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Abstract: Since the 2008–2009 financial crisis, banks have introduced a family of X-valuation
adjustments (XVAs) to quantify the cost of counterparty risk and of its capital and funding
implications. XVAs represent a switch of paradigm in derivative management, from hedging to
balance sheet optimization. They reflect market inefficiencies that should be compressed as much as
possible. In this work, we present a genetic algorithm applied to the compression of credit valuation
adjustment (CVA), the expected cost of client defaults to a bank. The design of the algorithm is
fine-tuned to the hybrid structure, both discrete and continuous parameter, of the corresponding
high-dimensional and nonconvex optimization problem. To make intensive trade incremental XVA
computations practical in real-time as required for XVA compression purposes, we propose an
approach that circumvents portfolio revaluation at the cost of disk memory, storing the portfolio
exposure of the night so that the exposure of the portfolio augmented by a new deal can be obtained
at the cost of computing the exposure of the new deal only. This is illustrated by a CVA compression
case study on real swap portfolios.

Keywords: counterparty risk; credit valuation adjustment (CVA); XVA (X-valuation adjustments)
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1. Introduction

XVAs, where VA stands for valuation adjustment and X is a catch-all letter to be replaced by C
for credit, F for funding, M for margin, or K for capital, have been implemented by banks in reaction
to the regulatory changes aroused by 2008 financial turmoils. They monetize counterparty risk and
its funding and capital consequences by add-ons to derivative entry prices sourced from clients.
According to the cost-of-capital XVA approach of Albanese and Crépey (2019), accounting for the
impossibility for a bank to replicate the jump-to-default related cash flows, the final, all-inclusive XVA
formula reads

CVA + FVA + MVA + KVA, (1)

to be sourced by the bank from clients on an incremental run-off basis at every new deal.
As stated by the Basel Committee on Banking Supervision (2015), major counterparty credit losses

on OTC (Over-the-counter) derivative portfolios in 2008 arose from XVA accounting losses rather
than from actual client defaults. In particular, a bank incurs a CVA loss when the market perceives a
deterioration of the credit risk of a client. This has motivated the creation of XVA desks for dealing
with these risks.
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In this paper, we deal with CVA compression, i.e., the minimization of the CVA of a client portfolio
by the introduction of an incremental trade, subject to the constraint of not altering too much the
market risk of the portfolio. In the financial derivative industry, the term compression term is generally
applied in the context of “trade compression”, i.e., the reduction of the gross notional of positions in
the market. Trade compression aims notably at reducing certain capital requirements, the number of
transactions, and their amount (see Section 5.3 of (Gregory 2015)). As reflected by the proliferation of
related industry presentations1, this kind of balance sheet optimization is very active in top tier banks
at the moment.

XVAs reflect market inefficiencies that should be compressed as much as possible. Here,
we focus on CVA compression for concreteness and simplicity, but the developed XVA compression
methodology is generic. It could and should be applied to further XVA metrics, as soon as these are
available with sufficient speed, for computation at the portfolio level, and accuracy, for numerical
significance of the results at the incremental trade level (see Section 5 in (Albanese et al. 2018),
which emphasizes the XVA compression perspective on the pricing and risk management of financial
derivatives in the post-2008–2009 global financial crisis era, and cf. (Kondratyev and Giorgidze 2017),
which uses a genetic algorithm for determining an optimal trade-off between MVA compression and
transaction costs).

The complexity of XVA compression problems stems, in particular, from the hybrid nature of the
state space of the corresponding optimization problems. Indeed, a new trade (financial derivative) is
described by a combination of continuous and discrete parameters. This rules out the use of standard
convex optimization schemes for such problems. Instead, we are lead to the use of metaheuristic
algorithms. In this paper, we show how a genetic algorithm with penalization can efficiently find a
CVA offsetting trade, while limiting the impact of the trade on the market exposure profile. The latter
is necessary for staying in line with the separation of mandates between the XVA desks, in charge of
managing counterparty risk, and the other, dubbed “clean”, trading desks of the bank, in charge of
hedging the market risk of the bank positions.

The other XVA compression challenge is execution time, with intensive valuation of the involved
XVA metrics as a bottleneck. The XVA metrics are primarily defined at the portfolio level: Time-0
XVAs can be formulated as expectations of nonlinear functionals of the bank derivative portfolio
exposure, i.e., “clean” valuation (or “mark-to-market” (MtM) ignoring counterparty risk) of the bank
portfolio, assessed at randomly sampled times and scenarios. Each new deal gives rise to XVA add-ons
computed as the corresponding trade incremental XVA amounts, i.e., the differences between the
XVAs of the portfolios including and excluding the new deal. To make intensive trade incremental
XVA computations practical in real-time as required for XVA compression purposes, our proposed
MtM store-and-reuse approach circumvents clean revaluation at the cost of disk memory, storing the
portfolio exposure of the night so that the exposure of the portfolio augmented by a new deal can be
obtained at the cost of computing the exposure of the new deal only.

Outline and Contributions

The paper is outlined as follows. Section 2 formulates the penalized CVA compression problem
and introduces the related genetic optimization algorithm. Section 3 is about two key acceleration
techniques in this regard. Section 4 presents a numerical case study on real swap portfolios.
Section 5 concludes.

The main contributions of the paper are the design of a parallelized genetic algorithm for the
CVA compression task, the MtM store-and-reuse acceleration technique for trade incremental XVA
computations, and the numerical CVA compression case study on real swap portfolios.

