parameters (θi, λi, x0i) i = 1, 2.
Then following results hold

i. If x01 = x02, θ1 ≥ θ2 and λ1 ≤ λ2, then X1 ≤lr X2, X1 ≤hr X2 and X1 ≤st X2

ii. If x01 ≤ x02, θ1 = θ2 and λ1 = λ2, then X1 ≤lr X2, X1 ≤hr X2 and X1 ≤st X2.

Proof. See the Appendix A.

2.4. Integrated Tail Distribution and Equilibrium Hazard Rate

As we have already seen previously, the proposed distribution can be viewed as a mixture of two
thick-tailed distributions, the Pareto and loggamma models, thus it can be used to describe events
that include heavy-tailed behaviour. In this particular, we define another distribution function called
Integrated tail distribution (ITD) (also known as equilibrium distribution) Fe(x) which often appears in
insurance fields (see Yang 2004). The ITD has many interesting applications, e.g., approximation of the
ruin function (see Yang 2004) or characterisation of the tail of the distribution (see Su and Tang 2003)
just to name a few. Hence, forMPLG(θ, λ, x0) distribution bluewith θ > 1, ITD is obtained as

Fe(x) =
1

E(X)

∫ x

x0

F̄(y)dy

=
(θ − 1)2(θ + λ)

θ2x0(θ + λ− 1)

 θλ

(
x0 − x

(
x
x0

)−θ (
1− (1− θ) log

(
x
x0

)))
(1− θ)2(θ + λ)

+
x
(

x
x0

)−θ
− x0

1− θ

 (10)

=

(
x
x0

)−θ
(
(θ(1− θ − 2λ) + λ)

(
x− x0

(
x
x0

)θ
)
+ (1 + θ)θλx log

(
x
x0

))
θ2x0(θ + λ− 1)

.
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The associated equilibrium hazard rate re(x) = (− log (1− Fe(x)))′, for θ > 1 is given by

re(x) =
(θ − 1)2

(
θ + λ + θλ log

(
x
x0

))
x
(

θ(θ + 2λ− 1)− λ + (θ − 1)θλ log
(

x
x0

)) . (11)

Moreover, it can be easily verified that lim
x→∞

re(x) = 0. Hence by using Theorem 2.1 of

Su and Tang (2003) we can conclude thatMPLG(θ, λ, x0) is a heavy-tailed distribution. Heavy-tailed
distributions are important in non-life insurance when modeling losses related to motor third-party
liability insurance, fire insurance or catastrophe insurance.

2.5. Estimation

Let x1, . . . , xn be an independent and identically distributed (iid) random sample of size n drawn
from a population which follows aMPLG(θ, λ, x0) distribution. Estimate of parameter x0 can easily
be obtained, as the support of theMPLG(θ, λ, x0) distribution is greater than x̂0 = min(x1, . . . , xn).
Therefore for x0 known, we estimate the parameters θ and λ by (i) method of log-moments and (ii)
maximum likelihood method.

2.5.1. Method of Log-Moments

The first and second log-moments ofMPLG(θ, λ, x0) distribution obtained by using (7) are given

by l1 =
(θ + 2λ)

θ(θ + λ)
and l2 =

2(θ + 3λ)

θ2(θ + λ)
. Solving these equations for θ and λ, we have that these estimates

are provided by

θ̃ =

√
l2
1 − l2 + l1

l2
and λ̃ =

3l1l2 − 3l3
1 − 3l2

1

√
l2
1 − l2 + 2l2

√
l2
1 − l2

l2(3l2
1 − 4l2)

.

2.5.2. Maximum Likelihood Estimation

The log-likelihood function given the iid random sample x := x1, . . . , xn of size n is

`n(θ, λ|x) = 2n log θ − n log(θ + λ) +
n

∑
i=1

log
(

1 + λ log
(

xi
x0

))
− θ

n

∑
i=1

log
(

xi
x0

)
−

n

∑
i=1

log xi, (12)

and the normal equations obtained by differentiating (12) with respect to θ and λ are

∂`n(θ, λ|x)
∂θ

=
2n
θ
− n

θ + λ
−

n

∑
i=1

log
(

xi
x0

)
,

∂`n(θ, λ|x)
∂λ

= − n
θ + λ

−
n

∑
i=1

log
(

xi
x0

)
1 + λ log

(
xi
x0

) .

