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Abstract

:

Two insurance companies I1,I2 with reserves R1(t),R2(t) compete for customers, such that in a suitable differential game the smaller company I2 with R2(0)<R1(0) aims at minimizing R1(t)−R2(t) by using the premium p2 as control and the larger I1 at maximizing by using p1. Deductibles K1,K2 are fixed but may be different. If K1>K2 and I2 is the leader choosing its premium first, conditions for Stackelberg equilibrium are established. For gamma-distributed rates of claim arrivals, explicit equilibrium premiums are obtained, and shown to depend on the running reserve difference. The analysis is based on the diffusion approximation to a standard Cramér-Lundberg risk process extended to allow investment in a risk-free asset.
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1. Introduction


Insurance premiums are typically calculated based on the expected loss, with an added loading depending on distributional properties of the risk (the expected value principle, variance principle, utility premium, etc.). An alternative to these static premium principles is to consider the premium as a dynamic control variable of the insurance company, as suggested in Asmussen et al. (2013) and Thøgersen (2016). In this approach, the individual customer’s problem of deciding whether or not to insure at any given premium offered is modelled explicitly, and the premium is chosen optimally by the insurance company, balancing the resulting portfolio size against revenue per customer in order to minimize ruin probability. The analysis is based on the diffusion approximation to a standard Cramér-Lundberg risk process, extended to allow investment in a risk-free asset. In Asmussen et al. (2019), this idea is extended to a situation where insurance companies compete against each other, and Nash equilibria in premium controls of the resulting stochastic differential game are determined under suitable conditions. However, in some cases, no Nash equilibrium exists.



In the present paper, we present a parallel to this analysis dealing with product differentiation, with insurance companies offering different deductibles, and accounting for the possibility of Stackelberg equilibria. Two insurance companies compete against each other such that one company is the leader, choosing its premium first, and the other company is the follower, choosing its premium in response to the leader’s. The setting is slightly modified relative to that in Asmussen et al. (2019), in that we do not consider search and switching costs when modelling the customer’s choice between insurance products. Our main contributions are, first, to establish the existence of Stackelberg equilibrium under suitable conditions on this strategic game between insurance companies, and to identify the restrictions under which this reduces to the special case of Nash equilibrium. To our best knowledge, this adds at least the following new features to the literature on game theory in insurance: an example of Stackelberg equilibrium in premium controls; a finding of dependence of optimal premiums on reserves; and an occurrence of the phenomenon of adverse selection in a stochastic differential game between insurance companies, i.e., a lower premium charged increases portfolio size but leaves the average customer riskier to the company.



In the literature following Taylor (1986), the individual insurance company is frequently modelled as setting its premium in response to the aggregate insurance market, without explicitly considering the analogous behavior of the other companies constituting this market and the resulting strategic interactions. Examples include Taylor (1987) on marginal expense rates, Emms and Haberman (2005) generalizing the deterministic discrete-time analysis of Taylor to a stochastic continuous-time model, Pantelous and Passalidou (2013, 2015) using stochastic demand functions in discrete time, and Emms (2007) and Emms et al. (2007), adopting stochastic processes for the market average premium and demand conditions in continuous time. Pantelous and Passalidou (2017) recently found the optimal premium to depend on the company’s reserve in a competitive environment in the sense of this literature, but, again, this is not explicitly a game-theoretic equilibrium in the sense of Nash or Stackelberg, which is where we obtain dependence on reserves.



Game-theoretic aspects arise if the other insurers in the market in fact do react to the policy of the individual insurer, with the latter explicitly taking this into account in setting its policy. Market reaction to the individual insurer’s premium is considered by Emms (2011). Explicit games between insurance companies have been studied using non-cooperative game theory, where Cournot games involve volume controls, see, e.g., Powers et al. (1998), whereas premium controls correspond to Bertrand games, e.g., the one-period games in Polborn (1998) and Dutang et al. (2013), who note that one aspect missing in their analysis is adverse selection among policyholders—our analysis includes this. Emms (2012) and Boonen et al. (2018) do consider continuous-time differential games in premium controls, but again based on Taylor (1986) type demand functions of own and market average premium. Boonen et al. (2018) in addition present a continuous-time extension of a one-period aggregate game of Wu and Pantelous (2017), involving a price elasticity of demand or market power parameter, and the individual insurer’s payoff depending on own premium and an aggregate of market premiums. The models are deterministic and open-loop Nash equilibria are determined. In contrast, rather than assuming demand functions, we model the customer’s choice of where to insure directly and find closed-loop or feedback Nash and Stackelberg equilibria in the resulting continuous-time strategic stochastic differential game between insurance companies. The roles of product differentiation via deductibles, adverse selection, and separating equilibrium in our solution are reminiscent of Rothschild and Stiglitz (1976), one of the first applications of game theory to competition in insurance premiums.



Besides competition in premiums, game theory has found several other applications in insurance, starting with Borch (1962) on risk transfer. Zeng (2010), Taksar and Zeng (2011), and Jin et al. (2013) consider Nash equilibria of stochastic differential games between insurance companies in reinsurance strategies. The analysis has been extended to non-zero sum games and additional investment controls by Bensoussan et al. (2014), nonlinear risk processes by Meng et al. (2015), ambiguity-aversion by Pun and Wong (2016), and insurance companies with different levels of trust in information by Yan et al. (2017). Stackelberg-type equilibria of stochastic differential games have been studied in Lin et al. (2012), where an insurance company selects an investment strategy while the market (or nature) selects a worst-case probability scenario, and in Chen and Shen (2018), where the game is between insurer and reinsurer, but not as here in a game between insurance companies. For some more remote references, see Asmussen et al. (2019). Stackelberg games were introduced by von Stackelberg (1934), and the theory of stochastic differential Stackelberg games is considered by Yong (2002), Bensoussan et al. (2015), and Shi et al. (2016).



Premium competition between insurance companies is likely to arise because the premium charged may affect both portfolio size and revenue per customer. Without market frictions or product differentiation, it might be expected that all customers would simply insure at the company offering the lowest premium. However, this may not be the case in the presence of market frictions. Thus, when choosing which insurance company to contact, customers may face different costs of search and switching, transportation, or information acquisition, or they may simply exhibit differences in preferences. Search frictions have been studied in economics by Diamond (1982), Mortensen (1982), Mortensen and Pissarides (1994), and others. Brown and Goolsbee (2002) studied the effect of internet search on life insurance premiums in US data. Information frictions have been modelled as differences in the cost of obtaining information, e.g., by Salop and Stiglitz (1977). In Asmussen et al. (2019) we study premium competition between insurance companies in the presence of market frictions. In the present paper, we consider instead product differentiation, and for simplicity abstract from market frictions. With the leading example of car insurance in mind, product differentiation may come in several forms. Here, we focus on different deductibles. Other possibilities would be bonus-malus systems, see Denuit et al. (2007), or proportional compensation in deductibles, similar to reinsurance arrangements, see Albrecher et al. (2017).



