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Abstract: Contingent Convertible (CoCo) is a hybrid debt issued by banks with a specific feature
forcing its conversion to equity in the event of the bank’s financial distress. CoCo carries two major
risks: the risk of default, which threatens any type of debt instrument, plus the exclusive risk of
mandatory conversion. In this paper, we propose a model to value CoCo debt instruments as a
function of the debt ratio. Although the CoCo is a more expensive instrument than traditional debt,
its presence in the capital structure lowers the cost of ordinary debt and reduces the total cost of debt.
For preliminary equity holders, the presence of CoCo in the bank’s capital structure increases the
shareholder’s aggregate value.

Keywords: credit risk; contingent convertible debt; financial modelling; risk management; financial
crisis

1. Introduction

The 1988 Basel accord ties bank capitalization to portfolio risk by introducing the Capital
Adequacy Requirement (CAR). Subsequently, Basel II obliges banks to maintain sufficient
loss-absorbing capital on an annual basis. However, several studies on the 2008 financial crisis,
such as Flannery (2014) and Duffie (2010) reveal that, in practice, regulators are unable to force banks
to maintain adequate loss-absorbing capital. To alleviate banks under-capitalization, Flannery (2005)
introduced Contingent Convertibles, hereafter referred to as CoCo in accordance with most of the
main-related studies. CoCo is a hybrid debt with a specific clause stipulating that the issuer would
either convert it to equity or write down its face value if the level of loss-absorbing capital falls below
a certain threshold. This is supposed to help with a firm’s recapitalization under distress, while equity
holders would be reluctant to raise capital voluntarily by issuing new shares. Basel III recommends
large financial institutions to issue CoCo as a part of their capital adequacy requirements (CAR).

CoCo carries two major risks: the risk of default, which threatens any type of debt instrument,
plus the exclusive risk of mandatory conversion. CoCo differs greatly from a traditional convertible
bond, which the conversion is optional and generally rewards the bondholder; hence, it is not a risk.
Mandatory conversion of CoCo is a punishing mechanism which decreases the value of the bondholder
in most scenarios; hence, it is a risk factor.

Most literature employs the structural approach to model CoCo dynamics. Studies generally
define a trigger threshold as the barrier, then calculate the conditional probability of hitting the barrier.
What makes this group of studies different is the choice of underlying instrument that triggers the
conversion and the dynamics of the underlying trigger. The trigger is the book-equity-to-book-asset
ratio in Glasserman and Nouri (2012), where they model the book asset process using a geometric
Brownian motion (GBM). Conversion occurs if the book-equity-to-book-asset ratio exceeds a
predetermined exogenous ratio. Chen et al. (2013) use the same underlying instrument while they
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model the book asset process using a jump-diffusion. Conversion is triggered if the asset value goes
over a predetermined exogenous threshold. In Brigo et al. (2015), firm asset value is a GBM process and
the conversion barrier is a linear function of the asset-to-equity ratio. De Spiegeleer et al. (2017), in a
more recent study, come closer to the Basel III accord and define the implied Common Equity Tier 1
(CET1) volatility as the conversion trigger while modelling the CET1 capital ratio as a GBM. Structural
modelling based on a GBM makes the conversion time predictable, while being counterfactual.
Uncertainty with respect to the conversion is due not only to the use of accounting capital ratio
as the conversion trigger, but also to the stipulations in Basel III that allow regulators to choose the
conversion time at their discretion. Studies such as Albul et al. (2013) and Hilscher and Raviv (2014)
model the CoCo as a contingent claim on the value of the bank’s assets. The results are relatively
tractable models in which the bank’s incentive to issue CoCo voluntarily could be examined. Once
again, the main challenge of these approaches is in triggering the conversion by the unobservable
market value of assets.

In Cheridito and Xu (2015), the CoCo price is modelled using a pure reduced form approach
where the conversion and default events are modelled with a time-changed Poisson process. However,
the reduced form approach is less intuitive by ignoring the link between the capital ratio and the
trigger event (Brigo et al. 2015). Chung and Kwok (2016) use a structural approach to model the
conversion when the capital ratio falls below a certain threshold and also use a Poisson process to
model the potential unexpected conversion imposed by the regulator.

