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Abstract: We study the optimal excess-of-loss reinsurance problem when both the intensity of the
claims arrival process and the claim size distribution are influenced by an exogenous stochastic factor.
We assume that the insurer’s surplus is governed by a marked point process with dual-predictable
projection affected by an environmental factor and that the insurance company can borrow and
invest money at a constant real-valued risk-free interest rate r. Our model allows for stochastic
risk premia, which take into account risk fluctuations. Using stochastic control theory based on the
Hamilton-Jacobi-Bellman equation, we analyze the optimal reinsurance strategy under the criterion
of maximizing the expected exponential utility of the terminal wealth. A verification theorem for the
value function in terms of classical solutions of a backward partial differential equation is provided.
Finally, some numerical results are discussed.
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1. Introduction

In this paper, we analyze the optimal excess-of-loss reinsurance problem from the insurer’s
point of view, under the criterion of maximizing the expected utility of the terminal wealth. It is well
known that the reinsurance policies are very effective tools for risk management. In fact, by means of
a risk sharing agreement, they allow the insurer to reduce unexpected losses, to stabilize operating
results, to increase business capacity and so on. Among the most common arrangements, the
proportional and the excess-of-loss contracts are of great interest. The former was intensively studied
in Irgens and Paulsen (2004); Liu and Ma (2009); Liang et al. (2011); Liang and Bayraktar (2014);
Zhu et al. (2015); Brachetta and Ceci (2019) and references therein. The latter was investigated in
these articles: in Zhang et al. (2007) and Meng and Zhang (2010), the authors proved the optimality
of the excess-of-loss policy under the criterion of minimizing the ruin probability, with the surplus
process described by a Brownian motion with drift; in Zhao et al. (2013) the Cramér-Lundberg model
is used for the surplus process, with the possibility of investing in a financial market represented
by the Heston model; in Sheng et al. (2014) and Li and Gu (2013) the risky asset is described by a
Constant Elasticity of Variance (CEV) model, while the surplus is modelled by the Cramér-Lundberg
model and its diffusion approximation, respectively; finally, in Li et al. (2018) the authors studied a
robust optimal strategy under the diffusion approximation of the surplus process.
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The common ground of the cited works is the underlying risk model, which is the
Cramér-Lundberg model (or its diffusion approximation)1. In the actuarial literature it is of great
importance, because it is simple enough to perform calculations. In fact, the claims arrival process is
described by a Poisson process with constant intensity (or a Brownian motion, in the diffusion model).
Nevertheless, as noticed by many authors (e.g., Grandell (1991); Hipp (2004)), it needs generalization
in order to take into account the so called size fluctuations and risk fluctuations, i.e., variations of the
number of policyholders and modifications of the underlying risk, respectively.

The main goal of our work is to extend the classical risk model by modelling the claims arrival
process as a marked point process with dual-predictable projection affected by an exogenous stochastic
process Y. More precisely, both the intensity of the claims arrival process and the claim size distribution
are influenced by Y. Thanks to this environmental factor, we achieve a reasonably realistic description
of any risk movement. For example, in automobile insurance Y may describe weather conditions,
road conditions, traffic volume and so on. All these factors usually influence the accident probability
as well as the damage size.

Some noteworthy attempts in that direction can be found in Liang and Bayraktar (2014)
and Brachetta and Ceci (2019), where the authors studied the optimal proportional reinsurance.
In the former, the authors considered a Markov-modulated compound Poisson process, with the
(unobservable) stochastic factor described by a finite state Markov chain. In the latter, the stochastic
factor follows a general diffusion. In addition, in Brachetta and Ceci (2019) the insurance and the
reinsurance premia are not evaluated by premium calculation principles (see Young (2006)), because
they are stochastic processes depending on Y. In our paper, we extend further the risk model, because
the claim size distribution is influenced by the stochastic factor, which is described by a diffusion-type
stochastic differential equation (SDE). In addition, we study a different reinsurance contract, which is
the excess-of-loss agreement.

To the best of our knowledge stochastic risk factor models in insurance have not been considered
so far. This is in contrast with financial literature where risky asset dynamics affected by exogenous
stochastic factors have been largely considered, see for instance Ceci (2009); Ceci and Gerardi (2009);
Ceci and Gerardi (2010); Zariphopoulou (2009) and Ceci (2012).

In our model the insurer is also allowed to lend or borrow money at a given interest rate r. During
recent years, negative interest rates drew the attention of many authors. For example, since June 2016
the European Central Bank (ECB) fixed a negative Deposit facility rate, which is the interest banks
receive for depositing money within the ECB overnight. Presently, it is −0.4%. As a consequence,
in our framework r ∈ R. We point out that there is no loss of generality due to the absence of a risky
asset, because as long as the insurance and the financial markets are independent (which is a standard
hypothesis in non-life insurance), the optimal reinsurance strategy turns out to depend only on the
risk-free asset (see Brachetta and Ceci (2019) and references therein). As a consequence, the optimal
investment strategy can be eventually obtained using existing results in the literature.

The paper is organized as follows: in Section 2, we formulate the model assumptions and describe
the maximization problem; in Section 3 we derive the Hamilton-Jacobi-Bellman (HJB) equation;
in Section 4, we investigate the candidate optimal strategy, which is suggested by the HJB derivation;
in Section 5, we provide the verification argument with a probabilistic representation of the value
function; finally, in Section 6 we perform some numerical simulations.

2. Model Formulation

Let (Ω,F ,P, {Ft}t∈[0,T]) be a complete probability space endowed with a filtration which satisfies
the usual conditions, where T > 0 is the insurer’s time horizon. We model the insurance losses
through a marked point process {(Tn, Zn)}n≥1 with local characteristics influenced by an environment

1 See Lundberg (1903); Schmidli (2018).
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stochastic factor Y .
= {Yt}t∈[0,T]. Here, the sequence {Tn}n≥1 describes the claim arrival process and

{Zn}n≥1 the corresponding claim sizes. Precisely, Tn, n = 1, . . . , are {Ft}t∈[0,T] stopping times such
that Tn < Tn+1 a.s. and Zn, n = 1, . . . , are (0,+∞)-random variables such that ∀n = 1, . . . , Zn is
FTn -measurable.

The stochastic factor Y is defined as the unique strong solution to the following SDE:

dYt = b(t, Yt) dt + γ(t, Yt) dW(Y)
t , Y0 ∈ R, (1)

where {W(Y)
t }t∈[0,T] is a standard Brownian motion on (Ω,F ,P, {Ft}t∈[0,T]). We assume that the

following conditions hold true:

E
[∫ T

0
|b(t, Yt)| dt +

∫ T

0
γ(t, Yt)

2 dt
]
< +∞, (2)

sup
t∈[0,T]

E[|Yt|2] < +∞. (3)

We will denote by {FY
t }t∈[0,T] the natural filtration generated by the process Y.