We consider the case of two insurance companies, referred to as I1 and I2. We allow for product differentiation by letting Ii offer an insurance contract with fixed deductible Ki for a premium pi, i=1,2. The deductible measures the quality of the insurance product, so the company offering the lower deductible will be able to charge a higher premium.



We assume that there is a financial market consisting of a single risk-free asset with dynamics dBt=rBtdt, where r is the risk-free interest rate. All excess wealth of customers and reserve of insurers is invested in this asset. There are N customers in the insurance market. We assume that all customers must insure at either I1 or I2 and focus the analysis on the choice between the two companies. This involves several characteristics of both customer and insurance product. We pay special attention to product differentiation and customer risk.



The characteristics of an individual customer are unknown to the insurance companies, but their probability distribution known. Based on this distribution, the companies can determine the expected portfolio sizes ni(p1,p2) and average claim frequencies αi(p1,p2) in their portfolios as functions of the premiums offered. The gross premium rate of Ii is then ci(p1,p2)=ni(p1,p2)pi, and the aggregate claim frequency is λi(p1,p2)=ni(p1,p2)αi(p1,p2).



Let r0,i be the initial reserve of company i. For given premiums (p1,p2), the reserve of Ii is governed by the dynamics


dRi(t)=(μi(p1,p2)+rRi(t))dt+σi(p1,p2)dWi(t),



(1)




where (W1,t)t≥0 and (W2,t)t≥0 are independent Wiener processes, and


μi(p1,p2)=ci(p1,p2)−λi(p1,p2)E[(Z−Ki)+]=ni(p1,p2)pi−αi(p1,p2)E[(Z−Ki)+],σi2(p1,p2)=λi(p1,p2)E[(Z−Ki)+2]=ni(p1,p2)αi(p1,p2)E[(Z−Ki)+2].











The random variable Z represents claim sizes, assumed to be independent and identically distributed. Thus, (1) can be considered as a diffusion approximation to the Cramér-Lundberg process extended to the case where the insurance companies have access to investment in a risk-free asset. Such diffusion approximations have been used widely, based on the arguments of Iglehart (1969).



The aim is to derive value functions for the insurance companies, and determine game-theoretic equilibria. We consider here what we call push-pull competition. We assume that the largest company in terms of initial capital, I1, selects its premium to try to push the small company away, while the small company tries to pull closer to the large company. For K1>K2 and I2 the leader choosing its premium first, we derive conditions for a Stackelberg equilibrium. The stronger feature of a Nash equilibrium may also occur, and we give conditions for that, but our numerical examples indicate that Stackelberg is the more typical case. Subsequently, for completeness, we briefly sketch the solution in the opposite case, K1<K2. The claim frequencies of individual customers are considered random to the insurance company, and we obtain explicit solutions for equilibrium premiums in the case of gamma-distributed claim frequencies.



The structure of the paper is as follows. In Section 2 we analyze the customer’s problem. We proceed to portfolio characteristics in Section 3. In Section 4, we use the portfolio characteristics to find the strategies of I1 and I2. In Section 5, we obtain explicit solutions in the case of gamma-distributed claim frequencies, and provide numerical examples. Section 6 concludes. Some calculations and proofs are deferred to Appendix A.




2. Customer’s Problem


The customer has access to the risk-free asset paying interest at rate r. This is the customer’s only source of income, and he/she invests all his/her wealth in this. The customer is exposed to a risk (At)t≥0, modelled as a compound Poisson process At=∑n=1M(t)Zn, where (M(t))t≥0 is a Poisson process with claim frequency α, and (Zn)n∈N are the claim sizes, assumed to be independent of (M(t))t≥0. The customer will then reduce this risk by buying insurance. If the customer insures at Ii, then he/she will continuously pay the premium pi, and in return have the claim sizes reduced to at most Ki. The wealth of the customer (wi,t)t≥0 when insuring at company i thus has dynamics


dwi,t=(rwi,t−pi)dt−dAi,t,wi,0=w0,








where (Ai,t)t≥0 is the compound Poisson process Ai,t=∑n=1M(t)min{Zn,Ki}, and w0 the customer’s initial wealth.



We here use similar evaluation criteria and subsequent arguments as in Thøgersen (2016), which we refer to for a more exhaustive treatment. The first step is to realize that the expected present discounted wealth when insuring at Ii can be evaluated as


Vi=E∫0∞exp(−dt)dwi,t=rw0−pid−r−αd−rE[min{Zn,Ki}],








where d>r is a subjective discount rate. If the customer were risk-neutral, he/she would simply choose the insurance company generating maximum expected present discounted wealth. Thus, he/she would prefer Ii over Ij if


pi−pj<−αE[min{Zn,Ki}]−E[min{Zn,Kj}].



(2)







However, an existence criterion for the insurance industry is that customers are risk averse, and this requires modification of (2). If Ki≠Kj, the customer will be facing an excess claim size risk when insuring at the company with the higher deductible. Let this additional (or reduced) risk be denoted zi,je=E[min{Zn,Ki}−min{Zn,Kj}] when insuring at Ii rather than Ij. Please note that zi,je corresponds to the last factor in (2), and is positive if Ki>Kj, and vice versa. Let β denote the risk aversion of the customer. By standard arguments of insurance, due to the risk aversion, the customer will be willing to pay a fee to avoid the additional risk. We will take this into account by introducing a personal safety loading ω(β) that the customer is willing to pay to avoid the excess risk present when K1≠K2. This is incorporated in (2) by multiplying the excess risk by (1+ω(β)). The more risk averse the customer, the higher the safety loading, i.e., ω is non-negative and increasing in β, with ω(0)=0. Thus, including risk aversion, the customer will prefer I1 over I2 if


p1−p2<−(1+ω(β))αz1,2e,



(3)




and conversely, I2 over I1 if


p2−p1<+(1+ω(β))αz1,2e.



(4)




In the next section, we use these relations to evaluate the portfolio sizes and average claim frequencies of the respective companies. We remark, however, at this place that in Asmussen et al. (2019) we have presented an in part more sophisticated approach to the customer’s problem involving a finite decision horizon with varying interpretations, but for the sake of simplicity, we have not pursued this aspect here.




3. Portfolio Characteristics


The claim frequencies α of the customers will be considered as random to the firm and denoted by A for a given customer. The case (3) then corresponds to the event


Ω=p1−p2<−(1+ω(β))Az1,2e



(5)




and (4) to the complementary event Ωc.



For I1 the expected portfolio size n1(p1,p2) and the average claim frequency α1(p1,p2) take the form


n1(p1,p2)=NP(Ω),α1(p1,p2)=E[A|Ω],








where N is the market size. Vice versa for I2, where


n2(p1,p2)=NP(Ωc),α2(p1,p2)=E[A|Ωc].











Letting


y=p2−p1(1+ω(β))z1,2e,



(6)




the probability of (5) can for z1,2e>0 (corresponding to K1>K2) be evaluated as


P(Ω)=P(A<y),








so, the portfolio sizes are


n1(p1,p2)=NP(A<y),n2(p1,p2)=N(1−P(A<y)).