The above equations cannot be solved analytically and hence maximum likelihood estimates of
θ and λ can be computed numerically using in-built R-function such as nlm(), maxlik() or optim().
Moreover, in all these functions to initialize the program we use initial values obtained from the
method of log-moments. The second partial derivative of log-likelihood function with respect to
parameter θ and λ are
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∂2`n(θ, λ|x)
∂θ2 =− 2n

θ2 +
n

(θ + λ)2 ,
∂2`n(θ, λ|x)

∂θ∂λ
=

n
(θ + λ)2 ,

∂2`n(θ, λ|x)
∂λ2 =

n
(θ + λ)2 −

n

∑
i=1

log2
(

xi
x0

)
(

1 + λ log
(

xi
x0

))2 .
(13)

Furthermore,

E

 log2
(

X
x0

)
(

1 + λ log
(

X
x0

))2

 =
θ2

(θ + λ)

∫ ∞

x0

log2
(

x
x0

)
(

1 + λ log
(

x
x0

))2

(
x
x0

)−θ 1
x

(
1 + λ log

(
x
x0

))
dx,

substituting t = λ log
(

x
x0

)
, and using Tricomi confluent hypergeometric function U (a, b, z) =

1
Γ(a)

∫ ∞

0
ta−1(1 + t)−a+b−1e−ztdt, we get

E

 log2
(

X
x0

)
(

1 + λ log
(

X
x0

))2

 =
2θ2

(θ + λ)λ3 U (3, 3, θ/λ).

Hence, the expected Fisher’s information matrix associated to the parameters θ and λ is given by
Iij(θ, λ) with i, j = 1, 2 where

I11(θ, λ) = E
(
−∂2`n(θ, λ|x)

∂θ2

)
=

2n
θ2 −

n
(θ + λ)2 ,

I12(θ, λ) = I21(θ, λ) = E
(
−∂2`n(θ, λ|x)

∂θ∂λ

)
= − n

(θ + λ)2 ,

I22(θ, λ) = E
(
−∂2`n(θ, λ|x)

∂λ2

)
= − n

(θ + λ)2 +
2θ2 n

(θ + λ)λ3 U (3, 3, θ/λ).

The standard errors of the estimates θ̂ and λ̂ can be obtained by inverting the aforementioned
matrix and taking the square root of the diagonal entries.

2.6. Composite Models

Composite parametric models are a useful way to describe data that combined loss data of small
and moderate size with a high frequency and large observations with a low frequency. They consist of
two distributions, the first model is used up to an unknown single threshold value, estimated from
the data, and the second distribution beyond this threshold (see Cooray and Ananda 2005). Another
approach to derive composite models is utilizing a mode-matching procedure. In this technique, the
two distributions are composed at the common modal value which can be estimated from the claims
data. Thus, the composite model uses a truncated version of the first model up to the mode and the
rest of the model is based on an appropriate truncation of the second distribution from that modal
point onwards. The model after composition is similar in shape to either of the models considered
but with a thicker tail. By using this methodology, it is guaranteed that the new density is continuous
and smooth. These composite models give a significantly better fit as compared to the standard single
models for the same empirical data. Here, we derived composite models of ourMPLG distribution
with lognormal, Weibull and paralogistic distributions.
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2.6.1. Composite Lognormal-MPLG Model

Let us consider, for x > 0, the two-parameter lognormal distribution with pdf and cdf respectively
given by

f1(x) =
1√

2πxσ
exp

{
−1

2

(
log x− µ

σ

)2
}

and F1(x) = Φ
(

log x− µ

σ

)
,

with µ ∈ R, σ > 0 where Φ(·) is the cdf of the standard normal distribution. Now by taking
expressions (1) and (2) as the pdf, f2(x), and cdf, F2(x) of theMPLG distribution respectively with
x ≥ x0 and setting equal the modes of lognormal andMPLG distributions we obtain

σ =

√
µ− log x0 −

λ− θ − 1
λ(θ + 1)

. (14)

Note that we must impose the additional constraint µ > log x0 +
λ−θ−1
λ(θ+1) . Now, the unrestricted

mixing weight is given by

r =
θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))
Φ
(

log xm − µ

σ

)
×
{

θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))
Φ
(

log xm − µ

σ

)

+
1√

2πxmσ
exp

{
−1

2

(
log xm − µ

σ

)2
} (

θ + λ + θλ log
(

xm
x0

))
θ + λ

(
xm

x0

)−θ

−1

.