Conversion price is also a matter of debate in the literature. As a basic design, Flannery (2005)
proposes that the number of shares received by CoCo holders at conversion is determined by the face
value of the CoCo bonds divided by the market price of stock on the day of conversion. However, this
basic conversion mechanism gives an opportunity to short sellers to bid down the share price, force
conversion and dilute the market by increasing the number of outstanding shares. To avoid share price
manipulation, Duffie (2010) argues that the number of shares should be based on a multi-day average
of closing prices. Other studies such as Flannery (2016) and Pennacchi (2010) propose converting the
CoCo into a predetermined number of shares at a fixed price. However, there is a high risk that CoCo
investors will suffer some value losses upon conversion due to a jump in the market price of shares.

Regulators insist that the CoCo conversion trigger should be based on the accounting capital
ratio. Indeed, this is determined by the Basel Committee on Banking Supervision (BCBS) at
a global level in Basel III, the European Banking Authority through the Capital Requirements
Directive IV/Capital Requirements Regulation (CRD IV/CRR) and the Office of the Superintendent of
Financial Institutions (OSFI) in Canada through the Capital Adequact Requirements (CAR) guidelines.
The Common Equity Tiers 1 (CET1) should not fall bellow a certain percent of risk-weighted
asset (RWA). Although accounting measures are not forward looking and can be manipulated by
managers, they ensure that CoCo conversion occurs when a firm encounters serious financial problems.
Glasserman and Nouri (2012) and Chen et al. (2013) choose asset book value as the trigger through the
book-equity-to-book-asset ratio, claiming that the book asset value truly approximates the market asset
value. Many studies are against employing book value as a basis of conversion because it generates a
delayed signal of financial distress. McDonald (2013) and Bolton and Samama (2012) assume that the
market price of equity can measure a bank’s loss-absorbing capacity. They propose a CoCo design in
which the share price functions as the conversion trigger. Sundaresan and Wang (2015) point out two
shortcomings of employing the market price of shares as the conversion trigger within their framework,
both of which are linked to the fact that CoCo conversion generates a value exchange between CoCo
holders and initial equity holders. First, if the value is transferred from shareholders to CoCo investors
at conversion, there can be more than one rational expected equilibrium price for both the stocks and
CoCos. Second, if the value is transferred to shareholders, the model sometimes lacks an equilibrium
share price. Sundaresan and Wang (2015) conclude that a unique competitive equilibrium exists if
the conversion does not induce a value transfer. Glasserman and Nouri (2012) maintain that this
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multiple equilibrium problem is a feature of discrete-time models and can be alleviated in a continuous
time framework.

Closer to our paper, Chen et al. (2017) study the design and incentive effects of contingent
convertible debt on optimal capital structure. The asset value is modelled as a jump diffusion, default
and conversion occur whenever the firm value triggers some critical value. The default threshold is
determined by the equity holder in such a way to maximize the equity value. They conclude that
equity holders often have a positive incentive of issuing CoCos because the presence of CoCos reduces
the bankruptcy costs when the conversion trigger is large enough.

In this paper, we also study the impact of having a contingent debt instrument in the debt structure
in the perspective of equity holders. Based on a discrete time dynamic optimization approach, we reach
similar conclusions as Chen et al. (2017). Indeed, our framework differs from the latter in various
ways. First, the endogenous floating coupon rates of the standard and the CoCo debts account for the
indebtedness of the firm. Second, the number of shares received by CoCo debt holders at conversion
time is also designed differently. In our study, the optimal dividend stream is solved through a dynamic
optimization approach: the equity holders have an incentive to control the firm debt ratio to maximize
their share of the firm equity value, avoiding the dilution effect caused by conversion. It also benefits
the bondholder as its mitigates the default risk.

A numerical simulation based on realistic data evaluates the benefits and the costs of having
CoCos in the bank’s debt structure. The parameters are estimated using three banks from three
different regions (Europe, Canada and the United States), for three different periods of time (pre-crisis,
crisis, post-crisis). The results help to understand how CoCos can help “Too big to fail” banks in
different economic conditions. Although there are important differences among these three cases,
common behaviours are observed: the presence of CoCos in the debt structure reduces the probability
of default, the coupon of the standard debt, the cost of debt and capital. However, the CoCo is a more
expensive instrument than the standard debt, mainly because the investor bears more risk. This study
contributes to the literature by evaluating the effectiveness of adding CoCos to the financial firm’s
capital structure. We do not only evaluate the CoCo debt itself, but also examine its impact on the
firm’s management strategy by optimizing the per-share value of the cumulated dividend stream.
Equity holders modify the optimal dividend policy to account for the conversion risk that affect them
through the dilution effect (after conversion, there are more equity shares).