(7)







The average claim frequency for I1 is the conditional expected value of the random claim frequency A given that the customer insures at I1, i.e.,


α1(p1,p2)=E[A|A<y],



(8)




and likewise, for I2,


α2(p1,p2)=E[A|A≥y],



(9)




if y>0. Otherwise, α1(p1,p2)=0 and α2(p1,p2)=E[A] if y<0. The criterion y>0 for obtaining information from the customers’ choices stems from the assumption z1,2e>0, which indicates that I2 offers a better product than I1, and therefore the premium p1 should not exceed p2. Otherwise, every customer would obviously choose to insure at I2.



In case z1,2e<0, which means that I1 offers a better insurance product, i.e., a lower deductible, K1<K2, then by symmetry


n1(p1,p2)=NP(A≥y),α1(p1,p2)=E[A|A≥y],n2(p1,p2)=NP(A<y),α2(p1,p2)=E[A|A<y],








if y>0. Otherwise, if y<0, then I1 would offer a lower premium for a better product, and would hence win the entire market of customers.




4. The Strategies of the insurance Companies—Push and Pull


We now consider the optimization problems of the insurance companies. A control π=(π1,π2) is a set π1(t),π2(t) of premium strategies where π1(t),π2(t) denote the premiums set by the companies at time t. As in much of stochastic control theory, we will only consider Markovian (also called feedback) strategies π, meaning that π1(t),π2(t) only depend on the current value δ of the difference Δπ(t)=R1π(t)−R2π(t) between the corresponding controlled reserve processes R1π,R2π. That is, we can write π1(t)=p1π(Δπ(t)), π2(t)=p2π(Δπ(t)) for suitable functions p1π,p2π. Since the (uncontrolled) reserves have the dynamics (1), this makes Δπ(t) a diffusion process,


dΔπ(t)=μπ(Δπ(t))dt+σπ(Δπ(t))dW(t),



(10)




where


μπ(δ)=μ1p1π(δ),p2π(δ)−μ2p1π(δ),p2π(δ)+rδ,σπ(δ)2=σ1p1π(δ),p2π(δ)2+σ2p1π(δ),p2π(δ)2,








and W=(W1−W2)/2 is again a Wiener process. Without loss of generality, we take Δ(0)=Δπ(0)=r0,1−r0,2>0, i.e., I1 is the large company and I2 the small. The large company seeks to maximize the reserve difference (to push the competitor further away), while the small company seeks to minimize the same (to pull closer to the competitor), each taking the current reserve difference as the state variable. The optimality criterion is to consider a fixed interval [ℓd,ℓu] with ℓd<Δ(0)<ℓu and let


τ(π)=inft>0:Δπ(t)∉[ℓd,ℓu],Vπ(δ)=PπΔπ(τ(π))=ℓu|Δ(0)=δ.











Then the large company I1 chooses π1 to maximize the probability Vπ(Δ(0)) to exit at the upper boundary, and the small I2 chooses π2 to minimize Vπ(Δ(0)), or equivalently to maximize the probability 1−π(Δ(0)) to exit at the lower boundary.



Remark 1.

The feedback assumption implies that this is equivalent to maximizing (minimizing) Vπ(δ) for all ℓd<δ<ℓu.





Given that deductibles are different, one of the firms offers a product of higher quality (lower deductible) than the other. Therefore, the sequence of the game matters, and so a Stackelberg game is considered, where the companies compete sequentially. The sequence of the game is that at any time t




	
The insurance company with the better product (i.e., lower deductible) is the leader and thus plays first.



	
The insurance company with the lower quality product is the follower, and plays second, instantly after observing the leader’s choice.








If I2 (the smallest firm) is the leader and I1 the follower (i.e., K1>K2), then a Stackelberg equilibrium is defined as a strategy pair (π1∗,π2∗) satisfying


π1∗=π^1(π2∗)andV(π1∗,π2∗)≤V(π^1(π2),π2)forallπ2,



(11)




where π^1(π2)=arg supπ1V(π1,π2). This case, K1>K2, is relevant when the company offering the lower deductible is not able to attract sufficiently many high-risk customers (who need this extra protection) to become the largest company. We briefly discuss the opposite case below, in Remark 6.



The Stackelberg equilibrium concept involves backward induction. First, the optimal response of the follower is determined as a reaction function. Next, the leader inserts the reaction function of the follower into its optimization problem, and solves for the best first move. As the game evolves in continuous time, the reserve difference changes. At each instant, each firm reconsiders its strategy, taking the running reserve difference as the state variable, and taking into account the future strategies of both companies, as long as the reserve difference remains in [ℓd,ℓu]. The criteria for a Stackelberg equilibrium are less strict than the ones for the more common Nash equilibrium, defined as a strategy pair (π1∗,π2∗) satisfying


V(π1∗,π2∗)≥V(π1,π2∗)forallπ1andV(π1∗,π2∗)≤V(π1∗,π2)forallπ2,



(12)




i.e., neither firm has an incentive to deviate from its strategy unilaterally. We later specify the specific (second order) criteria for our solution for both types of equilibrium.



We next quote from Asmussen et al. (2019) some results that will allow replacing optimization problems in the space of functions p1,p2 by the more elementary problem of pointwise maximization/minimization of the real-valued ratio


κπ(δ)=μπ(δ)σπ(δ)2



(13)




between the drift and variance of the reserve difference process in (10).



Lemma 1.

Let μ(x),σ2(x) be bounded and measurable functions on an interval (ℓd,ℓu) such that infℓd<x<ℓuσ2(x)>0 and let X,W be defined on a suitable probability space such that W is a standard Brownian motion and


X(t)=δ+∫0tμX(s)ds+∫0tσX(s)dW(s)



(14)




for some δ∈(ℓd,ℓu). Define further κ(x)=μ(x)/σ2(x),


s(y)=exp−2∫ℓdyκ(z)dz,S(δ)=∫ℓdδs(y)dy








and τ=inft:X(t)∉(ℓd,ℓu). Then:



(i) PX(τ)=ℓu=S(δ)/S(ℓu) .



(ii) For a given function κ on [ℓd,ℓu] and a given δ∈[ℓd,ℓu], let φ(κ) denote the r.h.s. in (i). Then κ0≤κ1 implies φ(κ0)≤φ(κ1).





By slight abuse of notation, define


κ(p1,p2;δ)=μ1(p1,p2)−μ2(p1,p2)+rδσ12(p1,p2)+σ22(p1,p2),p1,p2≥0,ℓd≤δ≤ℓu.



(15)







To ease notation here and in the following subsections, we use the notation


κi′(p1,p2;δ)=∂∂piκ(p1,p2;δ),κij″(p1,p2;δ)=∂2∂pi∂pjκ(p1,p2;δ),








for partial derivatives, where the number of primes indicates the number of times the function is differentiated, and the subscript specifies with respect to which variable. 1



Now consider the resulting drift and variance of the reserves in (1), focusing on the case K1>K2. Writing z¯i=E[(Z−Ki)+] and zi2¯=E[(Z−Ki)21{Z≥Ki}], it follows from (1) and Section 3 that the drift and variance for the reserve of I1 can be written as


μ1(p1,p2)=NP(A<y)p1−E[A|A<y]z1¯,σ12(p1,p2)=NP(A<y)E[A|A<y]z12¯,








and for I2,


μ2(p1,p2)=NP(A≥y)p2−E[A|A≥y]z2¯,σ22(p1,p2)=NP(A≥y)E[A|A≥y]z22¯,








with y given by (6). These expressions show that the denominator σ12(p1,p2)+σ22(p1,p2) in (15) depends on the controls p1,p2 because so does y and K1≠K2 implies z12¯≠z22¯ (if K1=K2=K then σ12(p1,p2)+σ22(p1,p2) reduces to NE[A]E[(Z−K)+]). Therefore, we need to optimize over the entire κ function (15) and not just the difference in drifts ν as in Asmussen et al. (2019).