The random measure corresponding to the losses process {(Tn, Zn)}n≥1 is given by

m(dt, dz) .
= ∑

n≥1
δ(Tn ,Zn)(dt,dz)1{Tn≤T}, (4)

where δ(t,x) denotes the Dirac measure located at point (t, x). We assume that its {Ft}t∈[0,T]-dual
predictable projection ν(dt, dz) has the form

ν(dt, dz) = dF(z, Yt)λ(t, Yt) dt, (5)

where

• F(z, y) : [0,+∞)×R→ [0, 1] is such that ∀y ∈ R, F(·, y) is a distribution function, with F(0, y) = 0;
• λ(t, y) : [0, T]×R→ (0,+∞) is a strictly positive measurable function.

In the sequel, we will assume the following integrability conditions:

E
[∫ T

0

∫ +∞

0
ν(dt, dz)

]
= E

[∫ T

0
λ(t, Yt) dt

]
< +∞, (6)

and

E
[∫ T

0

∫ +∞

0
z2 λ(t, Yt)dF(z, Yt) dt

]
< +∞. (7)

According to the definition of dual predictable projection, for every nonnegative,
{Ft}t∈[0,T]-predictable and [0,+∞)-indexed process {H(t, z)}t∈[0,T] we have that2

E
[∫ T

0

∫ +∞

0
H(t, z)m(dt, dz)

]
= E

[∫ T

0

∫ +∞

0
H(t, z) λ(t, Yt)dF(z, Yt) dt

]
. (8)

In particular, choosing H(t, z) = Ht with {Ht}t∈[0,T] any nonnegative {Ft}t∈[0,T]-predictable process

E
[∫ T

0

∫ +∞

0
H(t)m(dt, dz)

]
= E

[∫ T

0
H(t) dNt

]
= E

[∫ T

0
Ht λ(t, Yt) dt

]
, (9)

2 For details on marked point processes theory, see Brémaud (1981).
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i.e., the claims arrival process Nt = m((0, t]× [0,+∞)) = ∑n≥1 1{Tn≤t} is a point process with stochastic
intensity {λ(t, Yt)}t∈[0,T].

Now we give the interpretation of F(z, Yt) as conditional distribution of the claim sizes3.

Proposition 1. ∀n = 1, . . . and ∀A ∈ B([0,+∞)) the following equality holds:

P[Zn ∈ A | FT−n
] = P[Zn ∈ A | FY

Tn
] =

∫
A

dF(z, YTn) P-a.s.,

where FT−n
is the strict past of the σ-algebra generated by the stopping time Tn:

FT−n
:= σ{A ∩ {t < τn}, A ∈ Ft, t ∈ [0, T]}.

Proof. See Appendix A.

This means that in our model both the claim arrival intensity and the claim size distribution
are affected by the stochastic factor Y. This is a reasonable assumption; for example, in automobile
insurance Y may describe weather, road conditions, traffic volume, and so on. For a detailed discussion
of this topic see also Brachetta and Ceci (2019).

Remark 1. Let us observe that for any {Ft}t∈[0,T]-predictable and [0,+∞)-indexed process {H(t, z)}t∈[0,T]
such that

E
[∫ T

0

∫ +∞

0
|H(t, z)| λ(t, Yt)dF(z, Yt) dt

]
< +∞,

the process

Mt =
∫ t

0

∫ +∞

0
H(s, z)

(
m(ds, dz)− ν(ds, dz)

)
, t ∈ [0, T]

turns out to be an {Ft}t∈[0,T]-martingale. If in addition

E
[∫ T

0

∫ +∞

0
|H(t, z)|2 λ(t, Yt)dF(z, Yt) dt

]
< +∞,

then {Mt}t∈[0,T] is a square integrable {Ft}t∈[0,T]-martingale and

E[M2
t ] = E

[∫ t

0

∫ +∞

0
|H(s, z)|2 λ(s, Ys)dF(z, Ys) ds

]
∀t ∈ [0, T].

Moreover, the predictable covariation process of {Mt}t∈[0,T] is given by

〈M〉t =
∫ t

0

∫ +∞

0
|H(s, z)|2 λ(s, Ys)dF(z, Ys) ds,

that is {M2
t − 〈M〉t}t∈[0,T] is an {Ft}t∈[0,T]-martingale4.

In this framework we define the cumulative claims up to time t ∈ [0, T] as follows

Ct = ∑
n≥1

Zn1{Tn≤t} =
∫ t

0

∫ +∞

0
zm(ds, dz),

3 This result is an extension of Proposition 2.4 in Ceci and Gerardi (2006).
4 For these results and other related topics see e.g., Bass (2004).
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and the insurer’s reserve process is described by

Rt = R0 +
∫ t

0
csds− Ct,

where R0 > 0 is the initial wealth and {ct}t∈[0,T] is a nonnegative {Ft}t∈[0,T]-adapted process
representing the gross insurance risk premium. In the sequel we assume ct = c(t, Yt), for a suitable
function c(t, y) such that E

[∫ T
0 c(t, Yt)dt

]
< +∞. Let us notice that Equation (7) implies that

E[CT ] = E
[∫ T

0

∫ +∞

0
zm(dt, dz)

]
= E

[∫ T

0

∫ +∞

0
z λ(t, Yt)dF(z, Yt) dt

]
< +∞.

Now we allow the insurer to buy an excess-of-loss reinsurance contract. By means of this
agreement, the insurer chooses a retention level α ∈ [0,+∞) and for any future claim the reinsurer
is responsible for all the amount which exceeds that threshold α (e.g., α = 0 means full reinsurance).
For any dynamic reinsurance strategy {αt}t∈[0,T], the insurer’s surplus process is given by

Rα
t = R0 +

∫ t

0
(cs − qα

s ) ds−
∫ t

0

∫ +∞

0
(z ∧ αs)m(ds, dz),

where {qα
t }t∈[0,T] is a nonnegative {Ft}t∈[0,T]-adapted process representing the reinsurance premium

rate. In addition, we suppose that the following assumption holds true.

Assumption 1. (Excess-of-loss reinsurance premium) Let us assume that for any reinsurance strategy
{αt}t∈[0,T] the corresponding reinsurance premium process {qα

t }t∈[0,T] admits the following representation:

qα
t = q(t, Yt, αt) ∀t ∈ [0, T],

where q(t, y, α) : [0, T]× R× [0,+∞) → [0,+∞) is a continuous function in α, with continuous partial

derivatives ∂q(t,y,α)
∂α , ∂2q(t,y,α)

∂α2 in α ∈ [0,+∞), such that

1. ∂q(t,y,α)
∂α ≤ 0 for all (t, y, α) ∈ [0, T]×R× [0,+∞), since the premium is increasing with respect to the

protection level;
2. q(t, y, 0) > c(t, y) ∀(t, y) ∈ [0, T]×R, because the cedant is not allowed to gain a profit without risk.