This paper is structured as follows. Section 2 presents the model to value CoCo and defines the
conversion as well as the default intensity. Section 3 presents the dynamic programming model use to
examine how CoCo impact the firm’s management strategy. Section 4 is decomposed into three parts.
First, the data used to have realistic scenarios are presented. Second, the results are presented for each
bank and each year. Third, a sensitivity analysis follows. Section 5 presents conclusions.

2. The Model

The asset value satisfies
At = Et + Dt, (1)

where Et and Dt are the equity and debt values, respectively. The debt is decomposed into three
main components: the deposit whose time t value is Ft, the coupon-paying bonds and other debt
instruments for a value of Bt, and a convertible contingent instrument (CoCo) whose value is Ct:

Dt = Ft + Bt + Ct.

The debt ratio is defined as
Xt =

Dt

At
. (2)

The presence of the CoCo debt alleviates the default risk since, in case of financial distress,
the CoCo debt is converted into equity, leading to a smaller debt ratio. CoCo debt holders bear not only
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a default risk, but also a conversion risk; therefore, they require compensation in the form of a coupon
payment that differs from that of a standard debt, which is subject only to credit risk. More precisely,
once converted into equity, the CoCo debt has a zero recovery rate in case of default. However, if the
firm survives after the conversion, then it is not clear whether the proportion of equity value held by
the CoCo debt holders will be more or less profitable than for a standard debt.

The default time is denoted τD, and the conversion time satisfies τC = min (τα, τD), which means
that the CoCo debt is always converted before the default event. Because other factors may influence
the conversion decision, it does not necessarily occur as soon as the leverage ratio triggers α, but it is
very likely to occur. Consequently, the conversion intensity driving τα,

Gt = g (Xt) =

(
Xt

θC

)βC

,

is a positive and convex function of Xt, taking large values whenever Xt is above θC ∈ (0, 1] and
small values otherwise. θC should be close to α. The parameter βC is usually a large positive constant.
Therefore,

Pt (τα = t |τα > t− 1, τD > t− 1 ) = [1− exp (−Gt)] 1τα>t−11τD>t−1.

Intuitively, the conversion should occur whenever the leverage ratio is close to the critical level α

determined by the regulator. If the CoCo debt still exists at time t, then the superscript t− denotes
the pre-conversion values of the considered variables. The convertible contingent instrument is a
coupon-paying bond with the floating coupon rate c (Xt). At conversion, CoCo debt holders receive,
in the form of equity shares, an amount equivalent to the debt’s face value Cτ−C

and a fraction ρC of the
coupon. In other words, at conversion, the convertible debt holders receive

NτC =
Cτ−C

(
1 + ρCc

(
XτC−1

))
SτC

equity shares where SτC is the post-conversion price per share. Assuming that initially there were N
outstanding equity shares, the post-conversion price per share becomes

SτC =
EτC

N + NτC

=
Eτ−C

+ Cτ−C

(
1 + ρCc

(
XτC−1

))
N +

C
τ−C
(1+ρCc(XτC−1))

SτC

.

Multiplying both sides by N +
C

τ−C
(1+ρCc(XτC−1))

S
τ−C

and isolating SτC leads to

SτC =
Eτ−C

N
= Sτ−C

,

which implies that the price per share is not affected by the conversion. Then, the equity value becomes

EτC = Eτ−C
+ Cτ−C

(
1 + ρCc

(
XτC−1

))
.

Letting

yt =
Ct

Dt
∈ [0, γ] ⊆ [0, 1] (3)
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be the proportion of convertible debt in the total debt value. Because there are always deposits, then
the convertible instrument represents less than 100% of the debt value, which implies that γ < 1.
The number of additional shares issued at conversion satisfies

NτC = N
(
1 + ρCc

(
XτC−1

))
y

τ−C

Xτ−C

1− Xτ−C

∼= N (1 + ρCc (α)) y
τ−C

(
α

1− α

)
. (4)

Proof.

NτC =
Cτ−C

(
1 + ρCc

(
XτC−1

))
SτC

= N
Cτ−C

(
1 + ρCc

(
XτC−1

))
Eτ−C

= N
Cτ−C

(
1 + ρCc

(
XτC−1

))
Dτ−C

Dτ−C

Aτ−C

Aτ−C

Eτ−C

= N
(
1 + ρCc

(
XτC−1

)) Cτ−C

Dτ−C

Dτ−C

Aτ−C

1

1−
D

τ−C
A

τ−C

= N
(
1 + ρCc

(
XτC−1

))
y

τ−C

Xτ−C

1− Xτ−C

.