From (6), by lowering the premium p1, I1 (with a high deductible in their product) can increase y and thereby portfolio size n1(p1,p2), for given p2, but at the expense of simultaneously increasing average claim rate α1(p1,p2), leaving the combined effect on the drift μ1(p1,p2) in (1) of sign that may go either way in general. Thus, there is a tradeoff, reflecting the adverse selection problem, cf. Rothschild and Stiglitz (1976), i.e., lowering the premium brings more but riskier customers. In contrast, by lowering its premium p2 for given p1, I2 (offering the lower deductible) can lower y and thereby simultaneously increase portfolio size n2(p1,p2) and reduce average claim rate α2(p1,p2), but the combined effect on the drift of the reserve difference in (10) is nevertheless of ambiguous sign, and further modelling indeed required.



By (i) of Lemma 1, Vπ(δ) takes the form S(δ)/S(ℓu), and combination of (ii) of the lemma and Remark 1 allows characterizing a Stackelberg equilibrium with I2 as the leader and I1 the follower. It shows that the optimization problem is local: We can just consider maximization or minimization of κ(·,·;δ) separately at each δ. This yields Proposition 1 below, in which we find the explicit (local) conditions for a Stackelberg equilibrium in (11) in terms of the function κ(·,·;δ) from (15). For a solution to exist, the maximizing company should be facing a (locally, at least) concave problem structure, and the minimizing company a convex one. Existence cannot be guaranteed in general, but needs to be verified when considering a specific distribution of A, and hence a specific κ(·,·;δ). For the standard assumption of a gamma-distributed heterogeneity, we see in Section 5 that an equilibrium does in fact exist and is unique. Although multiple solutions do not occur in this example, they cannot be excluded in general, so that the equilibrium may not be unique. The approach with backward induction should be the same, though giving a set of solutions. As multiple equilibria do not arise in the gamma case, we do not discuss them in more depth, except noting that uniqueness is guaranteed if the (local) concavity and convexity properties exploited in the following proposition extend globally.



For a fixed δ, write d(p2)=p^1(δ|π2) for the optimal premium for I1 given I2 follows a strategy with premium p2 at level δ.



Proposition 1.

In a Stackelberg equilibrium (π1∗,π2∗), the optimal set p1∗=p1∗(δ), p2∗=p2∗(δ) of premiums at level δ is a solution to


p1∗=d(p2∗),p2∗=arg minp2κ(d(p2),p2;δ),whered(p2)=arg supp1κ(p1,p2;δ).



(16)




The first order conditions for (p1∗,p2∗) are


0=κ1′(p1∗,p2∗;δ)=κ2′(p1∗,p2∗;δ),



(17)




and the second order conditions are


0>κ11″(p1∗,p2∗;δ),



(18)






0>detH(p1∗,p2∗;δ)



(19)




where H(p1,p2;δ)=κij″(p1,p2;δ)i,j=1,2 is the Hessian of κ(·,·;δ).





Proof. 

Condition (16) follows from the definition of Stackelberg equilibrium, see (11), and the local character of the problem discussed above. Choosing the best p1 given p2 means that I1 takes p1 as d(p2), so d(p2) satisfies


0=κ1′(d(p2),p2;δ),



(20)






0>κ11″(d(p2),p2;δ).



(21)







The problem I2 is facing is then to minimize κ(d(p2),p2;δ) so p2∗ is the zero of the function


g(p2)=κ1′(d(p2),p2;δ)d′(p2)+κ2′(d(p2),p2;δ).











At a Stackelberg equilibrium we have p1∗=d(p2∗). We therefore get


0=κ1′(p1∗,p2∗;δ)d′(p2∗)+κ2′(p1∗,p2∗;δ),



(22)




and the second order condition g′(p2∗)>0 means


0<κ11″(p1∗,p2∗;δ)d′(p2∗)+κ12″(p1∗,p2∗;δ)d′(p2∗)+κ1′(p1∗,p2∗;δ)d″(p2∗)+κ21″(p1∗,p2∗;δ)d′(p2∗)+κ22″(p1∗,p2∗;δ).



(23)







Now (20) implies that the first term in (22) vanishes, and using (20) again, we arrive at (17). Furthermore, differentiating (20) gives


0=κ11″(d(p2),p2;δ)d′(p2)+κ12″(d(p2),p2;δ),



(24)




and thus [·]d′(p2∗) in (23) vanishes. So does the second term, by (20), and hence (23) reduces to


0<κ21″(p1∗,p2∗;δ)d′(p2∗)+κ22″(p1∗,p2∗;δ)=−κ21″(p1∗,p2∗;δ)κ12″(p1∗,p2∗;δ)κ11″(p1∗,p2∗;δ)+κ22″(p1∗,p2∗;δ)=detH(p1∗,p2∗;δ)κ11″(p1∗,p2∗;δ),








where the first equality follows from (24). Combination with (21) produces (19). □





Corollary 1.

If, in addition to (18), the premiums in (16) satisfy


0<κ22″(p1∗,p2∗;δ),



(25)




then (p1∗,p2∗) furthermore meets the conditions of a Nash equilibrium.





Proof. 

Follows from Asmussen et al. (2019). □





It is clear from Proposition 1 and Corollary 1 that the Stackelberg equilibrium concept is more general than Nash equilibrium. In particular, by (18) and (25), the diagonal entries of the relevant Hessian are of opposite sign in Nash equilibrium, so (19) is automatic. Furthermore, since (18) and (19) are the general conditions for a (local) saddlepoint of κ(p1,p2;δ), any saddlepoint of this function gives rise to a (local) Stackelberg equilibrium. Geometrically, such a saddlepoint need not be parallel to the axes corresponding to the controls (premiums). In case the cross-partial κ12″(p1∗,p2∗;δ)=0 (equivalently, the policy of I1 does not depend on that of I2 at the optimum), then the saddlepoint is parallel to the axes and, indeed, gives rise to a (local) Nash equilibrium. Again, the conditions are only necessary, whereas sufficient conditions would involve global concavity/convexity.



Heuristically, because the premium controls of the companies are equally powerful and act in opposite directions, they should split customers evenly. This is formalized in the next proposition.



Proposition 2.

In Stackelberg equilibrium, I1 and I2 share the market equally, i.e., n1(p1∗,p2∗)=n2(p1∗,p2∗)=N/2.





Proof. 