In the rest of the paper, ∂q(t,y,0)
∂α should be intended as a right derivative. Moreover, we assume that

E
[∫ T

0
q(t, Yt, 0) dt

]
< +∞.

Assumption 1 formalizes the minimal requirements for a process {qα
t }t∈[0,T] to be a reinsurance

premium. In the next examples we briefly recall the most famous premium calculation principles,
because they are widely used in optimal reinsurance problems solving. In Appendix B the reader can
find a rigorous derivation of the formulas (10) and (11) below.

Example 1. The most famous premium calculation principle is the expected value principle (abbr. EVP)5.
The underlying conjecture is that the reinsurer evaluates her premium in order to cover the expected losses plus a
load which depends on the expected losses. In our framework, under the EVP the reinsurance premium is given
by the following expression:

q(t, y, α) = (1 + θ)λ(t, y)
∫ +∞

0
(z− z ∧ α) dF(z, y), (10)

5 See Young (2006).
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for some safety loading θ > 0.

Example 2. Another important premium calculation principle is the variance premium principle (abbr. VP).
In this case, the reinsurer’s loading is proportional to the variance of the losses. More formally, the reinsurance
premium admits the following representation:

q(t, y, α) = λ(t, y)
∫ +∞

0
(z− z ∧ α) dF(z, y) + θλ(t, y)

∫ +∞

0
(z− z ∧ α)2 dF(z, y), (11)

for some safety loading θ > 0.

Furthermore, the insurer can lend or borrow money at a fixed interest rate r ∈ R. More precisely,
every time the surplus is positive, the insurer lends it and earns interest income if r > 0 (or pays
interest expense if r < 0); on the contrary, when the surplus becomes negative, the insurer borrows
money and pays interest expense (or gains interest income if r < 0).

Under these assumptions, the total wealth dynamic associated with a given strategy α is described
by the following SDE:

dXα
t = dRα

t + rXα
t dt, Xα

0 = R0. (12)

It can be verified that the solution to (12) is given by the following expression:

Xα
t = R0ert +

∫ t

0
er(t−s)[c(s, Ys)− q(s, Ys, αs)

]
ds−

∫ t

0

∫ +∞

0
er(t−s)(z ∧ αs)m(ds, dz). (13)

Remark 2. Let us define
K .
= max {erT , 1}. (14)

We have that

E[ sup
t∈[0,T]

|Xα
t |] ≤ KE

[
R0 +

∫ T

0
ct dt +

∫ T

0
q(t, Yt, 0) dt + CT

]
< +∞. (15)

Our aim is to find the optimal strategy α in order to maximize the expected exponential utility of
the terminal wealth, that is

sup
α∈A

E
[

1− e−ηXα
T

]
= 1− inf

α∈A
E
[

e−ηXα
T

]
,

where η > 0 is the risk-aversion parameter andA is the set of all admissible strategies as defined below.

Definition 1. We denote by A the set of all admissible strategies, that is the class of all nonnegative
{Ft}t∈[0,T]-predictable processes {αt}t∈[0,T]. With the notation At we refer to the same class, restricted to the
strategies starting from t ∈ [0, T].

Remark 3. We need additional integrability conditions in order to ensure that under α = 0 (full reinsurance)
and α = +∞ (null reinsurance) the expected utility is finite. Precisely, under condition

E
[

eη
∫ T

0 er(T−s)q(s,Ys ,0) ds
]
< +∞, (16)

we get that

E
[
e−ηX0

T
]
= E

[
e−ηR0erT−η

∫ T
0 er(T−s)

[
c(s,Ys)−q(s,Ys ,0)

]
ds
]
< +∞
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and under
E
[
eηKCT

]
< +∞, (17)

with K given in (14), we have that

E
[
e−ηX∞

T
]
= E

[
e−ηR0erT−η

∫ T
0 er(T−s)c(s,Ys) ds+η

∫ T
0
∫ +∞

0 er(T−s)z m(ds,dz)
]
≤ E

[
eηKCT

]
< +∞.

In the next proposition we give a sufficient condition for Equation (17).

Proposition 2. Assume that there exists an integrable function Φ : [0, T]→ (0,+∞) such that∫ +∞

0

(
eηKz − 1

)
λ(t, y)dF(z, y) ≤ Φ(t) ∀(t, y) ∈ [0, T]×R, (18)

where the constant K is given in (14). Then Equation (17) is fulfilled.

Proof. Since {Ct}t∈[0,T] is a pure-jump process, we have that

eηKCt = eηKC0 + ∑
s≤t

(
eηKCs − eηKCs−

)
= 1 + ∑

s≤t
eηKCs−

(
eηK∆Cs − 1

)
= 1 +

∫ t

0
eηKCs−

∫ +∞

0

(
eηKz − 1

)
m(ds, dz).

Taking the expectation, by Equation (8) we get that

E[eηKCt ] = 1 +E
[∫ t

0
eηKCs−

∫ +∞

0

(
eηKz − 1

)
λ(s, Ys)dF(z, Ys) ds

]
≤ 1 +

∫ t

0
E
[
eηKCs

]
Φ(s) ds.

Applying Gronwall’s lemma we obtain that

E[eηKCt ] ≤ e
∫ t

0 Φ(s)ds ∀t ∈ [0, T].

As usual in stochastic control problems, we focus on the corresponding dynamic problem:

ess inf
α∈At

E
[

e−ηXα
t,x(T) | Ft

]
, t ∈ [0, T], (19)

where Xα
t,x(T) denotes the insurer’s wealth process starting from (t, x) ∈ [0, T]×R evaluated at time T.

3. HJB Formulation

In order to solve the optimization problem (19), we introduce the value function v : [0, T]×R2 →
[0,+∞) associated with it, that is

v(t, x, y) .
= inf

α∈At
E
[

e−ηXα
t,x(T) | Yt = y

]
. (20)
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This function, if sufficiently regular, is expected to solve the Hamilton-Jacobi-Bellman
(HJB) equation:  inf

α∈[0,+∞)
Lαv(t, x, y) = 0 ∀(t, x, y) ∈ [0, T]×R2

v(T, x, y) = e−ηx ∀(x, y) ∈ R2,
(21)

where Lα denotes the Markov generator of the couple (Xα
t , Yt) associated with a constant control

α. In what follows, we denote by C1,2
b the class of all bounded functions f (t, x1, . . . , xn), with n ≥ 1,

with bounded first order derivatives ∂ f
∂t , ∂ f

∂x1
, . . . , ∂ f

∂xn
and bounded second order derivatives with

respect to the spatial variables ∂2 f
∂x2

1
, . . . , ∂ f

∂x2
n

.