1 See also, e.g., David Bachelier’s panel discussion Capital and Margin Optimisation, Quantminds International 2018
conference, Lisbon, 16 May 2018.
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More broadly, this paper enriches the literature on the use of genetic (also called evolutionary)
optimization algorithms in finance. Cont and Hamida (2005) applied evolutionary algorithms to
investigate a set of co-calibrated model parameterizations in order to assess the associated model risk.
Kroha and Friedrich (2014) compared different genetic algorithms for automatic trading. Jin et al. (2019)
applied evolutionary algorithms to optimal investment and consumption stochastic control problems.
For wider reviews of genetic algorithms in finance, we refer the readers to (Chen 2012; Drake and
Marks 2002).

We refer the reader to the end of the paper for a list of the main abbreviations.

2. CVA Compression Modeling

2.1. Credit Valuation Adjustment

We consider a complete stochastic basis (Ω,F,P), for a reference market filtration (ignoring the
default of the bank itself) F = (Ft)t∈R+

, satisfying the usual conditions, and a risk-neutral pricing
measure P, calibrated to market quotes of fully collateralized transactions. All the processes of
interest are F adapted and all the random times of interest are F stopping times. This holds at
least after so-called reduction of all the data to F, starting from a larger filtration G including the
default of the bank itself as a stopping time, assuming immersion from F into G for simplicity
(see (Albanese and Crépey 2019) for details). The P expectation and (Ft,P) conditional expectation
are denoted by E and Et, respectively.

In developed markets, the overnight indexed swap (OIS) rate is together the reference
remuneration rate for posted collateral and the best market proxy for a risk-free rate. We denote
by r = (rt)t∈R+

an F progressive OIS rate process and we write β = e−
∫ ·

0 rsds for the corresponding
risk-neutral discount factor.

By clean valuation or mark-to-market of a contract (or portfolio), we mean the (trade additive)
risk-neutral conditional expectation of its OIS discounted future promised cash flows, ignoring
counterparty risk and its capital and funding implications.

We consider a bank engaged in bilateral trading with a single corporate counterparty (client)
with default time and recovery rate τc and Rc, respectively. This setup, which is chosen for simplicity,
is consistent with a common situation where credit risk budget is assigned at each counterparty level
within the bank. We denote by MtM the corresponding mark-to-market process of the client portfolio
to the bank.

The (time 0) CVA of the bank is its expected discounted loss in case of client default, i.e.,

CVA = E
[
1{τc≤T}β

−1
t βτc(1− Rc)MtM+

τc

]
. (2)

Assuming deterministic interest rates, this can be rewritten as

CVA = (1− Rc)
∫ T

0
βtEPE(t)P(τc ∈ dt), (3)

where the expected positive exposure (EPE) is defined as

EPE(t) = E(MtM+
s |s = τc)|τc=t. (4)

Equation (3) is popular with practitioners because it allows obtaining the CVA as the integral of the
EPE against the client CDS (Credit default swap) curve. However, it is only really practical in simplistic
models where the market and credit sides of the problem are independent, so that EPE(t) = E(MtM+

t ).
However, a key CVA modeling issue is wrong-way risk, i.e., the risk of adverse dependence between
market and credit (see (Brigo and Vrins 2018; Crépey and Song 2016 2017; Glasserman and Yang 2018;
Hull and White 2012; Iben Taarit 2018; Li and Mercurio 2015; Pykhtin 2012)).
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Assuming the client default time endowed with an intensity γc, a more flexible formula is

CVA = (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
sMtM+

s ds. (5)

Under a credit support agreement (CSA), MtM should be replaced by (MtM− C) in all equations
above, where C is the collateral posted by the counterparty. Obviously, collateral can mitigate the EPE
and the CVA considerably. In the data of our case study there is no CSA, i.e., C = 0.

Non-linearity of MtM+ with respect to the portfolio payoff components imposes CVA calculations
at the counterparty portfolio (netting set) level.

Similar approaches apply to FVA computations, with analogous comments, whereas the MVA
can be computed based on quantile regression for the embedded dynamic initial margin calculations
(see (Crépey et al. 2019)). In any case, the numerical bottleneck of XVA computations lies in intensive
MtM calculations.

2.2. Fitness Criterion

By the augmented and initial portfolios, respectively, we mean the portfolio of the bank inclusive
and exclusive of a newly considered deal with the client. The aim of an XVA compression problem is
to find a new trade that minimizes the corresponding XVA metric of the augmented portfolio. This is
equivalent to minimize the incremental CVA, which we denote by

∆CVA = (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s(MtMaugm

s )+ds− (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s(MtMinit

s )+ds

= (1− Rc)E
∫ T

0
βse−

∫ s
0 γc

uduγc
s
(
(MtMaugm

s )+ − (MtMinit
s )+

)
ds,

(6)

where the indices init and augm refer to the initial portfolio and augmented portfolio, respectively.
We emphasize that trade incremental CVA computations require two portfolio-wide calculations: one
without the new trade and another one including it.

Minimizing an XVA metric is most easily obtained through a significant deformation of the
portfolio exposure process (especially in the context of this work of a portfolio with a single
counterparty). However, an XVA compression procedure should not affect too much the market risk
of the portfolio, because market risk is the mandate of the clean desks of the bank, who, in particular,
are subject to trading limits.

This motivates the addition of a penalization to the incremental XVA criterion. In our case study,
the incremental deal will consist of an interest rate swap. As such product is mostly sensitive to interest
rate moves, a natural penalization is then in terms of its DV01 (dollar value of an 01), i.e., the variation
of its mark-to-market (at time 0) under a parallel shift of the yield curve by one basis point (=10−4).