Suppressing δ for notational convenience, let κn(p1,p2) and κd(p1,p2) denote the numerator and denominator, respectively, of κ(p1,p2;δ) in (15). Simple calculations show that the partial derivatives satisfy the relations


κn,2′(p1,p2)=−κn,1′(p1,p2)+N(P(A<y)−P(A≥y)),κd,2′(p1,p2)=−κd,1′,



(26)




with y from (6). Following Proposition 1, we find the first order condition for I1,


κ1′(p1,p2;δ)=1κd(p1,p2)κn,1′(p1,p2)−κn(p1,p2)κd(p1,p2)2κd,1′(p1,p2)=0,








which can be reduced to


κn,1′(p1,p2)−κn(p1,p2)κd(p1,p2)κd,1′(p1,p2)=0.



(27)







From this equation, the optimal response function d(p2) is deduced. Similarly, the first order condition for I2 can be reduced to


κn,2′(d(p2),p2)−κn(d(p2),p2)κd(d(p2),p2)κd,2′(d(p2),p2)=0.











Using the relation (26) between the partial derivatives yields


−κn,1′(d(p2),p2)+N(P(A<y)−P(A≥y))+κn(d(p2),p2)κd(d(p2),p2)κd,1′(d(p2),p2)=0,








which in combination with (27) yields P(A<y)=P(A≥y). Hence, in Stackelberg equilibrium y should be the median of A, and from (7), n1(p1∗,p2∗)=n2(p1∗,p2∗)=N/2. □






5. Gamma-Distributed Claim Frequencies


For modelling purposes, we assume that the claim frequencies are distributed according to A∼gamma(a,b), with c.d.f. P(A<y)=γ(b,y/a)/Γ(b) where


Γ(b)=∫0∞tb−1exp(−t)dt,γ(b,z)=∫0ztb−1exp(−t)dt,Γ(b,z)=Γ(b)−γ(b,z)








are the Gamma function, and the lower resp. upper incomplete Gamma function. The gamma distribution is standard for modelling unobserved heterogeneity in a Poissonian setting (in insurance, a classical case is credibility theory, see Bühlmann and Gisler (2006); in general Bayesian modelling, the gamma has the role of a conjugate prior greatly facilitating calculations, see Robert (2007)). However, the outline calculations can easily be paralleled for other distributions, though the amount of analytic details may be considerable.



The portfolio characteristics (7)–(9) can then be written explicitly as


n1(p1,p2)=Nγb,y/aΓ(b),α1(p1,p2)=aγb+1,y/aγ(b,y/a),n2(p1,p2)=NΓ(b,y/a)Γ(b),α2(p1,p2)=aΓb+1,y/aΓ(b,y/a),



(28)




if z1,2e>0 and y>0 which, as explained in Section 3, is equivalent to K1>K2 and p1<p2.



Theorem 1.

Assume K1>K2 that A∼gamma(a,b), and let mΓ denote the median of gamma(a,b). Then a Stackelberg equilibrium exists at


p1∗=d(p2∗)=ap2∗a−(1+ω(β))z1,2emΓa,p2∗=a2mΓa(12emΓ/amΓa−bΓ(b)(1+ω(β))z1,2e+(1+ω(β))z1,2e+(z1¯+z2¯)−κ˜(z22¯−z12¯))



(29)




where


κ˜=κ(p1∗,p2∗;δ)=e−mΓ/a(mΓ/a)b(z1¯+z2¯)+12Γ(b)(b(z2¯−z1¯)−(mΓ/a)(1+ω(β))z1,2e)+rδΓ(b)/(Na)12bΓ(b)(z12¯+z22¯)+e−mΓ/a(mΓ/a)b(z22¯−z12¯),



(30)




provided


p1∗≥0,p2∗≥0,



(31)




and


D(a,b,K1,K2,r,δ,ω(β))<0



(32)




with


D(a,b,K1,K2,r,δ,ω(β))=κ(p1∗,p2∗;δ)(z22¯−z12¯)−2(1+ω(β))z1,2e−(z1¯+z2¯)−12emΓ/a(mΓ/a)−bΓ(b)(1+ω(β))z1,2e(mΓ/a−b+1).



(33)









Remark 2.

As we discussed in Asmussen et al. (2019), there are arguments that motivate to remove condition (31) of non-negative premiums or to tighten it to premiums never below net levels αi(p1,p2)zi¯. However, since αi(p1,p2) now depends on y from (6) and hence on premiums unlike in the Nash equilibrium occurring there, this route leads to an implicit condition and is not pursued further here. See; however, the discussion following (37) below.





Proof. 

Using the portfolio characteristics (28) and the notation from the proof of Proposition 2, we can write the numerator of the criterion to be optimized (15) as


κn(p1,p2)=μ1(p1,p2)−μ2(p1,p2)+rδ=Nγb,y/ap1−aγb+1,y/az¯1−Γb,y/ap2+aΓb+1,y/az¯2/Γ(b)+rδ=Nγ(b,y/a)(p1−abz1¯)−Γ(b,y/a)(p2−abz2¯)+a(y/a)be−y/a(z1¯+z2¯)/Γ(b)+rδ,








using the relations γ(b+1,z)=bγ(b,z)−zbe−z and Γ(b+1,z)=bΓ(b,z)+zbe−z. Similarly, for the denominator,


κd(p1,p2)=σ12(p1,p2)+σ22(p1,p2)=Naγb+1,y/az12¯+aΓb+1,y/az22¯/Γ(b)=Nabγ(b,y/a)z12¯+abΓ(b,y/a)z22¯+a(y/a)be−y/a(z22¯−z12¯/Γ(b).











The derivatives of the incomplete Gamma functions are


∂γb,z∂z=zb−1e−z=−∂Γb,z∂z,








and by the definition (6) of y, we have ∂y∂p2=−∂y∂p1=1/((1+ω(β))z1,2e). Hence, κn and κd have partial derivatives


κn,1′(p1,p2)=NΓ(b)γb,y/a+z1¯+z2¯(1+ω(β))z1,2ee−y/ay/ab−p1+p2a(1+ω(β))z1,2ey/ab−1e−y/a,κn,2′(p1,p2)=NΓ(b)−Γb,y/a−z1¯+z2¯(1+ω(β))z1,2ee−y/ay/ab+p1+p2a(1+ω(β))z1,2ey/ab−1e−y/a=Nγb,y/aΓ(b)−Γb,y/aΓ(b)−κn,1′(p1,p2),κd,1′(p1,p2)=NΓ(b)z22¯−z12¯(1+ω(β))z1,2ee−y/ay/ab,κd,2′(p1,p2)=−NΓ(b)z22¯−z12¯(1+ω(β))z1,2ee−y/ay/ab=−κd,1′(p1,p2),








confirming (26) in this case. By Proposition 2, y must be the median of the gamma distribution, namely, the value mΓ that solves γ(b,mΓ/a)/Γ(b)=Γ(b,mΓ/a)/Γ(b)=1/2. From the definition (6) of y it then follows that p2∗ is chosen to satisfy


mΓ=p2∗−d(p2∗)(1+ω(β))z1,2e.