Lemma 1. Let f : [0, T]× R2 → R be a function in C1,2
b . The Markov generator of the stochastic process

(Xα
t , Yt) for all constant strategies α ∈ [0,+∞) is given by the following expression:

Lα f (t, x, y) =
∂ f
∂t

(t, x, y) +
∂ f
∂x

(t, x, y)
[
rx + c(t, y)− q(t, y, α)

]
+ b(t, y)

∂ f
∂y

(t, x, y)

+
1
2

γ(t, y)2 ∂2 f
∂y2 (t, x, y) +

∫ +∞

0

[
f (t, x− z ∧ α, y)− f (t, x, y)

]
λ(t, y) dF(z, y). (22)

Proof. For any f ∈ C1,2
b , applying Itô’s formula to the stochastic process f (t, Xα

t , Yt), we get the
following expression:

f (t, Xα
t , Yt) = f (0, Xα

0 , Y0) +
∫ t

0
Lα f (s, Xα

s , Ys) ds + Mt,

where Lα is defined in (22) and

Mt =
∫ t

0
γ(s, Ys)

∂ f
∂y

(s, Xα
s , Ys) dW(Y)

s

+
∫ t

0

∫ +∞

0

(
f (s, Xα

s − z ∧ α, Ys)− f (s, Xα
s , Ys)

)(
m(ds, dz)− ν(ds, dz)

)
.

In order to complete the proof, we have to show that {Mt}t∈[0,T] is an {Ft}t∈[0,T]-martingale.
For the first term, we observe that

E
[∫ t

0
γ(s, Ys)

2
(

∂ f
∂y

(s, Xα
s , Ys)

)2

ds
]
< +∞,

because the partial derivative is bounded and using the assumption (2). For the second term, it is
sufficient to use the boundedness of f and the condition (6).

Remark 4. Since the couple (Xα
t , Yt) is a Markov process, any Markovian control is of the form αt =

α(t, Xα
t , Yt), where α(t, x, y) denotes a suitable function. The generator Lα f (t, x, y) associated with a general

Markovian strategy can be easily obtained by replacing α with α(t, x, y) in (22).

In order to simplify our optimization problem, we present a preliminary result.

Remark 5. Let g : R 7→ [0,+∞) be an integrable function such that g(0) = 0. For any α ∈ [0,+∞),
the following equation holds true:∫ +∞

0
g(z ∧ α) dF(z, y) =

∫ α

0
g′(z)F̄(z, y) dz ∀y ∈ R,
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where F̄(z, y) .
= 1− F(z, y). In fact, by integration by parts we get that∫ +∞

0
g(z ∧ α) dF(z, y) =

∫ α

0
g(z) dF(z, y) +

∫ +∞

α
g(α) dF(z, y)

= g(α)F(α, y)− g(0)F(0, y)−
∫ α

0
g′(z)F(z, y) dz + g(α)[1− F(α, y)]

= −
∫ α

0
g′(z)F(z, y) dz +

∫ α

0
g′(z) dz

=
∫ α

0
g′(z)(1− F(z, y)) dz.

(23)

Now let us consider the ansatz v(t, x, y) = e−ηxer(T−t)
ϕ(t, y), which is motivated by the

following proposition.

Proposition 3. Let us suppose that there exists a function ϕ : [0, T]×R→ (0,+∞) solution to the following
Cauchy problem:

∂ϕ

∂t
(t, y) + b(t, y)

∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y)

+ ηer(T−t)ϕ(t, y)
[
−c(t, y) + inf

α∈[0,+∞)
Ψα(t, y)

]
= 0, (24)

with final condition ϕ(T, y) = 1, ∀y ∈ R, where

Ψα(t, y) .
= q(t, y, α) + λ(t, y)

∫ α

0
eηzer(T−t)

F̄(z, y) dz, α ∈ [0,+∞). (25)

Then the function
v(t, x, y) = e−ηxer(T−t)

ϕ(t, y) (26)

solves the HJB problem given in (21).

Proof. From the expression (26) we can easily verify that

eηxer(T−t)Lαv(t, x, y) =
∂ϕ

∂t
(t, y)− ηer(T−t)ϕ(t, y)

[
c(t, y)− q(t, y, α)

]
+ b(t, y)

∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y)

+
∫ +∞

0

[
eη(z∧α)er(T−t)

ϕ(t, y)− ϕ(t, y)
]

λ(t, y) dF(z, y).

By Remark 5, taking g(z) = eηzer(T−t) − 1, we can rewrite the last integral in this more
convenient way:

ϕ(t, y)λ(t, y)
∫ +∞

0

[
eη(z∧α)er(T−t) − 1

]
dF(z, y) = ϕ(t, y)λ(t, y)

∫ α

0
ηer(T−t)eηzer(T−t)

F̄(z, y) dz.

Now we define Ψα(t, y) by means of the Equation (25), obtaining the following
equivalent expression:

eηxer(T−t)Lαv(t, x, y) =
∂ϕ

∂t
(t, y)− ηer(T−t)ϕ(t, y)c(t, y)

+ b(t, y)
∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y) + ηer(T−t)ϕ(t, y)Ψα(t, y).
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Taking the infimum over α ∈ [0,+∞), by (24) we find out the PDE in (21). The terminal condition
in (21) immediately follows by definition.

The previous result suggests to focus on the minimization of the function (25), that is the aim of
the next section.

4. Optimal Reinsurance Strategy

In this section, we study the following minimization problem:

inf
α∈[0,+∞)

Ψα(t, y), (27)

where Ψα(t, y) : [0, T]×R→ (0,+∞) is defined in (25).
In particular, we provide a complete characterization of the optimal reinsurance strategy. In the

sequel we assume 0 ≤ F(z, y) < 1 ∀(z, y) ∈ [0,+∞)×R.

Proposition 4. Let us suppose that Ψα(t, y) is strictly convex in α ∈ [0,+∞) and let us define the set
A0 ⊆ [0, T]×R as follows:

A0
.
=

{
(t, y) ∈ [0, T]×R | −∂q(t, y, 0)

∂α
≤ λ(t, y)

}
. (28)

If the equation

− ∂q(t, y, α)

∂α
= λ(t, y)eηαer(T−t)

F̄(α, y) (29)

admits at least one solution in (0,+∞) for any (t, y) ∈ [0, T] × R \ A0, denoted by α̂(t, y), then the
minimization problem (27) admits a unique solution α∗(t, y) ∈ [0,+∞) given by

α∗(t, y) =

{
0 (t, y) ∈ A0

α̂(t, y) (t, y) ∈ [0, T]×R \ A0.
(30)

Proof. The function Ψα(t, y) is continuous in α ∈ [0,+∞) by definition (see Assumption 1) and for
any (t, y) ∈ [0, T]×R its derivative is given by the following expression:

∂Ψα(t, y)
∂α

=
∂q(t, y, α)

∂α
+ λ(t, y)eηαer(T−t)

F̄(α, y). (31)

Since Ψα(t, y) is convex in α ∈ [0,+∞) by hypothesis, if (t, y) ∈ A0 then ∂Ψ0(t,y)
∂α ≥ 0,

and α∗(t, y) = 0, because the derivative ∂Ψα(t,y)
∂α is increasing in α and there is no stationary point

in (0,+∞). Else, if (t, y) ∈ [0, T]×R \ A0 then ∂Ψ0(t,y)
∂α < 0, and α∗(t, y) coincides with the unique

stationary point of Ψα(t, y), which is α̂(t, y) ∈ (0,+∞). Let us notice that it exists by hypothesis and it
is unique because Ψα(t, y) is strictly convex.