More precisely, an interest rate swap exchanges one leg indexed on a floating interest rate against
one leg paying a fixed interest rate, called swap rate. The swap is said to be payer (respectively,
receiver) for the party that pays (respectively, receives) the floating payments. A monocurrency swap
exchanges both legs in the same currency. It is mainly sensitive to the fluctuations of the corresponding
floating interest rate term structure. DV01 measures the associated risk as the difference between
the prices of the swap under the baseline (actual market data observed in the real market) and for a
bumped yield curve defined as the concatenation of the money market rates, forward rates, and swap
rates, on the relevant (successive) time segments. Bumping the yield curve typically means adding
10−4 to each tenor of this curve and updating the other reference curves (zero coupon rates, forward
rates, etc.) accordingly.

Focusing on the CVA metric in this paper, we obtain the following fitness minimization problem:

minimize
x∈A

f (x) = ∆CVA(x) + α|DV01(x)|, (7)
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where x parameterizes a new deal (swap) to be found in a suitable search space A (see Section 4.1),
∆CVA(x) is its incremental CVA (cf. Equation (6)), DV01(x) is its DV01, and α is a penalization
parameter controlling the trade-off between CVA reduction and market risk profile preservation.
By solving Equation (7), we aim at identifying a new deal which, if added to the current client portfolio
of the bank, would diminish its counterparty risk without impacting too much its market risk. Note
that, for scaling reasons (with, in particular, market penalization), we address the XVA compression
problem in terms of trade incremental (as opposed to augmented portfolio) XVA numbers.

A new deal is determined by a combination of quantitative (e.g., notional, maturity, etc.) and
qualitative (e.g., currency, long or short direction, etc.) parameters, so that no gradient or Hessian is
available for the fitness function f in Equation (7). Moreover, one is interested in exploring a variety
of local minima of f , to see different trading opportunities emerge from the optimization procedure.
Furthermore, we can guess that some (crucial) parameters need be learned first, such as currency or
maturity; other parameters, such as notional, can be refined in a second stage. All these features lead
us to addressing Equation (7) by means of a genetic optimization algorithm.

2.3. Genetic Optimization Algorithm

Genetic optimization algorithms belong to the class of derivative-free optimizers, which is
surveyed and benchmarked numerically in (Rios and Sahinidis 2013) (including the CMA-ES and
DAKOTA/EA genetic algorithms).

The idea of genetic (or evolutionary) optimization algorithms is to evolve a population
of individuals through cycles of modification (mutation) and selection in order to improve the
performance of its individuals, as measured by a given fitness function. In addition, so-called crossover
is used to enhance the search in parameter space. To the best of our knowledge, evolutionary algorithms
were first explicitly introduced in (Turing 1950, chp. 7 Learning Machines, p. 456). See the classical
monographs by the authors of (Back 1996; Goldberg 1989; Holland 1975). They then experienced
the general artificial intelligence disgrace and comeback before and after the 2000s. However, they
always stayed an active field of research, seen from different perspectives, such as particle filtering,
MCMC, or sequential monte carlo methods (see (Del Moral 2004)). Beyond its financial applications
reviewed at the end of Section 1, genetic optimization has been used in many different fields, such as
mechanics (Verma and Lakshminiarayanan 2006), calibration of neural networks hyperparameters
(Young et al. 2015), or operational research (Larranaga et al. 1999).

Genetic optimization offers no theoretically guaranteed rate of convergence, but it is often
found the most efficient approach in practice for dealing with hybrid (partly continuous,
partly discrete/combinatorial, hence without well defined gradient and Hessian), nonconvex
(in the sense of one local minimum, at least, for each set of values of the discrete parameters),
and high-dimensional optimization problems such as Equation (7).

At each iteration, the fitness f (x) is computed for each individual (also named chromosome)
x of an initial population (a set of chromosomes). The values returned by the objective function
are used for selecting chromosomes from the population. Among numerous selection methods
(see (Blickle and Thiele 1995)), we can quote fitness proportionate selection, ranking proportionate
selection (in order to avoid the overrepresentation of the chromosomes with the highest fitness values),
and tournament selection (selection of the best among randomly drawn chromosomes). The common
intention of these selection methods is to sample in priority individuals with the best fitness values.
A genetic algorithm is dubbed elitist if the selection operator always keeps the chromosome with the
best fitness value. Otherwise (as in our case), there is no guarantee that the best visited chromosome is
contained in the population corresponding to the final iteration.

The mutation stage is intended to maintain some diversity inside the population, in order
to avoid the algorithm being trapped by local minima. A mutation randomly changes one gene,
i.e., one component (e.g., in our case, the notional of a new swap) of a chromosome.
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Selection and mutation play opposite roles: a focus on fitness leads to a quicker convergence
toward a local minimum; conversely, a too heavily mutated population results in a slow
random research.

In addition, a crossover operator plays the role of a reproduction inside the algorithm.
The principle of crossover is to build two children chromosomes from parent chromosomes.
A distribution (often the same as the one used for selection) is chosen for picking chromosomes
from a population of the previous iteration and for recombining pairs of selected chromosomes.
Children share gene values of their parents but a gene value from one parent cannot be inherited by
both children. A crossover mask decides for each gene in which parent a child can copy the gene
version. One of the most popular crossover masks is single point crossover (see Appendix A).

The role of the crossover operator is paradoxical, as crossover can be seen as a combination of
mutations, which increase the genetic diversity, while crossover also promotes chromosomes with
higher fitnesses. Crossover aims at benefiting of a presupposed proximity of best solutions.