Thus, when evaluated at p2∗, the optimal response by I1 is d(p2∗)=p2∗−(1+ω(β))z1,2emΓ. We may now evaluate the expressions


κ(d(p2∗),p2∗;δ)=e−mΓ/amΓab(z1¯+z2¯)+12Γ(b)b(z2¯−z1¯)−mΓa(1+ω(β))z1,2e+rδΓ(b)/(Na)12bΓ(b)(z12¯+z22¯)+e−mΓ/amΓab(z22¯−z12¯),κn,1′(d(p2∗),p2∗)=NΓ(b)(−2p2∗a(1+ω(β))z1,2e(mΓ/a)b−1e−mΓ/a+Γ(b)2+z1¯+z2¯(1+ω(β))z1,2ee−mΓ/a(mΓ/a)b+(mΓ/a)be−mΓ/a),κd,1′(d(p2∗),p2∗)=NΓ(b)z22¯−z12¯(1+ω(β))z1,2ee−mΓ/a(mΓ/a)b.











Substitute these into (27) and solve for p2∗ to get


p2∗=a2mΓa(12emΓ/a(mΓ/a)−bΓ(b)(1+ω(β))z1,2e+(1+ω(β))z1,2e+(z1¯+z2¯)−e−mΓ/a(mΓ/a)b(z1¯+z2¯)+12Γ(b)(b(z2¯−z1¯)−(mΓ/a)(1+ω(β))z1,2e)+rδΓ(b)/(Na)12bΓ(b)(z12¯+z22¯)+e−mΓ/a(mΓ/a)b(z22¯−z12¯)(z22¯−z12¯)).











The second order conditions, (18) and (19), are verified in Appendix A such that the first order conditions yield the types of optima desired.



We have without loss of generality assumed that y≥0, i.e., by (6), I2 charges the highest premium. This is reasonable because it offers the best product (K1>K2). Indeed, there cannot be an equilibrium in the region y<0, since here, the criterion to be optimized would be κ(p1,p2;δ)=(rδ−N(p2−αz2¯))/(Nαz22¯), which is decreasing in p2. Since I2 seeks to minimize, it would increase p2 until again y>0. □





Corollary 2.

If, in addition to (32), the premiums in (29) satisfy


D(a,b,K1,K2,r,δ,ω(β))>−4(1+ω(β))z1,2e



(34)




then (p1∗,p2∗) furthermore meets the conditions of a Nash equilibrium.





Proof. 

Follows from Corollary 1 and calculations in the Appendix A. □





Remark 3.

The median is not analytically available, but can be solved for numerically. Banneheka and Ekanayake (2009) argue that the median for b≥1 can be approximated as mΓ≈ab(3b−0.8)/(3b+0.2). Further to this, note that by scaling properties of the gamma distribution, mΓ/a is the median of a gamma(1,b) distribution. Evidently, equilibrium premiums scale in proportion to a.





Remark 4.

If b=1, the gamma distribution reduces to the exponential with parameter 1/a and median me=alog(2). In this case, the expressions for equilibrium premiums simplify to


p1∗=d(p2∗)=a(p2∗/a−(1+ω(β))z1,2eme/a),p2∗=a2((1+ω(β))z1,2e+(1+ω(β))z1,2e(me/a)+(z1¯+z2¯)(me/a)−mea(me/a)(z1¯+z2¯)+z2¯−z1¯−(me/a)(1+ω(β))z1,2e+2rδ/(aN)z12¯+z22¯+(me/a)(z22¯−z12¯)(z22¯−z12¯)).













Remark 5.

Without product differentiation, K1=K2, premiums coincide, p1∗=p2∗. With product differentiation, the difference between equilibrium premiums is increasing in excess risk z1,2e and safety loading ω(β).





Remark 6.

In case K1<K2, i.e., the large firm I1 offers the highest-quality insurance product (lowest deductible), then for a gamma-distributed claim frequency, the criterion to be optimized is by symmetry instead


κ(p1,p2;δ)=Γb,y/ap1−aΓb+1,y/az¯1−γb,y/ap2+aγb+1,y/az¯2+rδΓ(b)/NaΓb+1,y/az12¯+aγb+1,y/az22¯.








In this case, I1 will be the leader of the Stackelberg game, and I2 the follower. Recall here that because K1<K2 we have z1,2e<0. The same approach as in the proof of Theorem 1 then yields the equilibrium


p2∗=d(p1∗)=a(p1∗/a+(1+ω(β))z1,2e(mΓ/a)),p1∗=a2mΓa(−12emΓ/a(mΓ/a)−bΓ(b)(1+ω(β))z1,2e−(1+ω(β))z1,2e+(z1¯+z2¯)−−e−mΓ/a(mΓ/a)b(z1¯+z2¯)+12Γ(b)(b(z2¯−z1¯)−(mΓ/a)(1+ω(β))z1,2e)+rδΓ(b)/(aN)12bΓ(b)(z12¯+z22¯)−e−mΓ/a(mΓ/a)b(z22¯−z12¯)(z22¯−z12¯)).











We have again that ni(p1∗,p2∗)=N/2, i=1,2 (this follows as in the proof of Proposition 2 and as in that case does not depend on the assumption of gamma-distributed heterogeneity). The case K1<K2 is relevant if the company offering best protection (lowest deductible) and therefore charging highest premiums is able to more than cover the extra cost associated with the high-risk customers willing to pay such higher premiums, and thus become the largest company.





Returning to Theorem 1 and the discussion of how the Stackelberg equilibrium evolves over time, note that due to interest rates, the strategy of the leader (here, I2, with strategy p2∗) changes in an affine fashion with δ. Although δ indicates the difference in initial reserves, the companies may reoptimize at any point in time. The game is repeated every instant, and each new equilibrium in the feedback version of the game takes the same form, with premiums set as in Theorem 1, and δ the running difference in reserves. As functions of δ, the Stackelberg equilibrium premiums, p2∗=p2∗(δ) and p1∗=p1∗(δ), remain time-invariant. In game-theoretic terms, the equilibrium is time-consistent. Furthermore, the portfolio characteristics actually remain constant through time. The reason is that the difference between premiums, p2∗−p1∗=(1+ω(β))z1,2emΓ, clearly is constant over time, not dependent on the reserve difference δ, and by Section 3, portfolio sizes and average claim frequencies for the companies only depend on the difference in premiums.



Numerical Illustration


We have aimed for examples with parameters that are somehow realistic in car insurance, taking the time unit as a year and the monetary unit as one €. For gamma-distributed unobserved heterogeneity there are some studies (see Bichsel (1964)) with b very close to 1, so for the sake of illustration, we take b=1. Furthermore, an average claim frequency of order 0.05–0.10 is common in Western countries, so we took a=0.1. A gamma(0.1,1)-distribution has median mΓ≈0.0693. Examples of gamma-distributed claim frequencies across customers are illustrated in Figure 1 for different values of the parameters a and b. The combinations of parameters are chosen to maintain an average claim frequency of 0.1.



Assuming for simplicity that the claim sizes are exponentially distributed with parameter θ, then we additionally have that


zi¯=1θe−θKi,zi2¯=2θ2e−θKi,








for i=1,2, together with excess risk


z1,2e=E[min{Z,K1}−min{Z,K2}]=1θ(e−θK2−e−θK1).