Then, the pdf of the four-parameter composite lognormal-MPLG distribution is given by

f (x) =


r F1(xm)−1 1√

2πxσ
exp

{
−1

2

(
log x− µ

σ

)2
}

0 ≤ x ≤ xm

(1− r) (1− F2(xm))−1 θ2

x(θ + λ)

(
x
x0

)−θ (
1 + λ log

(
x
x0

))
xm ≤ x ≤ ∞.

2.6.2. Composite Weibull-MPLG Model

Let

f1(x) =
τ

x

(
x
φ

)τ

exp
{
−
(

x
φ

)τ}
and F1(x) = 1− exp

{
−
(

x
φ

)τ}
be the pdf and cdf of a two-parameter Weibull distribution with φ, τ > 0 and x > 0. Let us again
consider the pdf and cdf of theMPLG distribution given by (1) and (2) respectively. By equating the
modes of the two distributions, we have that

φ = x0 exp
{

λ− θ − 1
λ(θ − 1)

}(
τ

τ − 1

) 1
τ

. (15)

where the restriction τ > 1 must be imposed to guarantee that the mode of the Weibull distribution
is greater than 0. Now, the pdf of the four-parameter composite Weibull-MPLG distribution is
provided by

f (x) =


r F1(xm)−1 τ

x

(
x
φ

)τ

exp
{
−
(

x
φ

)τ}
0 ≤ x ≤ xm

(1− r) (1− F2(xm))−1 θ2

x(θ + λ)

(
x
x0

)−θ (
1 + λ log

(
x
x0

))
xm ≤ x ≤ ∞, .
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where the unrestricted mixing weight is given by

r =
θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))(
1− exp

{
−
(

xm

φ

)τ})
×
{

θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))(
1− exp

{
−
(

xm

φ

)τ})

+
τ

xm

(
xm

φ

)τ

exp
{
−
(

xm

φ

)τ} θ + λ + θ log
(

xm
x0

)
θ + λ

(
xm

x0

)−θ


−1

.

2.6.3. Composite Paralogistic-MPLG Model

Finally, let us assume that

f1(x) = α2 (x τ)α

x (1 + (x τ)α)α+1 and F1(x) = 1− 1
(1 + (x τ)α)α

are the pdf and cdf of the two-parameter paralogistic distribution with α, τ > 0, and x > 0. Once again,
we consider the pdf and cdf of theMPLG model given by (1) and (2). By setting equal the modal
values of the two distributions, we have that

τ =

(
x0 exp

(
λ− θ − 1
λ(θ − 1)

))−1 ( α− 1
α2 + 1

) 1
α

. (16)

where the restriction α > 1 is again established to ensure that the mode of the paralogistic distribution
is larger than 0. The unrestricted mixing weight is now given by

r =
θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))(
1−

(
1

1 + (xmτ)α

)α)
×
{

θ2

xm(θ + λ)

(
xm

x0

)−θ (
1 + λ log

(
xm

x0

))(
1−

(
1

1 + (xmτ)α

)α)

+α2 (xm τ)α

xm (1 + (xm τ)α)α+1

 θ + λ + θ log
(

xm
x0

)
θ + λ

(
xm

x0

)−θ


−1

.

The pdf of the four-parameter composite paralogistic-MPLG distribution is provided by

f (x) =


r F1(xm)−1 α2 (x τ)α

x (1 + (x τ)α)α+1 0 ≤ x ≤ xm

(1− r) (1− F2(xm))−1 θ2

x(θ + λ)

(
x
x0

)−θ (
1 + λ log

(
x
x0

))
xm ≤ x ≤ ∞.