By the previous proposition, we observe that λ(t, y) is an important threshold for the insurer:
as long as the marginal cost of the full reinsurance falls in the interval (0, λ(t, y)], the optimal choice is
full reinsurance.

Unfortunately, it is not always easy to check whether Ψα(t, y) is strictly convex in α ∈ [0,+∞)

or not. In the next result such an hypothesis is relaxed, while the uniqueness of the solution to (29)
is required.
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Proposition 5. Suppose that Equation (29) admits a unique solution α̂(t, y) ∈ (0,+∞) for any (t, y) ∈
[0, T]×R \ A0. Moreover, let us assume that

∂2q(t, y, α̂(t, y))
∂α2 > −λ(t, y)eηα̂(t,y)er(T−t) ∂F̄(α̂(t, y), y)

∂z
∀(t, y) ∈ [0, T]×R \ A0. (32)

Then the minimization problem (27) admits a unique solution α∗(t, y) ∈ [0,+∞) given by (30).

Proof. Recalling the proof of Proposition 4, if (t, y) ∈ A0 then ∂Ψ0(t,y)
∂α ≥ 0 and α∗(t, y) = 0. For any

(t, y) ∈ [0, T]×R \ A0, by hypothesis there exists a unique stationary point α̂(t, y) ∈ (0,+∞). By simple
calculations, using (32) we notice that

∂2Ψα̂(t, y)
∂α2 > 0,

hence α̂(t, y) is the unique minimizer and this completes the proof.

The next result deals with the existence of a solution to (29). In particular, it is sufficient to
require that the claim size distribution is heavy-tailed, which is a relevant case in non-life insurance
(see Rolski et al. (1999), chp. 2), plus a technical condition for the reinsurance premium.

Proposition 6. Let us assume that the reinsurance premium q(t, y, α) is such that6

lim
α→+∞

∂q(t, y, α)

∂α
= l ∈ R

and the claim size distribution is heavy-tailed in this sense:∫ +∞

0
ekz dF(z, y) = +∞ ∀k > 0, y ∈ R.

Then, for any (t, y) ∈ [0, T]×R \ A0, the Equation (29) admits at least one solution in (0,+∞).

Proof. The following property of heavy-tailed distributions is a well known implication of
our assumption:

lim
z→+∞

ekz F̄(z, y) = +∞ ∀k > 0, y ∈ R.

Hence, by Equation (31), for any (t, y) ∈ [0, T]×R \ A0

lim
α→+∞

∂Ψα(t, y)
∂α

= lim
α→+∞

[
∂q(t, y, α)

∂α
+ λ(t, y)eηαer(T−t)

F̄(α, y)
]
= +∞.

On the other hand, we know that

∂Ψ0(t, y)
∂α

< 0 ∀(t, y) ∈ [0, T]×R \ A0.

As a consequence, ∂Ψα(t,y)
∂α being continuous in α ∈ [0,+∞), there exists α̂(t, y) ∈ (0,+∞) such

that ∂Ψα̂(t,y)
∂α = 0.

Now we turn the attention to the other crucial hypothesis of Proposition 4, which is the convexity
of Ψα(t, y). The reader can easily observe that the reinsurance premium convexity plays a central role.

6 E.g., if q is convex in α.
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Proposition 7. Suppose that the reinsurance premium q(t, y, α) is convex in α ∈ [0,+∞) and F(z, y) =

(1− e−ζ(y)z)1{z>0} for some function ζ(y) such that 0 < ζ(y) < η min {erT , 1} ∀y ∈ R. Then the function
Ψα(t, y) defined in (25) is strictly convex in α ∈ [0,+∞).

Proof. Recalling the expression (25), it is sufficient to prove the convexity of the following term:∫ α

0
eηzer(T−t)

F̄(z, y) dz.

For this purpose, let us evaluate its second order derivative:

eηαer(T−t)
(

ηer(T−t) F̄(α, y) +
∂F̄(α, y)

∂z

)
.

Now the term in brackets is

ηer(T−t)e−ζ(y)α − ζ(y)e−ζ(y)α > 0 ∀t ∈ [0, T].

The proof is complete.

By Proposition 1, the hypothesis on the claim sizes distribution above may be read as assuming
that the claims are exponentially distributed conditionally to Y.

4.1. Expected Value Principle

Now we investigate the special case of the expected value principle introduced in Example 1.

Proposition 8. Under the EVP (see Equation (10)), the optimal reinsurance strategy α∗(t) ∈ [0,+∞) is
given by

α∗(t) = e−r(T−t) log (1 + θ)

η
, t ∈ [0, T]. (33)

Proof. Using Remark 5, we can rewrite the Equation (10) as follows:

q(t, y, α) = (1 + θ)λ(t, y)
[∫ +∞

0
z dF(z, y)−

∫ α

0
F̄(z, y) dz

]
.

As a consequence, we have that

∂q(t, y, α)

∂α
= −(1 + θ)λ(t, y)F̄(α, y) ∀α ∈ [0,+∞).

For α = 0, we have that

∂Ψ0(t, y)
∂α

=
∂q(t, y, 0)

∂α
+ λ(t, y) < 0 ∀(t, y) ∈ [0, T]×R,

hence A0 = ∅ and by Proposition 4 the minimizer belongs to (0,+∞). Now we look for the stationary
points, i.e., the solutions to the Equation (29), that in this case reads as follows:

(1 + θ)λ(t, y)F̄(α, y) = λ(t, y)eηαer(T−t)
F̄(α, y). (34)

Solving this equation, we obtain the unique solution given by (33). In order to prove that it
coincides with the unique minimizer to (27), it is sufficient to show that

∂2Ψα∗(t)(t, y)
∂α2 > 0.
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For this purpose, observe that

∂2Ψα∗(t)(t, y)
∂α2 =

∂2q(t, y, α∗(t))
∂α2 + λ(t, y)eηα∗(t)er(T−t)

(
ηer(T−t) F̄(α∗(t), y) +

∂F̄(α∗(t), y)
∂z

)
> −(1 + θ)λ(t, y)

∂F̄(α∗(t), y)
∂z

+ λ(t, y)eηα∗(t)er(T−t) ∂F̄(α∗(t), y)
∂z

= 0.