The standard debt pays the floating coupon rate of b (Xt, yt) unless default occurs. Interestingly,
the debt coupon is affected by the presence of the CoCo instrument because the latter mitigates both
the default and recovery risks. If

1− zt =
Ft

Ft + Bt
=

Ft

Dt − Ct
=

1
1− yt

Ft

Dt

denotes the proportion of the non-convertible contingent debt value that consists of deposits, then

Ft = (1− zt) (1− yt) Dt, Bt = zt (1− yt) Dt and Ct = ytDt. (5)

2.1. The Debt Ratio P−Dynamics

Assume that the firm survives up to time t : τD > t. At the beginning of the t + 1th period,
the invested capital yields returns:

Rt+1 = mt+1 + σt+1εPt+1,

where m and σ2 are predictable processes and the sequence of εt is formed with independent standard
normal random variables. The information structure is provided by the filtration {Ft}∞

t=1 , where

Ft = σ
({

εPu
}t

u=1

)
is the σ−field modelling the information available at time t. Throughout the period,

decisions about the convertible contingent debt conversion and the dividend payment affect the debt
and debt ratio values. At time t + 1, free cash flow (FCF) is

FCFt+1 = AtRt+1.

The financial flow (FF) is decomposed into the deposit interest payment rt+1Ft, where rt+1 is the
predictable risk-free rate, the interest payment on standard and convertible debts, b (Xt, yt) Bt and
c (Xt)Ct respectively, the dividend payment δt+1 At+1, and the debt structure variation,

Dt+1 − Dt = (Ft+1 − Ft) + (Bt+1 − Bt) + (Ct+1 − Ct) 1τC>t+1 − Ct1τC=t+1.

The floating interest rates reflect the risk embedded in both standard and CoCo debts. Both types of
debts contain credit risk because the firm may default. See Appendix A.
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The debt structure variation is expressed as a ratio:

ηt+1 =
Dt+1 − Dt

Dt
.

New debt issuance makes ηt+1 > 0, whereas debt reaching maturity or CoCo debt conversion leads to
ηt+1 < 0.

Assumption 1. Let yt = y01τC>t, where y0 = C0/D0. In other words, whenever the contingent convertible
debt exists, its proportion of the total debt value remains constant.
Similarly, assuming that the proportion of deposits with respect to the non-convertible debt value remains
constant over time, (1− zt) = (1− z0) = F0/(F0 + B0) and z0 = B0/(F0 + B0).

Assumption 2. At conversion time, if there is no variation in the other types of debt, then ητC = −ytC−1.
In the numerical implementation, we assume that ηt+1 = −yt1τC=t+1. In other words, the debt value at
conversion is modified only by the conversion of the CoCo debt to equity.

Thus, the weighted average interest rate is

µt+1 = µt+1
(
Xt, zt, yt, 1τC>t+1

)
=
(
rt+1Ft + b (Xt, yt) Bt + c (Xt)Ct1τC≥t+1

)
/Dt

= rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt1τC>t+1. (6)

Since
Dt+1 = Dt (1 + ηt+1) , (7)

the financial flow satisfies

FFt+1 = µt+1Dt + Dt − Dt+1 + δt+1 At+1

= (µt+1 − ηt+1) Dt + δt+1 At+1.

The bank’s profit is the difference FCF − FF between the free cash flow and the financial flow.
Therefore,

At+1 = At + FCFt+1 − FFt+1

= (1 + Rt+1) At − (µt+1 − ηt+1) Dt − δt+1 At+1,

which is equivalent to

At+1 =
(1 + Rt+1) At − (µt+1 − ηt+1) Dt

1 + δt+1
. (8)

Dividing both sides of Equation (8) by At,

At+1

At
=

(1 + Rt+1)− (µt+1 − ηt+1) Xt

1 + δt+1
.

Since
At+1

At
=

At+1

Dt+1

Dt+1

Dt

Dt

At
=

1
Xt+1

(1 + ηt+1) Xt,

comparing both equations and isolating Xt+1 implies that the (post-dividend) debt ratio must satisfy

Xt+1 =
(1 + δt+1) (1 + ηt+1) Xt

(1 + Rt+1)− (µt+1 − ηt+1) Xt
. (9)
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Note that
Xt+1 = (1 + δt+1) X0

t+1, (10)

where X0
t+1 denotes the pre-dividend debt ratio

X0
t+1 = Xt+1|δt+1=0 =

(1 + ηt+1) Xt

(1 + Rt+1)− (µt+1 − ηt+1) Xt
.