3. Insurance Results

In the following, several theoretical results related to insurance for the MPLG(θ, λ, x0)

distribution and related composite models are derived.
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3.1. Mean Excess Function

The mean excess function measures the expected payment per claim on a policy with a fixed
amount deductible of x, ignoring the claims with amounts less than or equal to x. It is defined as

e(x) = E(X− x|X > x) =

∫ ∞

x
F̄(u)du

F̄(x)
,

which can also be obtained by inverting the equilibrium hazard rate (Su and Tang 2003), hence for
θ > 1 the mean excess function for the model with pdf (1) is given by

e(x) =
x
(

θ(θ + 2λ− 1)− λ + (θ − 1)θλ log
(

x
x0

))
(θ − 1)2

(
θ + λ + θλ log

(
x
x0

)) . (17)

3.2. Excess of Loss Reinsurance

Let X be a rv denoting the individual claim size taking values greater than d. Let us also assume
that X follows (1), and the expected cost per claim to the reinsurance layer when the loss in excess of m
subject to a maximum of l is given by

E(min(l, max(0, X−m)) =
∫ m+l

m
(x−m) f (x)dx + lF̄(m + l).

Now by replacing f (·) and F̄(·) by expressions (1) and (3) and solving the integral, we have that

E(min(l, max(0, X−m))

=
θ2xθ

0
θ + λ

(l + m)−θ

−λ(θl + m) log
(

l+m
x0

)
(θ − 1)θ

− (θ + λ− 1)(l + m)

(θ − 1)2 +
m(θ + λ)

θ2

+
m1−θ

(
θ2 + θ(2λ− 1)− λ + (θ − 1)θλ log

(
m
x0

))
(θ − 1)2θ2


+

lxθ
0(l + m)−θ

(
θ + λ + θλ log

(
l+m

x0

))
θ + λ

.

3.3. Value-at-Risk and Tail Value-at-Risk

In this subsection, we firstly discuss the most widely used risk measure, the Value-at-Risk (VaR).
It is defined as the minimum value of the distribution such that the probability of the loss larger than
this value does not exceed a given probability. In statistical terms, VaR is a quantile of a random
variable and the formal definition is as follows.

Definition 2. Let X be a loss rv with a continuous cdf FX(·), and δ be a probability level such that 0 < δ < 1,
the Value-at-Risk at probability level δ, denoted by VaRδ(X), is the δ-quantile of X. That is

VaRδ(X) = inf{x ∈ R : FX(x) ≥ δ}.

Hence for rv havingMPLG(θ, λ, x0) distribution the Value-at-Risk is given in next Proposition.



Risks 2019, 7, 99 11 of 17

Proposition 2. For θ, λ > 0, the VaRδ(X) of theMPLG(θ, λ, x0) distribution is

VaRδ(X) = x0 exp

− θ + λ

θλ
− 1

θ
W−1

− (1− δ)(θ + λ) exp
{
− θ+λ

λ

}
λ

 (18)

where W−1 is the negative branch of Lambert-W function.

Proof. See the Appendix A.

The median of MPLG(θ, λ, xo) will be obtained by taking δ = 0.5 in VaRδ(X). As in general,
the loss distributions are typically skewed, the VaR is a non-coherent risk measure due to the
lack of subadditivity (see Klugman et al. 2012), for that reason, the Tail Value-at-Risk (TVaR) of X
(see Acerbi and Tasche 2002) is usually considered as a more informative and more useful risk measure.
The TVaR is given by

TVaRδ(X) =
1

1− δ

∫ 1

δ
VaRz(X)dz,

which is a coherent risk measure. If X is continuous, Pr(X ≤ VaRδ(X)) = δ, and then the TVaR is the
conditional tail expectation TVaRδ(X) = E(X|X > VaRδ(X)).

Proposition 3. For θ, λ > 0, the TVaRδ(X) forMPLG(θ, λ, x0) distribution is given by

TVaRδ(X) =
1

(1− δ)

λx0θ exp
{
− (1−θ)(θ+λ)

θλ

}
(1− θ)2(θ + λ)

×
(
(1 + (1− θ)K(δ; θ, λ)) exp

{
− (1− θ)K(δ; θ, λ)

θ

}
− 1
) (19)

where K(δ; θ, λ) = W−1

(
− (1−δ) exp{− θ+λ

λ }(θ+λ)
λ

)
.

Proof. See the Appendix A.

3.4. Limited Loss Variable for Composite Models

Finally, in this subsection the kth moment of the limited loss variable for composite models based
on theMPLG distribution is presented.