The proof is complete.

Remark 6. Formula (33) was found by Zhao et al. (2013) (see eq. 3.31, p. 508). We point out that it is a
completely deterministic strategy. This fact is crucially related to the use of the EVP rather than the underlying
model; in fact, in Zhao et al. (2013) the authors considered the Cramér-Lundberg model under the EVP7.

From the economic point of view, by Equation (33) it is easy to show that the optimal retention level
is decreasing with respect to the interest rate and the risk-aversion; on the contrary, it is increasing with
respect to the reinsurer’s safety loading. In addition, the sensitivity with respect to the time-to-maturity
depends on the sign of r.

Another relevant aspect of (33) is that it is independent of the claim size distribution. To the
authors this result seems quite unrealistic. In fact, any subscriber of an excess-of-loss contract is
strongly worried about possibly extreme events, hence the claims distribution is expected to play an
important role.

4.2. Variance Premium Principle

This subsection is devoted to derive an optimal strategy under the variance premium principle
(see Example 2).

Proposition 9. Let us suppose that Ψα(t, y) is strictly convex in α ∈ [0,+∞) and

lim
z→+∞

eη min {erT ,1}z F̄(z, y) = l, (35)

for some l > 0 (eventually l = +∞).
Under the VP (see Equation (11)) the optimal reinsurance strategy α∗(t, y) is the unique solution to the

following equation: (
eηαer(T−t)

+ 2θα− 1
)

F̄(α, y) = 2θ
∫ +∞

α
z dF(z, y). (36)

Proof. The proof is based on Proposition (4). By Equation (11) we get its derivative:

∂q(t, y, α)

∂α
= λ(t, y)F̄(α, y)(2θα− 1)− 2θλ(t, y)

∫ +∞

α
z dF(z, y).

It is clear that the set A0 defined in (28) is empty, because for any (t, y) ∈ [0, T]×R

−∂q(t, y, 0)
∂α

= λ(t, y)F̄(0, y) + 2θλ(t, y)
∫ +∞

0
z dF(z, y) > λ(t, y).

7 It is not surprising, in fact in Brachetta and Ceci (2019) and references therein also the optimal proportional reinsurance
under EVP turns out to be deterministic.
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Hence the minimizer should coincide with the unique stationary point of Ψα(t, y), i.e., the solution
to (36). In order to prove it, we need to ensure the existence of a solution to (36). For this purpose,
we notice that on the one hand

∂Ψ0(t, y)
∂α

= −2θλ(t, y)
∫ +∞

0
z dF(z, y) < 0.

On the other hand, for α→ +∞, by (35) we get

lim
α→+∞

∂Ψα(t, y)
∂α

= λ(t, y) lim
α→+∞

[(
eηαer(T−t)

+ 2θα− 1
)

F̄(α, y)− 2θ
∫ +∞

α
z dF(z, y)

]
> 0.

As a consequence, by the continuity of Ψα(t, y) there exists a point α∗ ∈ (0,+∞) such that
∂Ψα∗ (t,y)

∂α = 0. Such a solution is unique because Ψα(t, y) is strictly convex by hypothesis.

Conversely to Proposition 8, the optimal retention level given in Proposition 9 is still dependent
on the stochastic factor Y. Such a dependence is spread through the claim size distribution.

Remark 7. We observe that any heavy-tailed distribution (see the proof of Proposition 6) satisfies the
condition (35) with l = +∞.

Now we specialize the variance premium principle to conditionally exponentially
distributed claims.

Proposition 10. Under the VP, suppose that F(z, y) = (1− e−ζ(y)z)1{z>0} for some function ζ(y) such that
ζ(y) > 0 ∀y ∈ R. The optimal reinsurance strategy is given by

α∗(t, y) = e−r(T−t)
log (1 + 2θ

ζ(y) )

η
, (t, y) ∈ [0, T]×R. (37)

Proof. By the proof of Proposition 9, we know that under VP A0 = ∅. Now, under our hypotheses,
by Equation (31) we readily get

∂Ψα(t, y)
∂α

= λ(t, y)
[(

eηαer(T−t)
+ 2θα− 1

)
F̄(α, y)− 2θ

∫ +∞

α
z dF(z, y)

]
= λ(t, y)

[(
eηαer(T−t)

+ 2θα− 1
)
e−ζ(y)α − 2θe−ζ(y)α(α +

1
ζ(y)

)]
= λ(t, y)e−ζ(y)α

[
eηαer(T−t) − 1− 2θ

ζ(y)

]
.

The equation ∂Ψα(t,y)
∂α = 0 admits a unique solution, given by Equation (37). At this point α∗(t, y),

the function Ψα(t, y) is strictly convex, because

∂Ψα∗(t, y)
∂α

= −ζ(y)
∂Ψα∗(t, y)

∂α
+ λ(t, y)e−ζ(y)α∗ηer(T−t)eηα∗er(T−t)

= λ(t, y)e−ζ(y)α∗ηer(T−t)eηα∗er(T−t)
> 0.

It follows that α∗(t, y) is the unique minimizer by Proposition 30.

Contrary to Equation (33), the explicit formula (37) keeps the dependence on the stochastic factor
Y. In addition, the following result holds true.



Risks 2019, 7, 48 15 of 23

Remark 8. Suppose that F(z, y) = (1− e−ζ(y)z)1{z>0} for some function ζ(y) such that ζ(y) > 0 ∀y ∈ R.
We consider two different reinsurance safety loadings θEVP, θVP > 0, referring to the EVP and VP, respectively.
Moreover, let us denote by α∗EVP(t) and α∗VP(t, y) the optimal retention level under the EVP and VP, given in
Equations (33) and (37), respectively. It is easy to show that ∀t ∈ [0, T]

α∗VP(t, y)

{
> α∗EVP(t) ∀y : ζ(y) < 2θVP

θEVP

≤ α∗EVP(t) otherwise.

From the practical point of view, as long as the stochastic factor fluctuations result in a rate parameter ζ(y)
higher than the threshold 2θVP

θEVP
, the optimal retention level evaluated through the expected value principle turns

out to be larger than the variance principle.

5. Verification Theorem

Theorem 1 (Verification Theorem). Let us suppose that Equation (18) holds good and ϕ : [0, T]×R →
(0,+∞) is a bounded classical solution ϕ ∈ C1,2((0, T)× R) ∩ C([0, T]× R) to the Cauchy problem (24),
such that ∣∣∣∣∂ϕ

∂y
(t, y)

∣∣∣∣ ≤ C(1 + |y|β) ∀(t, y) ∈ [0, T]×R, (38)

for some constants β, C > 0. Then the function v(t, x, y) = e−ηxer(T−t)
ϕ(t, y) is the value function in

Equation (20). As a byproduct, the strategy α∗t
.
= α∗(t, Yt) described in Proposition 4 is an optimal control.