The above operators are applied iteratively until a suitable stopping condition is satisfied.
The most basic one is a fixed number of iteration, but customized criteria may also be used to limit
further the number of iterations. For instance, the algorithm can be interrupted when the minimum
(or sometimes even the maximum) fitness value within the population at the beginning of an iteration
is below a predefined threshold.

See Algorithm 1 and Figure 1 for the algorithm in pseudo-code and skeleton forms, denoting by
rm the mutation rate, i.e., the percentage of individuals in a population affected by a mutation, and by
rc the crossover rate, i.e., the percentage of individuals affected by crossover recombination.

The behavior of a genetic optimization algorithm is essentially determined by the choice of the
selection operator, the number of solutions affected by a mutation, and the number of chromosomes
affected by a crossover. See the work of Tabassum and Kuruvilla (2014) for a user guide to the main
genetic algorithm ingredients and Carvalho et al. (2011) for applications of genetic optimization
algorithms to benchmark functions.

Algorithm 1: Pseudo-code of an optimization genetic algorithm
Data: An initial population Pinit of size P and the associated fitness values for each

chromosome, a crossover rate rc, and a mutation rate rm.
Initialization; while a stopping condition is not satisfied do

Save b(1− rc) ∗ Pc chromosomes, chosen by an appropriate selection method from Pinit,
in Pselected ; Save brc ∗ Pc chromosomes, chosen by an appropriate selection method from
Pinit, in Pcrossover ; Recombine, uniformly without replacement, b rc∗P

2 c pairs from
Pcrossover; Merge Pcrossover and Pselected in Pmutated; Mutate randomly brm ∗ Pc in Pmutated ;
for Each chromosome c in Pmutated do

Compute the fitness value of c;
end

end
Result: A new population and the associated fitness values.
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Start

Sampling

Fitness Evaluation

Termination test

Crossover Selection

Mutation

Stop

Population of size P

Population with
associated fitness values.

Population of b rc∗P
2 c

recombined pairs
Selected population

of size b(1 − rc) ∗ Pc

Population with brm ∗ Pc
mutated chromosomes

Figure 1. Skeleton of an optimization genetic algorithm.

3. Acceleration Techniques

Without suitable acceleration techniques, the above CVA compression approach is not workable in
real time on realistic banking portfolios: in the examples of Section 4, a naive (desktop) implementation
requires about 20 h of computations. This becomes even more problematic for hyperparameters
tuning (such as α, crossover rate rc, etc.). Hyperparameters are generally chosen with grid search,
random search (see (Bergstra et al. 2011)), Bayesian optimization (see (Snoek et al. 2012)) or even
evolutionary algorithms again (see (Young et al. 2015)). In any case, their calibration is greedy in terms
of overall genetic algorithm execution.

In this section, we deal with the two following acceleration techniques, which may be
used simultaneously:

• a MtM store-and-reuse approach for trade incremental XVA computations, speeding up the
unitary evaluation of the fitness function; and

• a parallelization of the genetic algorithm accelerating the fitness evaluation at the level of
the population.
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3.1. MtM Store-and-Reuse Approach for Trade Incremental XVA Computations

Most of the time in portfolio-wide XVA calculations is spent in clean valuation (i.e., mark-to-market
MtM) computations: by comparison, simulation of the risk factors or of the collateral is typically negligible.

Our case study is based on the CVA metric. As observed after Equation (6), by lack of
trade-additivity of the (portfolio-wide) CVA, trade incremental XVA computations require two
portfolio-wide calculations: one without the new trade and another one including it. However,
it is possible to store the (including MtM) paths simulated for the initial portfolio and reuse them
each time we want to compute a new trade incremental XVA. Then, each trade incremental XVA
computation only requires the forward simulation of the mark-to-market process of the new deal.

The corresponding MtM store-and-reuse approach to trade incremental XVA computations
circumvents repeated valuations at the cost of disk memory. It exploits the trade additivity of
clean valuation by recording the MtM paths of the initial portfolio on a disk. For every new
deal, the augmented portfolio exposure is obtained by adding, along the paths of the risk factors,
the mark-to-market of the initial portfolio and of the new deal. This augmented portfolio exposure is
then plugged into the XVA engine.

An optimally implemented MtM store-and-reuse approach brings down trade incremental XVA
computations to the time of generating the clean price process of the trade itself, instead of the one of
the augmented portfolio as a whole. Another advantage of this approach is its compliance with desk
segregation: As far as clean valuation is concerned, the XVA desks just use the pricers of the clean
desks. Hence, the MtM process plugged into the XVA computations is consistent with the one used for
producing the market risk hedging sensitivities.

However, such an approach comes at the costs of memory disk (obviously), but also data slippage
as, for consistency, it requires anchoring all the trade incremental XVA computations at the market
data and parameters corresponding to the generation of the initial portfolio exposure. In practice,
an MtM process at the overall portfolio level can only be generated during night runs, between two
market sessions.

Moreover, we have to distinguish between first-order (or first-generation) XVAs, which are options
on the MtM process, and higher-order (or second-generation) XVAs (see (Crépey et al. 2019)), which can
be viewed as compound options of order two or more on the MtM process. Second-generation XVAs
may also involve conditional risk measures, e.g., conditional value-at-risk for the dynamic initial
margin calculations that are required for MVA2 computations, as opposed to conditional expectations
only in the case of first generation XVAs.