Definition 3. The kth incomplete moment transform of a rv X with cdf F(x) and pdf f (x), given that

µk = E(Xk) < ∞, is a rv with pdf given by f (k)(x) =
xk f (x)

µk
and cdf given by F(k)(x) =

∫ x

0

tk f (t)dt
µk

,

0 < x < ∞.

Definition 4. The limited loss variable is defined as, X ∧ u =

{
X, X < u,
u, X ≥ u.

where u is the maximum

benefit paid by the insurance policy.

Proposition 4. The moment of order k of the limited loss variable for the composite models based on theMPLG
distribution is given by

E((X ∧ u)k) = rE(Xk
1)

F(k)
1 (u)

F1(xm)
+ uk

(
1− r

F1(u)
F1(xm)

)
, (20)
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if 0 < u ≤ xm and

E((X ∧ u)k) = rE(Xk
1)

F(k)
1 (xm)

F1(xm)
+ (1− r)E(Xk

2)
F(k)

2 (u)− F(k)
2 (xm)

1− F2(xm)

+ uk(1− r)
1− F2(u)

1− F2(xm)
, (21)

if xm < u < ∞.

Proof. The kth moment of the limited loss variable can be derived as,

E[(X ∧ u)k] =
∫ u

0
xk fX(x)dx + uk[1− FX(u)].

If 0 < u < xm,

E[(X ∧ u)k] =
∫ u

0
rxk f1(x)

F1(xm)
dx + uk

(
1− r

F1(u)
F1(xm)

)
,

and we get (20). Now, if xm < u < ∞,

E[(X ∧ u)k] =
∫ xm

0
rxk f1(x)

F1(xm)
dx +

∫ u

xm
(1− r)

xk f2(x)
1− F2(xm)

dx

+ uk
[

1− (r + (1− r)
F2(u)− F2(xm)

1− F2(xm)
)

]
,

and (21) is obtained.

Observe that in expressions (20) and (21), E(Xk
i ) and F(k)

i (·) denotes the kth incomplete moment
and the cdf of the kth incomplete moment for lognormal, Weibull or paralogistic distributions (i = 1)
andMPLG distribution (i = 2).

4. Case Studies

In this section, we use two claims datasets to assess the performance ofMPLG distribution and
theMPLG composite models. Finally, some results related to income indices are given.

4.1. An Application to Automobile Claims Data

First, we examine the performance ofMPLG distribution as compared to other heavy-tailed
distributions available in the literature by employing of a real automobile claims dataset
(see De Jong and Heller 2008). This dataset describes a one-year vehicle insurance policies taken
out in 2004 or 2005. There are 67,856 policies, of which 4624 (6.8%) had at least one claim. The variable
of interest is the size of the claims. The minimum claim amount is $200 and the maximum value is
$55,922.13. We have fitted to this dataset theMPLG distribution by setting the value of x0 equal
to the minimum value to explain the claims amount distribution. In Table 1, parameter estimates
and standard errors (S.E.) for theMPLG and other two-parameter and three-parameter heavy-tailed
probabilistic models with support in R+ are illustrated. For a review of these distributions the reader is
referred to Hogg and Klugman (2009) or Klugman et al. (2012). For the classical Pareto, PAT the location
parameter has been set equal to the minimum value, i.e., x0 = 200. For the loggamma distribution
the location parameter can be chosen in the neighborhood of this value. For comparison purposes,
three measures of model selection has been included in this Table, the negative of the log-likelihood
function (NLL), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). It is
observable that theMPLG provides the best fit to data in terms of these measures of model selection.
The figures of the measures of model selection reveal that the Pareto distribution is preferable to the
loggamma distribution for this dataset.
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We have also fitted the three-parameter Burr distribution to this dataset. For this model the value
of the NLL is 38,028.13. However, the algorithm used to search for the maximum of the log-likelihood
surface to find the estimates stopped at the boundary of the parameter space, and thus these estimates
are no longer displayed in Table 1.

Table 1. Estimated values of different heavy-tailed models, corresponding standard errors (S.E.),
negative of the log-likelihood function (NLL), Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) for automobile claims dataset (De Jong and Heller 2008).