Proof. By Proposition 3, the function v(t, x, y) defined in Equation (26) solves the HJB problem (21).
Hence for any (t, x, y) ∈ [0, T]×R2

Lαv(s, Xα
t,x(s), Yt,y(s)) ≥ 0 ∀s ∈ [t, T], α ∈ At,

where {Xα
t,x(s)}s∈[t,T] and {Yt,y(s)}s∈[t,T] denote the solutions to (12) and (1) at time s ∈ [t, T], starting

from (t, x) ∈ [0, T]×R and (t, y) ∈ [0, T]×R, respectively.
From Itô’s formula we get

v(T, Xα
t,x(T), Yt,y(T)) = v(t, x, y) +

∫ T

t
Lαv(s, Xα

t,x(s), Ys) ds + MT −Mt, (39)

with {Mr}r∈[t,T] defined by

Mr =
∫ r

t
γ(s, Ys)

∂v
∂y

(s, Xα
t,x(s), Ys) dW(Y)

s

+
∫ r

t

∫ +∞

0

(
v(s, Xα

t,x(s)− z ∧ α, Ys)− v(s, Xα
t,x(s), Ys)

)(
m(ds, dz)− ν(ds, dz)

)
. (40)

In order to show that {Mr}r∈[t,T] is an {Ft}t∈[0,T]-local-martingale, we use a localization
argument, taking

τn
.
= inf{s ∈ [t, T] | Xα

t,x(s) < −n ∨ |Ys| > n}, n ∈ N.

The reader can easily check that {τn}n∈N is a non decreasing sequence of stopping time such
that limn→+∞ τn = +∞ (see Equations (15) and (3)). For the diffusion term of Mr, using the
assumptions (38) and (2), we notice that
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E
[∫ T∧τn

t
γ(s, Ys)

2
(

∂v
∂y

(s, Xα
t,x(s), Ys)

)2

ds
]

= E
[∫ T∧τn

t
γ(s, Ys)

2e−2ηXα
t,x(s)e

r(T−t)
(

∂ϕ

∂y
(s, Ys)

)2

ds
]

≤ Cn E
[∫ T∧τn

t
γ(s, Ys)

2 ds
]
< +∞ ∀n ∈ N,

where Cn > 0 is a constant depending on n. For the jump term, by the condition (18) and Remark 1,
we get

E
[∫ T∧τn

t

∫ +∞

0
|v(s, Xα

t,x(s)− z ∧ α, Ys)− v(s, Xα
t,x(s), Ys)|ν(ds, dz)

]
≤ E

[∫ T∧τn

t

∫ +∞

0

∣∣∣e−ηKXα
t,x(s)(eηK(z∧α) − 1)ϕ(s, Ys)

∣∣∣ν(ds, dz)
]

≤ C̃n E
[∫ T∧τn

t

∫ +∞

0
(eηKz − 1)λ(s, Ys)dF(z, Ys) ds

]
< +∞,

with C̃n denoting a positive constant dependent on n. Thus {Mr}r∈[t,T] turns out to be an
{Ft}t∈[0,T]-local-martingale and {τn}n∈N is a localizing sequence for it. Now, taking the conditional
expectation of (39) with T ∧ τn in place of T, we obtain that

E[v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn)) | Ft] ≥ v(t, x, y) ∀(t, x, y) ∈ [0,∧τn]×R2, α ∈ At, n ∈ N.

Let us notice that

E[v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn))

2] ≤ C̃e−2ηner(T−t) ≤ C̃,

where C̃ > 0 is a constant. As a consequence, {v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn))}n∈N is a sequence

of uniformly integrable random variables. By classical results in probability theory, it converges almost
surely. Using the monotonicity and the boundedness of {τn}n∈N, together with the non explosion of
{Xα

t,x(s)}s∈[t,T] and {Yt,y(s)}s∈[t,T] (see (15) and (3)), taking the limit for n→ +∞ we conclude that

E[v(T, Xα
t,x(T), Yt,y(T)) | Ft] = lim

n→+∞
E[v(T ∧ τn, Xα

t,x(T ∧ τn), Yt,y(T ∧ τn)) | Ft]

≥ v(t, x, y) ∀t ∈ [0, T], α ∈ At.

As a byproduct, since α∗(t, y) given in Proposition 4 realizes the infimum in (27), we have that
Lα∗v(t, x, y) = 0 and, replicating the calculations above, we obtain the equality

E
[

e−ηXα∗
t,x (T) | Yt = y

]
= inf

α∈At
E
[

e−ηXα
t,x(T) | Yt = y

]
= v(t, x, y),

i.e., α∗t
.
= α∗(t, Yt) is an optimal control.

By Theorem 1, the value function (20) can be characterized as a transformation of the solution
to the partial differential equation (PDE) (24). Nevertheless, an explicit expression is not available,
except for very special cases. The following result provides a probabilistic representation by means of
the Feynman-Kac theorem.

Proposition 11. Under the same assumptions of Theorem 1, the value function (20) admits the
following representation:
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v(t, x, y) = e−ηxer(T−t) E
[

e
∫ T

t ηer(T−s)
(

infα∈[0,+∞) Ψα(s,Ys)−c(s,Ys)
)

ds | Yt = y
]

, (41)

where Ψα(t, y) is the function defined in (25).

Proof. The thesis immediately follows by Theorem 1 and the Feynman-Kac representation of ϕ(t, y).

Remark 9. We refer to Heath and Schweizer (2000) for existence and uniqueness of a solution to the PDE (24).

6. Numerical Results

In this section, we show some numerical results, mostly based on Propositions 8 and 10.
We assumed the following dynamic of the stochastic factor Y for performing simulations:

dYt = 0.3 dt + 0.3 dW(Y)
t , Y0 = 1.

The {Ft}t∈[0,T]-dual predictable projection ν(dt, dz) (see Equation (5)) is determined by
these functions:

λ(t, y) = λ0e
1
2 y, λ0 = 0.1,

F(z, y) = (1− e−ζ(y)z)1{z>0}, with ζ(y) = ey + 1.

The parameters are set according to Table 1 below.

Table 1. Simulation parameters.

Parameter Value

c 1
T 5 Y
η 0.5
θ 0.1
r 5%
N 500
M 5000

The SDEs are approximated through a classical Euler’s scheme with steps length T
N , while the

expectations are evaluated by means of Monte Carlo simulations with parameter M.
In Figure 1 we show the dynamic strategies under EVP and VP, computed by the Equations (33)

and (37), respectively.
In Figure 2 we start the sensitivity analysis investigating the effect of the risk aversion parameter

on the optimal strategy at time t = 0. As expected, there is an inverse relationship. Notice that for high
values of η the two strategies tend to the same level.