A Monte Carlo simulation diffuses risk factors X (such as interest rates, credit spreads, etc.) along
drivers Z (such as Brownian motions, Poisson processes, etc.), according to a model formulated as a
Markovian system of stochastic differential equations, starting from some given initial condition X0

for all risk factors, suitably discretized in time and space. Modulo calibration, X0 can be identified
with the time 0 market data. We denote by Ŷ a suitable estimate of a process Y at all (outer) nodes of a
Monte Carlo XVA engine. In particular, M̂tM is the fully discrete counterpart of the MtM process of
the initial portfolio, namely the clean value of the portfolio at future exposure dates in a time grid and
for different scenario paths.

At first sight, an MtM store-and-reuse approach is unsuitable for second-order XVAs, such as
the MVA and the KVA (but also the CVA in the case of a CSA where the bank receives so-called
initial margin), Indeed, in their case, the principle of swapping computations against storage would
require to store not one portfolio exposure M̂tM, but a whole family of resimulated, future conditional
portfolio exposures, (at least, over a certain time horizon), which seems hardly feasible in practice.
However, even in the case of second-order XVA metrics, an MtM store and reuse approach can be

2 For details regarding the initial margin and the MVA, see (Crépey et al. 2019, sets. 5.2 and 6.4).
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implemented with the help of appropriate regression techniques (at the cost of an additional regression
error; see (Crépey et al. 2019)).

Formalizing the above discussion, the conditions for a straightforward and satisfactory application
of the MtM store-and-reuse approach to a given XVA metric are as follows, referring by indices init,
incr, and augm to the initial portfolio, the new deal, and the augmented portfolio:

1. (No nested resimulation of the portfolio exposure required) The formula for the corresponding
(portfolio-wide, time-0) XVA metric should be estimatable without nested resimulation, only based
on the portfolio exposure rooted at (0, X0). A priori, additional simulation level makes impractical
the MtM store-and-reuse idea of swapping execution time against storage.

2. (Common random numbers) M̂tM
incr

should be based on the same paths of the drivers as M̂tM
init

.
Otherwise, numerical noise (or variance) would arise during M̂tM aggregation.

3. (Lagged market data) M̂tM
incr

should be based on the same time, say 0, and initial condition

X0 (including, modulo calibration, market data), as M̂tM
init

. This condition ensures a consistent

aggregation of M̂tM
init

and M̂tM
incr

into M̂tM
augm

.

These conditions have the following implications:

1. The first seems to ban second-order generation XVAs, such as CVA in presence of initial margin,
but these can in fact be included with the help of appropriate regression techniques.

2. The second implies storing the driver paths that were simulated for the purpose of obtaining

M̂tM
init

; it also puts a bound on the accuracy of the estimation of MtMincr, since the number
of Monte Carlo paths is imposed by the initial run. Furthermore, the XVA desks may want to
account for some wrong way risk dependency between the portfolio exposure and counterparty
credit risk (see Section 2.1); approaches based on correlating the default intensity and the market
exposure in Equation (5) are readily doable in the present framework, provided the trajectories of
the drivers and/or risk factors are shared between the clean and XVA desks.

3. The third induces a lag between the market data (of the preceding night) that are used in the

computation of M̂tM
incr

and the exact MtMincr process; when the lag on market data becomes
unacceptably high (because of time flow and/or volatility on the market), a full reevaluation of
the portfolio exposure is required.

Figure 2 depicts the embedding of an MtM store-and-reuse approach into the trade incremental
XVA engine of a bank.

Clean Pricers

Clean desks

Aggregate

XVA desks

XVA Engine X̂VA
augmDataBase

Market Data Database

Initial run: M̂tM
init

,
Ẑinit

Incremental run:
M̂tM

init
, Ẑinit

M̂tM
augm

, Ẑaugm

Incremental run:
M̂tM

incr
, Ẑincr

Incremental run : Ẑinit

Data from the night

Figure 2. MtM store-and-reuse implementation of a trade incremental XVA engine with drivers Z.
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3.2. Parallelization of the Genetic Algorithm

Most of the XVA compression computational time is spent in the evaluation of the incremental
XVA metric involved in the fitness criterion visible in Equation (7). The MtM store-and-reuse approach
allows reducing the complexity of such trade incremental XVA computations to trade (as opposed to
portfolio) size. However, to achieve XVA compression in real time, this is not enough; another key step
is the parallelization of the genetic algorithm that is used for solving Equation (7).

The genetic algorithm is a population based method, which implies to maintain a population
of individuals (tentative new deals) through each iteration of the algorithm. The calculation of the
objective function, for a given individual, does not depend on the fitness value of the other individuals.
Therefore we can vectorize the computation of the fitness values within the population. Provided a
suitable parallel architecture is available, a perfectly distributed genetic algorithm makes the execution
time independent of the population size P (see Algorithm 1 and Figure 1).

This makes an important difference with other metaheuristic optimization algorithm, such as
simulated annealing or stochastic hill climbing, which only evaluate one or very few solutions per
iteration, but need much more iterations to converge toward a good minimum (see (Adler 1993;
Janaki Ram et al. 1996)). As discussed in (Pardalos et al. 1995), the above parallelization of the fitness
function evaluation, for a given population, should not be confused with a parallel genetic algorithm
in the sense of an independent evolution of several smaller populations.

In our context, where individuals only represent incremental trades, a parallelization of population
fitness evaluation is compatible with an MtM store-and-reuse approach for the trade incremental XVA
computations. Combining the two techniques results in an XVA compression time independent of the
sizes of the initial portfolio of the bank and of the population of the genetic algorithm used for the
optimization, which represents an XVA compression computation time gain factor of the order of

Number of trades in the initial portfolio× population size.