Distribution Parameter Estimates (S.E.) NLL AIC BIC

Pareto θ̂ = 0.661 (0.010) 38,024.80 76,051.61 76,058.05

lognormal µ̂ = 6.810 (0.017), σ̂ = 1.189 (0.012) 38,852.15 77,708.31 77,721.19

loggamma α̂ = 1.115 (0.021), β̂ = 5.109 (0.118) 38,998.18 78,000.36 78,013.23

Frećhet α̂ = 0.659 (0.019), ŝ = 254.0 (11.87) 38,408.30 76,822.60 76,841.92
b̂ = 157.1 (4.279)

Weibull µ̂ = 0.786 (0.008), σ̂ = 1690.8 (33.64) 39,491.60 78,987.19 79,000.07

Lomax α̂ = 2.047 (0.088), λ̂ = 2205.1 (133.1) 39,169.85 78,343.70 78,356.58

PAT α̂ = 0.895 (0.095), θ̂ = 0.740 (0.017) 38,006.30 76,016.61 76,029.49

Inverse Weibull α̂ = 1.053 (0.012), σ̂ = 518.8 (7.636) 38,595.61 77,195.22 77,208.09

MPLG θ̂ = 0.943 (0.018), λ̂ = 0.698 (0.073) 37,965.99 75,935.98 75,948.86

4.2. An Application to Fire Insurance Claims

In our second application, the composite models derived from the MPLG distribution are
compared to the composite Pareto and composite Lomax families. For that reason, we consider the
well-known Danish fire insurance dataset that consists of 2492 fire insurance losses in millions of Danish
kroner (DKr) from the years 1980 to 1990 (both inclusive), adjusted to reflect 1985 values. This dataset
may be found in the ‘SMPrcacticals’ add-on package for R, available from the CRAN website
http://cran.r-project.org/. Parameter estimation for all the models considered has been completed
by the method of maximum likelihood (which is implemented using the function ‘mle’/‘mle2’ in R).
In Table 2, parameter estimates and standard errors (S.E.) for all the composite distributions and
the three measures of model validation considered in our first example are exhibited. Among the
composite models, we can see that the Weibull-MPLG composite model gives the best fit overall for
this dataset in terms of NLL, AIC and BIC values.

Finally, to select composite models that provide an acceptable description of the loss process,
we must verify that the first-order moment of the limited loss variable and the empirical counterpart,
given by En(u) = 1

n ∑n
i=1 min(xi, u) are essentially in agreement. Obviously when u tends to infinity,

the former quantity and En(u) converge to E(X) and the sample mean, respectively. In Table 3
empirical and fitted limited expected value for the seven composite models considered are displayed.
As it can be observed, the composite lognormal-Pareto and Weibull-Pareto distributions tend to
overestimate the empirical limited expected value when the policy limit u increases. Although,
the remainder models stay closer to the empirical limited expected value for different values of u,
the composite Weibull-Lomax displays the best behaviour.

http://cran.r-project.org/
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Table 2. Estimated values of different heavy-tailed models, corresponding standard errors (S.E.), NLL,
AIC, and BIC of different composite models for the Danish fire losses dataset.

Distribution Parameter Estimates (S.E.) NLL AIC BIC

lognormal-Lomax µ̂ = 0.104 (0.020) σ̂ = 0.182 (0.011) 3860.47 7728.94 7752.223
λ̂ = 0.365 (0.123) θ̂ = 1.144 (0.029)

lognormal-Pareto µ̂ = 0.137 (0.019) σ̂ = 0.197 (0.012) 3865.86 7737.72 7755.182
θ̂ = 1.208 (0.030)

lognormal-MPLG µ̂ = 0.045 (0.017) θ̂ = 2.060 (0.039) 3872.40 7752.81 7776.09
x̂0 = 0.745 (0.070) λ̂ = 65.804 (377.425)

Weibull-Lomax τ̂ = 15.345 (0.671) φ̂ = 0.969 (0.007) 3823.70 7655.40 7678.68
λ̂ = 0.561 (0.127) θ̂ = 0.971 (0.007)

Weibull-Pareto τ̂ = 14.048 (0.502) ψ̂ = 0.997 (0.008) 3840.38 7686.76 7704.22
θ̂ = 1.003 (0.008)

Weibull-MPLG τ̂ = 18.763 (0.986) x̂0 = 0.787 (0.006) 3823.30 7654.60 7677.88
θ̂ = 1.938 (0.034) λ̂ =4.614 (0.159)

paralogistic-MPLG α̂ = 16.719 (1.311) x̂0 = 0.901 (0.020) 3824.482 7656.96 7680.25
θ̂ = 1.989 (0.035) λ̂ = 3.379 (0.266)

Table 3. Limited expected value for the distributions considered and different values of the policy
limit u.