Aiming for an average claim size of 5000 €, we choose θ=1/5000 €. We consider a deductible for I1 of 15% of the average claim size, that is K1=750. Similarly for I2 with 10% of the claim size giving K2=500. Note in particularly that K1>K2. For these parameter values, we get


z1¯=4303.54,z12¯=43035398.82,z2¯=4524.19,z22¯=45241870.90,z1,2e=220.65.



(35)




Assume further that there are N=1,000,000 customers with identical personal safety loadings of ω(β)=0.4 and that the risk-free interest rate is r=3%. To get an indicator of the level of the reserves, we find a starting point, R, based on a 95% Value at Risk (VaR) principle. As N is rather large, the distribution of the sum ∑i=1N/2(Zi−5000) can be approximated by the normal distribution N (0,(N/2)/θ2). Solving for the R that satisfies


P∑i=1N/2(Zi−5000)>R=0.05,








using the inverse of the N (0,(N/2)/θ2) cdf, yields R=5815435.77. Next, I1 is assumed to have a reserve somewhat more than R, and I2 somewhat less. More specifically, we let


r0,1=(1+γ)Randr0,2=(1−γ)R,



(36)




which leads to an initial reserve difference of δ=2γR. Choosing e.g., γ=0.2 we get a difference of δ=2326174.31. Since the analytic results do not depend on the bounds on the reserve, ℓu and ℓd, their particular values do not matter, and we just need that the interval [ℓd,ℓu] contains the chosen δ. Given this value, the graph of the criterion to be optimized, κ(p1,p2;δ), appears in Figure 2, and the corresponding contour diagram in Figure 3.



Recall that we here consider the case where I2 offers the better product (K1>K2) and chooses its premium p2 first. Given this, I1 maximizes by seeking toward the ridge that appears diagonally when choosing p1. The market leader, I2, takes this response function of I1 into account, and minimizes κ(p1,p2;δ) along the ridge, by choice of p2. The optimum provides the Stackelberg equilibrium, at the saddle point. However, in this case the saddle is located diagonally, not parallel to the axes, and there is no Nash equilibrium. In particular, given p1, I2 would benefit from increasing p2, moving away from the ridge (toward cooler colors in the figures). While this precludes Nash equilibrium, the analysis demonstrates that it is possible to obtain an equilibrium in finite premiums by having I2 commit to some p2 at the given δ, then letting I1 respond, i.e., a Stackelberg equilibrium. This is also verified by the value


D(a,b,K1,K2,r,δ,ω(β))=−9603.91,








which tells us that condition (32) is satisfied, whereas (34) is not, as −4(1+ω(β)z1,2e=−1235.62, i.e., greater than D(·) in this case.



From Theorem 1, we compute the Stackelberg equilibrium premiums


p1∗=305.5andp2∗=326.0



(37)




at the current reserve difference δ=2326174.31. These are to be compared with the net premiums


α1(p1∗,p2∗)z1¯=0.0307·4303.54=132.1,α2(p1∗,p2∗)z2¯=0.1693·4524.19=766.0,








so that pursuing solely the competition aspects would lead to a likely loss for I2 at the current reserve difference. This is not necessarily a paradox since the perspective of control and game theory is to focus solely on a one-eyed goal. Larger δ means I2 is lagging more behind the large firm I1, and this gives I2 greater incentive to compete for customers by lowering its premium, with I1 responding by letting premiums move in lockstep. Thus, in equilibrium, I2 always receives a higher premium than I1, reflecting the higher quality product (lower deductible). This type of product is attractive to “bad” customers, that is, customers with high claim frequency, as seen in Figure 4. These customers are expected to experience more losses than “good” customers, and are therefore willing to pay extra for better coverage, yielding a separating equilibrium, with customers’ choices revealing their type, as in Rothschild and Stiglitz (1976). Still, I2 may remain the smallest company, due to the higher risk of its customers.



In Figure 5 and Figure 6, exhibiting aspects of D, we take a closer graphical look at the second order criteria. Starting with Figure 5, we plot D as a function of δ. All other parameters remain the same as above. Values for δ for which D<−4(1+ω(β)z1,2e are plotted in green to indicate that the equilibrium is of Stackelberg type. Values that yield −4(1+ω(β)z1,2e<D<0, and hence equilibrium of Nash-type, are plotted in blue. Finally, the values plotted with red give D>0, which tells us that there is no equilibrium. Here we see that D is indeed a linearly increasing function of δ, as it should be according to (30) and (33). Hence, for small δ-values we get a Stackelberg equilibrium (green). For a small spectrum in the middle we get a Nash equilibrium (blue), and, finally, for large values of δ there is no equilibrium. The same color codes are used in Figure 6, which shows the color plateaus of D, and not the actual values, as depending on the deductibles, K1 and K2. As we restrict the analysis to the case where K1>K2, it is only the lower triangular part that is illustrated. For simultaneously large values (above 5×104) of K1 and K2, there appears an area (red) where there is no equilibrium. However, 5×104 is ten times the average claim size of 5000 and obviously an unrealistically large value of the deductibles. For K1 and K2 being close, i.e., along the diagonal, there is then an equilibrium of Stackelberg type (green area) for smaller values. Moving away from the diagonal, the equilibrium type will change from Stackelberg to Nash (blue area). However, in the most realistic region of deductibles K1,K2 being below the mean claim size 5000=0.5×104 it is always Stackelberg.





6. Conclusions


We have considered a non-life insurance market in which two insurance companies compete for customers by choice of premium strategies. Each company chooses its strategy to balance revenue against portfolio size, taking into account the strategy of the other company. We pay special attention to product differentiation and customer risk, while abstracting for simplicity from market frictions. For product differentiation, we focus on different deductibles, noting that alternatives would include bonus-malus systems, and proportional compensation in deductibles. The analysis is carried out in continuous time using stochastic differential game techniques. Adverse selection implies that a change in premium alters the risk composition of the portfolio. With claim arrival rates following a gamma distribution across customers, Stackelberg equilibrium premiums are derived. Conditions under which a Nash equilibrium exists are also established, but our numerical examples indicate that Stackelberg is the more typical case. Equilibrium premiums depend in an affine fashion on the running difference between the reserves of the companies, each modelled using the diffusion approximation to a standard Cramér-Lundberg risk process, extended to allow investment in a risk-free asset. Numerical illustrations of both types of equilibrium are provided.