4. Case Study

In the remainder of the paper, we present CVA compression results on real swap portfolios3,
using an additional swap for the CVA compression. We aim at addressing questions such as:

• Which type of swap is suitable for achieving the compression of the CVA, in the context of a given
initial portfolio?

• How does the compression distort the portfolio exposure, with or without penalization?

To ease the implementation of the MtM store-and-reuse approach, we assume no CSA (cf. Section 3.1).

4.1. New Deal Parameterization

A swap is parameterized by its notional, its maturity, its direction, and its currency.
The quantitative parameters are encoded through grids of values:

• Notional: From 105 to 107 by step of 105 dollars.
• Maturity: From 1 to 20 years by step of 1 year, 30 years and 50 years.

The qualitative parameters are encoded as enumerations of values:

• Currency: Euro, US dollar, GBP or Yen.
• Direction: A binary variable for payer or receiver.

3 The underlying interest rate and FX models are proprietary and cannot be disclosed in the paper. We use a deterministic
credit spread model for the counterparty, calibrated to the CDS term structure of the latter.
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Moreover, we impose the additional swap to be at par so that it can be entered at no cost, which is
equally desirable from the bank and the client perspectives.

The above parameterization defines a discrete search space A with 100 × 22 × 4 × 2
= 1.76× 104 elements.

4.2. Design of the Genetic Algorithm

We address the optimization problem in Equation (7) by a genetic algorithm as per Section 2.3.
The new deal space A in Equation (7) is viewed as a space of chromosomes x, the genes (deal
parameters) of which evolve randomly along the iterations of the algorithm as detailed in Section 2.3.

In the theoretical literature on genetic algorithms, an individual is represented as a bit string.
In practice, however, bit string representation of parameters does not give enough control on the
mutation distribution. Namely, in bit string representation, mutations affect all bits uniformly,
whereas we might want to mutate some parameters more frequently (the quantitative parameters,
in particular, as the algorithm tends to quickly identify the relevant values of the qualitative
parameters). Hence, we rather model our individuals x by a variable string, a choice also made
in (Kondratyev and Giorgidze 2017).

We choose rank proportionate selection to avoid fitness scaling issues. More precisely, if we have
a population P = {1, . . . , P} of P individuals and the associated fitnesses ( fi)i∈P , then the probability
to select chromosome i is

pi =
2rank( fi)

P(P + 1)
,

where rank is a function that ranks chromosomes according to their fitness value (returning one for the
highest value, in the context of a minimization problem).

Regarding the crossover operator, we use a uniform crossover mask, i.e., the choice of gene
inherited from one parent or another is drawn with a uniform probability.

Regarding mutations, the probability to mutate a gene is proportional to the number of alleles
(values) that it can take. The mutation operator then selects uniformly a new gene allele (value).

In our experiments, the notional of the new swap can take 100 different values, its currency 4
values, its position 2 values, and its maturity 22 values. Hence, when a chromosome is selected for
mutation, the probability to mutate each of its genes is equal to 100

128 for the notional, 22
128 for the maturity,

4
128 for the currency, and 2

128 for the position. Indeed, a more frequent mutation of notional and
maturity parameters are desirable. Diversity for currency and position is ensured at the initialization
of the algorithm (with a large population) and maintained across the iterations thanks to the crossover
operator. A prerequisite for a successful implementation is a reasonable specification of the search
space A.

Hyperparameters strongly impact the behavior of the algorithm. In the case of XVA compression,
which is time-consuming, searching good values for the hyperparameters by a grid search method
would be too demanding computationally. In our numerics, the mutation rate rm is set to 20% and
the crossover rate rc to 50%. In the genetic algorithms literature, the crossover rate is often close to
one, but for problems with few genes (i.e., components of x, or parameters, only four in our case), it is
recommended to select a smaller value.

With parallelization in mind (see Section 3.2), we prefer to decrease the number of iterations
even if it implies exploring more solutions. We set the genetic algorithm population size to P = 100
individuals and we limit the number of iterations to 5. Hence, we value the fitness function on
600 tentative new swaps x.

4.3. Results in the Case of Payer Portfolio Without Penalization

First, we consider a portfolio only composed of payer swaps. The expected exposure (EE) and the
expected positive and negative exposures (EPE and ENE), i.e., EMtMt and EMtM±t , are shown as a
function of time t in Figure 3, which illustrates the asymmetric market risk profile of the portfolio.
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Figure 3. Market risk profile of the portfolio (payer portfolio without penalization).

Our first point is to verify that the algorithm without penalization, i.e., for α = 0 in Equation (7),
will select a receiver swap with a maturity comparable to those of the swap of the initial portfolio.

Table 1 reports after each iteration the three best solutions (from top to bottom) ever found since
the beginning of the algorithm (in terms of the fitness criterion in Equation (7) with α = 0, i.e., ∆CVA).
A negative incremental CVA means that the new swap decreases the counterparty risk of the bank.
The initial portfolio CVA amounts to 34,929e. We also report the |DV01|s of the augmented portfolios
in order to be able to assess the impact of the penalization in our next experiment.

Table 1. Evolution of optimal solutions after each iteration (payer portfolio without penalization).