Composite Models

Policy Empirical lognormal lognormal Weibull Weibull lognormal Weibull Paralogistic
Limit u Pareto Lomax Pareto Lomax MPLG MPLG MPLG
1 0.989 0.998 0.985 0.989 0.989 0.987 0.986 0.989
2 1.565 1.726 1.525 1.560 1.548 1.333 1.266 1.467
5 2.138 2.489 2.122 2.155 2.143 2.015 1.943 2.093
10 2.447 2.932 2.362 2.482 2.464 2.341 2.292 2.398
20 2.707 3.285 2.566 2.781 2.674 2.542 2.522 2.591
100 2.958 3.851 2.826 3.299 2.923 2.740 2.778 2.793
200 3.037 4.017 2.884 3.463 2.972 2.770 2.823 2.826
∞ 3.063 4.665 3.005 4.289 3.060 2.804 2.885 2.868

4.3. Theil’s Income Indices

Among several economic inequality measures the Gini Index is commonly used. However, it does
not allow us to vary the sensitivity of the index to redistributional movements at specific income
ranges, which can point out different evolutions of disparities when no Lorenz dominance is found
(see Sarabia and Castillo 2005). Yitzhaki (1983) further generalized this index which is sensitive to
changes in the right tail of the distribution as the parameter increases. The two limiting cases of
this family of inequality measures, known as Theils’s Indices (T1 and T0), corresponding to the Theil
entropy index (TEI) and the mean log deviation (MLD), are defined by

T1(X) = −E
(

log
X
µ

)
and T2(X) = E

(
X
µ

log
X
µ

)
.

Proposition 5. The TEI and MLD indices for a rv X that follows the MPLG(θ, λ, x0) distribution are
provided by

T1(X) = − θ + 2λ

θ(θ + λ)
+ log

(
θ2(θ + λ− 1)
(θ − 1)2(θ + λ)

)
, θ > 1

and

T2(X) =
2

θ − 1
− 1

θ + λ− 1
− log

(
θ2(θ + λ− 1)
(θ − 1)2(θ + λ)

)
, θ > 1.
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Proof. The proof follows directly after some computation.

5. Conclusions

In this paper, we have proposed a new heavy-tailed class of distribution, that is obtained by
using an exponential transformation of the generalized Lindley distribution. This class generalizes
both the classical Pareto model and a special case of the loggamma distribution. Some of its most
relevant statistical properties were examined. The model is very flexible since it allows for closed-form
expressions for many results related to insurance. Besides, as the mode of this new model can be written
in closed-form, composite models based on this distribution can be easily derived. The numerical
illustrations reveal that the mixture Pareto-loggamma distribution provides a good fit to loss data,
and it is a competitive model with other existing heavy-tailed distributions in the literature.
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Funding: This research received no external funding.
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Appendix A

Expression (1) is a genuine pdf:

fX(x|θ, λ, x0) =
θ

θ + λ

θ

x

(
x
x0

)−θ

+
λ

θ + λ

θ2

x

(
x
x0

)−θ

log
(

x
x0

)
=

θ

θ + λ
θ

xθ
0

xθ+1 +
λ

θ + λ

θ2

x0

(
x
x0

)−(θ+1)
log
(

x
x0

)
=

θ

θ + λ
g1(x) +

λ

θ + λ
g2(x),

where g1(x) and g2(x) are the densities of the Pareto and loggamma distribution respectively.

Proof of Proposition 1. Let Xi be aMPLG rv’s with parameter (θi, λi, x0i), i = 1, 2. Then

d
dx

log
fX1(x)
fX2(x)

=
λ1

x
(

1 + λ1 log
(

x
x01

)) − λ2

x
(

1 + λ2 log
(

x
x02

)) − θ1

x
+

θ2

x
(A1)

it is easy to see that, if x01 = x02, (A1) is negative when θ1 ≥ θ2 and λ1 ≤ λ2 which implies that
X1 ≤lr X2. Further note that, when θ1 = θ2 and λ1 = λ2, (A1) is negative when x01 ≤ x02 and therefore
X1 ≤lr X2. The other results follows from (9).