Overall, the managerial implications are that insurance companies should consider the premium as an active means to control portfolio size and revenue per customer in competition with other companies, as opposed to merely pooling individual risks and setting the premium based on conventional principles. Future research could consider three or more companies competing for market shares, to account explicitly for the risk of ruin or the possibility that some potential customers choose not to insure, or to pursue the more sophisticated ideas of Asmussen et al. (2019) on the customer’s problem.
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Appendix A. Second Order Derivative Tests for Theorem 1


Since we only need to consider a fixed δ, we write for notational convenience κ(p1,p2) instead of κ(p1,p2;δ). Please note that the first order conditions, in the present case (17), can be written as


κi′(p1,p2)=1κd(p1,p2)κn,i′(p1,p2)−κ(p1,p2;δ)κd,i′(p1,p2)=0fori=1,2,








and consider the second order partial derivatives


κii″(p1,p2)=1κd(p1,p2)(κn,ii″(p1,p2)−κ(p1,p2;δ)κd,ii″(p1,p2)−1κd(p1,p2)κd,i′(p1,p2)κn,i′(p1,p2)−κ(p1,p2;δ)κd,i′(p1,p2))−1κd(p1,p2)2κd,i′(p1,p2)κn,i′(p1,p2)−κ(p1,p2;δ)κd,i′(p1,p2),κij″(p1,p2)=1κd(p1,p2)(κn,ij″(p1,p2)−κ(p1,p2;δ)κd,ij″(p1,p2)−1κd(p1,p2)κd,i′(p1,p2)κn,j′(p1,p2)−κ(p1,p2;δ)κd,j′(p1,p2))−1κd(p1,p2)2κd,j′(p1,p2)κn,i′(p1,p2)−κ(p1,p2;δ)κd,i′(p1,p2).











In optimum the critical point (p1∗,p2∗) must satisfy the first order condition (27), which reduces the second order partial derivatives to


κii″(p1∗,p2∗)=1κd(p1∗,p2∗)κn,ii″(p1∗,p2∗)−κ˜κd,ii″(p1∗,p2∗),κij″(p1∗,p2∗)=1κd(p1∗,p2∗)κn,ij″(p1∗,p2∗)−κ˜κd,ij″(p1∗,p2∗).








From the links between the first order derivatives in the proof of Theorem 1,


κ22″(p1∗,p2∗)=1κd(p1∗,p2∗)κn,22″(p1∗,p2∗)−κ˜κd,22″(p1∗,p2∗)



(A1)






=1κd(p1∗,p2∗)κn,11″(p1∗,p2∗)−2f1′(p1∗,p2∗)−κ˜κd,11″(p1∗,p2∗),



(A2)






κ12″(p1∗,p2∗)=1κd(p1∗,p2∗)κn,12″(p1∗,p2∗)−κ˜κd,12″(p1∗,p2∗)



(A3)






=1κd(p1∗,p2∗)−κn,11″(p1∗,p2∗)+f1′(p1∗,p2∗)+κ˜κd,11″(p1∗,p2∗),



(A4)




where f(p1,p2)=γb,y/a−Γb,y/a. The second order derivative test on the Hessian in (19),


κ11″(p1∗,p2∗)κ22″(p1∗,p2∗)−κ12″(p1∗,p2∗)2=−1κd(p1∗,p2∗)2f1′(p1∗,p2∗)2<0,








then confirms a saddle point, provided we can show the condition (18). For this, we need to be more specific and find the actual second order derivatives and evaluate them in equilibrium. Differentiating κn,1′(p1,p2) and κd,1′(p1,p2) with respect to p1 yields


κn,11″(p1,p2)=−2a(1+ω(β))z1,2ee−y/ay/ab−1+z1¯+z2¯a((1+ω(β))z1,2e)2e−y/ay/ab−1(y/a−b)−p1+p2(a(1+ω(β))z1,2e)2e−y/ay/ab−2(y/a−b+1),κd,11″(p1,p2)=z22¯−z12¯a((1+ω(β))z1,2e)2e−y/ay/ab−1(y/a−b).











Evaluating at the equilibrium premiums,


κn,11″(p1∗,p2∗)=−2a(1+ω(β))z1,2ee−mΓ/amΓ/ab−1+z1¯+z2¯a((1+ω(β))z1,2e)2e−mΓ/amΓ/ab−1(mΓ/a−b)−2p2∗−(1+ω(β))z1,2emΓ(a(1+ω(β))z1,2e)2e−mΓ/amΓ/ab−2(mΓ/a−b+1),κd,11″(p1,p2)=z22¯−z12¯a((1+ω(β))z1,2e)2e−mΓ/amΓ/ab−1(mΓ/a−b).











Multiplying by the positive constant κd(p1∗,p2∗)a((1+ω(β))z1,2e)2/((mΓ/a)b−1exp(−mΓ/a)), the criterion can be written in reduced form explicitly as


−2(1+ω(β))z1,2e+(z1¯+z2¯)(mΓ/a−b)−(2p2∗/a−(1+ω(β))z1,2emΓ/a)mΓ/a−1(mΓ/a−b+1)−κ˜(z22¯−z12¯)(mΓ/a−b)<0.











Inserting the optimal premium,


p2∗=a2(12emΓ/a(mΓ/a)1−bΓ(b)(1+ω(β))z1,2e+(1+ω(β))z1,2e(mΓ/a)+(mΓ/a)(z1¯+z2¯)−(mΓ/a)κ˜(z22¯−z12¯)),








we can reduce the condition to


κ˜(z22¯−z12¯)−2(1+ω(β))z1,2e−12emΓ/a(mΓ/a)−bΓ(b)(1+ω(β))z1,2e(mΓ/a−b+1)−(z1¯+z2¯)<0,








which is the same as (32).



The condition (25) for a Nash equilibrium can also be found more explicitly by using the link in (A2) between the second order derivatives. The condition can be rewritten as


1κd(p1∗,p2∗)κn,11″(p1∗,p2∗)−2f1′(p1∗,p2∗)−κ˜κd,11″(p1∗,p2∗)>0,








which, using the same approach as above, can be written as


2a((1+ω(β))z1,2e)2(mΓ/a)b−1exp(−mΓ/a)f1′(p1∗,p2∗)<κ˜(z22¯−z12¯)−2(1+ω(β))z1,2e−12emΓ/a(mΓ/a)−bΓ(b)(1+ω(β))z1,2e(mΓ/a−b+1)−(z1¯+z2¯),








where


a((1+ω(β))z1,2e)2(mΓ/a)b−1exp(−mΓ/a)f1′(p1∗,p2∗)=−2a((1+ω(β))z1,2e)2(mΓ/a)b−1exp(−mΓ/a)(mΓ/a)b−1exp(−mΓ/a)a(1+ω(β)z1,2e=−2(1+ω(β))z1,2e,








which combined yields (34).
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	1
	
The standard notation avoids the primes and considers the subscript as sufficient, but we want to emphasize the differentiation here in order to avoid confusion with other notation in the paper, e.g., μ1(p1,p2) and μ2(p1,p2).
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Figure 1. The gamma distribution of the claim frequencies for different a and b. 
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Figure 2. Graph of κ(p1,p2;δ). 
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Figure 3. Contour diagram of κ(p1,p2;δ). 
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Figure 4. Distribution of customers in equilibrium, where customers with claim frequencies in the green (blue) area insure at I1 (I2). 
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Figure 5. D as a function of δ. Green indicates Stackelberg equilibrium, blue indicates Nash equilibrium, and red indicates neither. 
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Figure 6. D as a function of K1 and K2 for K1>K2. Green indicates Stackelberg equilibrium, blue indicates Nash equilibrium, and red indicates neither. 
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