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4,800,000 1.6471 GBP Receive −8019 23.0 4484
10 4,700,000 1.6471 GBP Receive −7948 22.8 4390
10 4,600,000 1.6471 GBP Receive −7872 22.5 4297

1
17 5,600,000 1.4623 EUR Receive −17,249 49.4 8648
12 5,400,000 1.7036 GBP Receive −9163 26.2 5957
16 3,900,000 0.6377 JPY Receive −8760 25.1 6137

2
14 6,600,000 1.3416 EUR Receive −21,680 62.1 8626
17 5,100,000 1.4623 EUR Receive −19,729 56.5 7875
17 5,600,000 1.4623 EUR Receive −17,249 49.4 8648

3
14 6,600,000 1.3416 EUR Receive −21,680 62.1 8626
17 5,100,000 1.4623 EUR Receive −19,729 56.5 7875
17 5,600,000 1.4623 EUR Receive −17,249 49.4 8648

4
17 3,300,000 1.4623 EUR Receive −27,300 78.2 5096
12 6,100,000 1.2203 EUR Receive −25,382 72.7 6959
11 5,600,000 1.147 EUR Receive −23,009 65.9 5908

5
17 3,300,000 1.4623 EUR Receive −27,300 78.2 5096
12 6,100,000 1.2203 EUR Receive −25,382 72.7 6959
12 5,100,000 1.2203 EUR Receive −25,264 72.3 5818

As shown in Figure 4, a stabilization of the algorithm is observed after four iterations, on a new
swap leading to a CVA gain of about 27,300e, i.e., about 78% of the initial portfolio CVA. The maturity
and the notional are found the two most sensitive genes in the optimization. The maturity of the swap
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is chosen by the algorithm so as to reduce the exposure peak: The decrease of the exposure in the first
eight years of the portfolio is visible in terms of EPE profile in Figure 5 and of CVA profile4 in Figure 6.

Figure 4. Fitness value as a function of iteration number (payer portfolio without penalization).

Figure 5. Market risk profile of the portfolio before and after optimization (payer portfolio
without penalization).

4 Term structure obtained by integrating the EPE profile against the CDS curve of the counterparty from time 0 to an increasing
upper bound t ≤ T (cf. Equation (3)).
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Figure 6. CVA profile before and after optimization (payer portfolio without penalization).

4.4. Results in the Case of Payer Portfolio With Penalization

We keep the same initial portfolio but we now penalize our objective function by the |DV01| of
the new swap, setting the regularization parameter α to one in Equation (7). As shown below, this
choice achieves a good balance between the two terms ∆CVA and αDV01 in Equation (7).

In the present context of a payer portfolio, |DV01| control and CVA gain are two antagonistic
targets. This may explain why the algorithm seems to struggle in finding a stable solution: indeed,
the last iteration still decreases the fitness significantly (see Figure 7).

Figure 7. Fitness as a function of iteration number (payer portfolio with penalization).

During the execution (see Table 2), the algorithm first optimizes the CVA and then (in iteration 5)
reduces the |DV01|. This is due to the difference of order of magnitude between ∆CVA and |DV01|
(recalling α = 1): ∆CVA is more important, hence the algorithm only takes care of the penalization
once ∆CVA has been compressed.
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Table 2. Evolution of optimal solutions after each iteration (payer portfolio with penalization).

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4,500,000 1.6471 GBP Receive −7790 22.3 4218
10 4,600,000 1.6471 GBP Receive −7871 22.5 4311
10 4,700,000 1.6471 GBP Receive −7947 22.8 4405

1
17 5,600,000 1.4731 EUR Receive −16,892 48.4 8706
10 4,500,000 1.6471 GBP Receive −7790 22.3 4217
10 4,600,000 1.6471 GBP Receive −7871 22.5 4311

2
14 6,600,000 1.3336 EUR Receive −21,888 62.7 8654
17 5,600,000 1.4731 EUR Receive −16,892 48.4 8706
17 6,100,000 1.4531 EUR Receive −15,038 43.1 9466

3
14 6,600,000 1.3336 EUR Receive −21,888 62.7 8654
17 5,600,000 1.4731 EUR Receive −16,892 48.4 8706
9 4,500,000 0.9584 EUR Receive −10,454 29.9 3945

4
10 6,600,000 1.3336 EUR Receive −21,888 62.7 8654
11 6,600,000 1.3999 EUR Receive −18,825 53.9 9207
17 5,600,000 1.4731 EUR Receive −16,892 48.4 8706

5
11 2,900,000 1.3811 EUR Receive −25,059 71.7 4039
18 1,500,000 1.48 EUR Receive −18,258 52.3 2442
17 1,500,000 1.4531 EUR Receive −16,553 47.4 2327

In the end, the gains in CVA are of the same order of magnitude as in the case without penalization
(92% of the CVA gain without penalization), but for about 20% of |DV01| less than before. The second
and third best solutions also achieve a great CVA gain, while diminishing the |DV01| by a factor
three with respect to the nonpenalized case. By comparison with the unpenalized case (cf. Tables 1
and 2), the trades identified by the algorithm have a lower maturity or a smaller notional, hence a
smaller |DV01|.

Figures 8 and 9 show the corresponding market risk and CVA profiles before and after
the optimization.

Figure 8. Market risk profile of portfolio before and after optimization (payer portfolio with penalization).
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Figure 9. CVA profile before and after optimization (payer portfolio with penalization).

4.5. Results in the Case of a Hybrid Portfolio With Penalization

Next, we challenge our algorithm with a more balanced initial portfolio, as shown in Figure 10
(to be compared with Figure 3). The initial CVA is now 6410e. We set the regularization parameter α in
Equation (7) to 0.3, as opposed to 1 in the previous case, in view of the lower CVA of the initial portfolio.

Figure 10. Market risk profile of the portfolio (hybrid portfolio with penalization).