Figure 3 refers to the sensitivity analysis with respect to the reinsurance safety loading θ.
When θ = 0 the strategies coincide (because the premia coincide), then they diverge for increasing
values of θ.

In Figure 4 we observe that the distance between the retention levels in the two cases is larger
when r < 0 and it decreases as long as r increases. Nevertheless, even for positive values of the
risk-free interest rate the distance is not negligible (see the pictures above, with r = 0.05).

In Figure 5 we study the response of the optimal strategy to variations of the time horizon.
The two cases exhibit the same behavior, which is strongly influenced by the sign of the interest rate.
In fact, if r < 0 the retention level increases with the time horizon, while if r > 0 the optimal strategy
decreases with T.
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Finally, thanks to Proposition 11 we are able to numerically approximate the value function by
simulating the trajectories of Y. The graphical result (under VP) is shown in Figure 6 below.

Figure 1. The dynamics of the optimal strategies under EVP (red) and VP (blue).

Figure 2. The effect of the risk aversion on the optimal strategy under EVP (red) and VP (blue).

Figure 3. The effect of the reinsurer’s safety loading on the optimal strategy under EVP (red) and VP (blue).
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Figure 4. The effect of the risk-free interest rate on the optimal strategy under EVP (red) and VP (blue).

Figure 5. The effect of the time horizon on the optimal strategy under EVP (red) and VP (blue).

Figure 6. The value function v(0, x, y) at the initial time.
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Abbreviations

The following abbreviations are used in this manuscript:

CEV Constant Elasticity of Variance
SDE Stochastic Differential Equation
ECB European Central Bank
HJB Hamilton-Jacobi-Bellman
EVP Expected value principle
VP Variance premium principle
PDE Partial Differential Equation

Appendix A

Proof of Proposition 1. Let us consider H(s, z) = Hs1A(z), with {Hs}s∈[0,T] any nonnegative
{Fs}s∈[0,T]-predictable process and A ∈ B([0,+∞)). By Equation (8) we get ∀t ∈ [0, T]

E
[∫ t

0

∫ +∞

0
Hs1A(z)m(ds, dz)

]
= E

[
∑
n≥1

HTn1{Zn∈A}1{Tn≤t}

]
= E

[∫ t

0
Hsλ(s, Ys)

∫
A

dF(z, Ys)ds
]

.

By Equation (9) we can rewrite this quantity as follows:

E
[∫ t

0
Hs

∫
A

dF(z, Ys)dNs

]
= E

[
∑
n≥1

HTn1{Tn≤t}F(A, YTn)

]
,

with the notation F(A, y) .
=
∫

A dF(z, y).
On the other hand, since HTn1{Tn≤t} is an FT−n

-measurable random variable (see Appendix 2,
T4 in Brémaud (1981)), we have that

E
[

∑
n≥1

HTn1{Zn∈A}1{Tn≤t}

]
= E

[
∑
n≥1

HTn1{Tn≤t}P[Zn ∈ A | FT−n
]

]
.

Hence

E
[

∑
n≥1

HTn1{Tn≤t}P[Zn ∈ A | FT−n
]

]
= E

[
∑
n≥1

HTn1{Tn≤t}F(A, YTn)

]
. (A1)

By the arbitrariness of t we can choose t = T ∧ T1. In this case, Equation (A1) reads as

E
[

HT11{T1≤T}P[Z1 ∈ A | FT−1
]

]
= E

[
HT11{T1≤T}F(A, YT1)

]
.

By the arbitrariness of {Hs}s∈[0,T] we deduce the thesis for n = 1. Now let us choose t = T ∧ T2.
Equation (A1) becomes

E
[

HT11{T1≤T}P[Z1 ∈ A | FT−1
] + HT21{T2≤T}P[Z2 ∈ A | FT−2

]

]
= E

[
HT11{T1≤T}F(A, YT1) + HT21{T2≤T}F(A, YT2)

]
.
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In view of the preceding equation, we obtain the desired equality for n = 2. Repeating the same
argument for n = 3, 4, . . . we complete the thesis.

Appendix B

In this section we motivate formulas (10) and (11). Let us denote by {Cα
t }t∈[0,T] the reinsurer’s

cumulative losses at time t:

Cα
t =

∫ t

0

∫ +∞

0
(z− z ∧ αs)m(ds, dz), t ∈ [0, T].

Recalling (5), by Equation (10) in Example 1 we readily check that for any strategy {αt}t∈[0,T]
under the EVP

E
[ ∫ t

0
q(s, Ys, αs) ds

]
= (1 + θ)E

[ ∫ t

0

∫ +∞

0
(z− z ∧ αs) λ(s, Ys) dF(z, Ys) ds

]
= (1 + θ)E

[ ∫ t

0

∫ +∞

0
(z− z ∧ αs)m(ds, dz)

]
= (1 + θ)E[Cα

t ],

for some safety loading θ > 0, i.e., for any time t ∈ [0, T] the expected premium covers the expected
losses plus an additional (proportional) term, which is the expected net income.

Now let us focus on Example 2. Under the VP the reinsurance premium should satisfy the
following equation:

E
[ ∫ t

0
q(s, Ys, αs) ds

]
= E[Cα

t ] + θ var[Cα
t ], (A2)

for some safety loading θ > 0. We need to evaluate the variance term. Let us introduce the following
stochastic process:

Mα
t =

∫ t

0

∫ +∞

0
(z− αs)+

(
m(ds, dz)− ν(ds, dz)

)
, t ∈ [0, T],

denoting (x− y)+ = x− x ∧ y. We have that

var[Cα
t ] = E[(Cα

t )
2]−E[Cα

t ]
2

= E
[
|Mα

t |
2]+E

[(∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

)2]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
−E[Cα

t ]
2.

Denoting by 〈Mα〉t the predictable covariance process of Mα
t , using Remark 1 we finally obtain

var[Cα
t ] = E[〈Mα〉t] + var

[∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
= E

[ ∫ t

0

∫ +∞

0
(z− αs)

2
+ λ(s, Ys)dF(z, Ys) ds

]
+ var

[∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
.
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Under the special case λ(t, y) = λ(t) and F(z, y) = F(z) (e.g., under the Cramér-Lundberg model),
for any constant strategy α ∈ [0,+∞) the previous equation reduces to

var[Cα
t ] =

∫ t

0

∫ +∞

0
(z− α)2

+ λ(s)dF(z) ds.

Extending this formula to the model formulated in Section 2, we obtain the expression (11).
Of course, there will be an approximation error, because in our general model the intensity and the
claim size distribution depend on the stochastic factor. Nevertheless, this is a common procedure in
the actuarial literature.
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