Proof of Proposition 2. By assuming p = log
(

x
x0

)
, the cdf can be written as

FX(x) = 1− (θ + λ + θλp)
θ + λ

exp{−θp},

for fixed θ, λ > 0 and δ ∈ (0, 1), the δth quantile function is obtained by solving FX(x) = δ.
By re-arranging the above, we obtain

(1− δ)(θ + λ) = (θ + λ + θλp) exp{−θp} (A2)

Now, by multiplying both sides of (A2) by − exp {−(θ + λ)/λ}, we obtain

−
(

θ + λ

λ
+ θp

)
exp

{
−
(

θ + λ

λ
+ θp

)}
= − (1− δ)(θ + λ)

λ
exp

{
− θ + λ

λ

}
. (A3)
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From expression (A3), we see that −
(

θ+λ
λ + θp

)
is the Lambert-W function of real argument

− (1−δ)(θ+λ)
λ exp

{
− θ+λ

λ

}
. Thus, we have

W
(
− (1− δ)(θ + λ)

λ
exp

{
− θ + λ

λ

})
= −

(
θ + λ

λ
+ θp

)
. (A4)

Moreover, for any θ, λ > 0, it is immediate that θ+λ
λ + θp > 1, and it can also be checked that

− (1−δ)(θ+λ)
λ exp

{
− θ+λ

λ

}
∈ (−1/e, 0) since δ ∈ (0, 1). Therefore, by taking into account the properties

of the negative branch of the Lambert-W function, we deduce the following

W−1

(
− (1− δ)(θ + λ)

λ
exp

{
− θ + λ

λ

})
= −

(
θ + λ

λ
+ θp

)
.

Again, substituting p = log
(

x
x0

)
, and solving for x, we obtain

VaRδ(X) = x0 exp

− θ + λ

θλ
− 1

θ
W−1

− (1− δ)(θ + λ). exp
{
− θ+λ

λ

}
λ

 .

This completes the proof of Proposition 2.

Proof of Proposition 3. Let X followsMPLG(θ, λ, x0). Then, the TVaRδ(X) is defined as

TVaRδ(X) =
1

1− δ

∫ 1

δ
VaRz(X)dz,

substituting the value VaRz(X) from (18), we get

TVaRδ(X) =
1

1− δ

∫ 1

δ
x0 exp

− θ + λ

θλ
− 1

θ
W−1

− (1− z) exp
{
− θ+λ

λ

}
(θ + λ)

λ

 dz

=
x0

1− δ
exp

{
− (θ + λ)(1− θ)

θλ

} ∫ 1

δ
exp

−1
θ

W−1

− (1− z) exp
{
− θ+λ

λ

}
(θ + λ)

λ

 dz.

Now, by denoting − (1−z)e−
θ
λ
−1

(θ+λ)
λ = u, we get

TVaRδ(X) = − x0λ

1− δ
exp

{
− (θ + λ)(1− θ)

θλ

} ∫ δ′

0
exp

{
−1

θ
W−1(u)

}
du,

where δ′ = − (1−δ)e−
θ
λ
−1

(θ+λ)
λ . By letting W−1(u) = t, it gives t exp{t} = u, and du = exp{t} (t + 1) dt,

then we have

TVaRδ(X) =− x0λ

1− δ
exp

{
− (θ + λ)(1− θ)

θλ

} ∫ W−1(δ
′)

0
exp

{
−
(

1
θ
− 1
)}

(1 + t)dt

=
1

(1− δ)

λx0θ exp
{
− (1−θ)(θ+λ)

θλ

}
(1− θ)2(θ + λ)

×
(
(1 + (1− θ)K(δ; θ, λ)) exp

{
− (1− θ)K(δ; θ, λ)

θ

}
− 1
)

,

where K(δ; θ, λ) = W−1

(
− (1−δ) exp{− θ+λ

λ }(θ+λ)
λ

)
. Hence the proposition.
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