As visible in Table 3 and Figure 11, the stabilization of the algorithm occurs after three iterations,
showing that, for the hybrid portfolio, |DV01| penalization and ∆CVA play less antagonistic roles.
This is obtained by a relatively small notional and a maturity limited to 9 years, versus 11 years in the
previous case of a payer portfolio with penalization. The corresponding market risk and CVA profiles,
before and after the optimization, are displayed in Figures 12 and 13. Figure 12 explains the choices
operated by the algorithm: as we restrict our incremental strategy to one swap, the algorithm limits
the EPE until the first positive peak before 2026. A better strategy, but one outside our search space A,
would be to add a second swap with entry date in 2028 and end date in 2037.
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Table 3. Evolution of optimal solutions after each iteration (hybrid portfolio with penalization).

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
1 6,000,000 0.025 JPY Receive 14 -0.2 609
1 6,100,000 0.025 JPY Receive 14 −0.2 619
1 6,300,000 0.025 JPY Receive 14 −0.2 640

1
8 1,500,000 0.8565 EUR Receive −1905 29.7 1177
6 2,300,000 0.586 EUR Receive −1166 18.2 1370
9 700,000 1.608 GBP Receive −820 12.8 595

2
8 1,500,000 0.8565 EUR Receive −1905 29.7 1177
6 2,300,000 0.586 EUR Receive −1166 18.2 1370
9 700,000 1.608 GBP Receive −82 12.8 595

3
9 1,900,000 0.9584 EUR Receive −2284 35.6 1665
8 1,500,000 0.8565 EUR Receive −1905 29.7 1177
7 2,700,000 0.7225 EUR Receive −1628 25.4 1865

4
9 1,900,000 0.9584 EUR Receive −2284 35.6 1665
8 1,500,000 0.8565 EUR Receive −1905 29.7 1177
7 2,700,000 0.7225 EUR Receive −1628 25.4 1865

5
9 1,900,000 0.9584 EUR Receive −2284 35.6 1665
8 1,500,000 0.8565 EUR Receive −1905 29.7 1177
9 2,500,000 0.9584 EUR Receive −1942 30.3 2192

Figure 11. Fitness value as a function of iteration number (hybrid portfolio with penalization).
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Figure 12. Market risk profile of portfolio before and after optimization (hybrid portfolio with penalization).

Figure 13. CVA profile before and after optimization (hybrid portfolio with penalization).

5. Conclusions

There exists a trade-off between CVA compression and DV01 penalization, which have
antagonistic influences on the incremental exposure. Provided the search space for incremental
trades is adequately chosen and parameterized, genetic optimization can result in significant CVA
gains and, under DV01 penalization, this can be achieved without too much impact on the market risk
of the bank position.

On the portfolios considered in our case studies, with 10–20 trades, a basic XVA compression run
on a standard PC without the acceleration techniques of Section 3 takes about 20 h. The time gain
resulting from an MtM store-and-reuse implementation of the trade incremental XVA computations
as per Section 3.1 primarily depends on the size of the initial portfolio, but also on the maturity, and
complexity more generally (vanilla vs. callable or path-dependent, etc.), of the constituting trades.
Likewise, the time gain resulting from a parallel implementation of the genetic algorithm as per
Section 3.2 primarily depends on the population size P, but it can be deteriorated by grid latency,
hardware limitation, or data flow management features. In our simulations, an MtM store-and-reuse
implementation of the trade incremental XVA computations reduces the XVA compression time to
about 7 h. A further parallel implementation of the genetic optimization algorithm lowers the execution
time to about 1 h.

The case study of this paper is only a first step toward more complex optimizations. One could
thus enlarge the search space with, e.g., crosscurrency swaps. In this case, the market risk penalization
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should be revisited to penalize other risk factors, beyond interest rate risk that is already accounted
for by |DV01|. The penalization could also be refined with a focus on forward mark-to-market,
i.e., market risk in the future (our current |DV01| penalization only controls spot market risk).

CVA compression strategies involving several additional trades could be implemented. A first step
toward such a multi-variate, multi-trade, compression would be an iterated application of single-trade
XVA compressions, whereby, after each compression, the optimally augmented portfolio becomes the
initial portfolio for the next compression. The benefit of such an iterative approach would be the ability
to work with a search space A (or a sequence of them) of constant size, as opposed to a global search
space A that would need to grow exponentially with the number of new trades in the case of a single
multi-trade compression cycle.

Additional XVA metrics, and ultimately the all-inclusive XVA add-on in Equation (1), should
be included in the compression (which, in particular, would allow one to identify possible XVA cuts
across different netting sets).
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Abbreviations

The following abbreviations are used in this manuscript:

CDS Credit default swap
CVA Credit valuation adjustment
DV01 Dollar value of an 01
EE Expected exposure
EPE Expected positive exposure
ENE Expected negative exposure
FVA Funding valuation adjustment
KVA Capital valuation adjustment
MtM Mark-to-market
MVA Margin valuation adjustment
OIS Overnight indexed swap
OTC Over-the-counter
XVA Generic “X” valuation adjustment

Appendix A. Single Point Crossover

Let (p1, p2) be a pair of chromosomes chosen as parents and let (c1, c2) denote the children.
We assume that each chromosome has four genes A, B, C, D, that p1 has gene versions {A1, B1, C1, D1}
and p2 has gene versions {A2, B2, C2, D2}. For a single point crossover, we draw uniformly an integer i
such the first i genes for c1 are inherited from p1 and the remaining genes are transferred from p2 to c1,
and symmetrically so for c2. For instance, if we draw i = 2, then c1 has gene versions {A1, B1, C2, D2},
and c2 has gene values {A2, B2, C1, D1}.
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