2.2. Conversion

The conversion decision is taken under the assumption that δt+1 = 0, ηt+1 = 0 (no debt issuing or
refunding) and that the full interest payment includes the CoCo debt coupon:

µC
t+1 = rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt. (11)

The conversion intensity

Gt+1 = g
(

XC
t+1

)
=

(
XC

t+1
θC

)βC

(12)

is a positive, increasing, and convex function of the debt ratio

XC
t+1 =

Xt

(1 + Rt+1)− µC
t+1Xt

, (13)

which is a particular case of Equation (9). The parameter θC is the critical level from which the
conversion probability grows fast beyond this threshold. Because of the convex relation between the
conversion intensity and the conversion probability, θC is not exactly equal to the regulator critical
level α, but it is in its neighborhood. The parameter βC captures the growth speed. In the numerical
implementation, both parameters are obtained through a calibration approach based on the regulator
critical level α. For this reason, τα denotes the conversion time characterized by the conversion intensity
α. The conditional conversion probability at time t + 1 triggered by the critical level α (letting βC → ∞,
we recover the case where conversion occurs as soon as Xt− > α) is

Pt+1 (τα = t + 1 |τC > t ) = [1− exp (−Gt+1)] 1τC>t.

Because immediate conversion may also arise as a consequence of an unpredicted default, the
survival conversion probability is

Pt+1 (τC > t + 1 |τC > t ) = Pt+1 (τα > t + 1, τD > t + 1 |τC > t )

= Pt+1 (τα > t + 1 |τC > t )Pt+1 (τD > t + 1 |τC > t )

= exp (−Ht+11τC>t − Gt+1) .

Then, the conditional conversion probability arising from both the critical level and the potential
default is

Pt+1 (τC = t + 1 |τC > t ) = [1− exp (−Ht+11τC>t − Gt+1)] 1τC>t, (14)

where the default intensity Ht+1 is defined at Equation (17).
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2.3. Default

Since default occurs after conversion, the interest payment does not include the CoCo debt coupon.
Indeed, a fraction of the CoCo coupon is paid back to CoCo debt holders in the form of equity shares.
This means that

µD
t+1 = rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) . (15)

The default intensity is based on the pre-dividend debt ratio. More precisely, assuming that there
are no dividends, δt+1 = 0, and that the only debt variation considered is the one arising from an
immediate conversion, ηt+1 = −yt1τC=t+1, the pre-dividend debt ratio is

XD
t+1 =

(1− yt) Xt

(1 + Rt+1)−
(
µD

t+1 + yt
)

Xt
1τα>t +

Xt

(1 + Rt+1)− µD
t+1Xt

1τα≤t. (16)

Since a debt ratio augmentation has more impact on the default probability when the debt ratio is
already high, the default intensity Ht+1 is a positive, increasing, and convex function of the debt ratio.
More precisely,

Ht+1 = h
(

XD
t+1, yt

)
= λD +

(
XD

t+1
θD,t

)βD

, (17)

where θD,t = θD + yt, λD ≥ 0, θD > α, βD > 1. Indeed, θD,t represents the critical debt ratio from which
the increasing behaviour of the default probability (seen as a function of the debt ratio) accelerates.
Because the CoCo instrument provides the standard debt holders with an additional protection against
default risk, the critical debt ratio is θD,t slightly higher whenever the CoCo debt is present in the debt
structure. Consequently, the conditional default probabilities are

Pt+1 (τD = t + 1 |τC > t, τD > t ) = [1− exp (−Ht+11τC>t)] 1τD>t (18)

and
Pt+1 (τD = t + 1 |τC ≤ t, τD > t ) =

[
1− exp

(
−Ht+11τC≤t

)]
1τD>t. (19)

3. Stochastic Optimum Control Problem

The period ]t, t + s] discount factor is

DFt,t+s =
t+s−1

∏
u=t

1
1 + w (Xu)

,

where the cost of capital is a weighted average of the cost of equity, rE, and the cost of debt:

w (Xu) = (1− Xu) rE
u + Xuµu. (20)

The current equity holders want to maximize their share of dividends. More precisely, given a
stream of dividend rates δ1:∞ = {δi}∞

i=1, the expected value of the discounted dividends at time t is

V
(

t, X0
t , δt:∞

)
1τD>t =

∞

∑
u=t

EP
t

[
DFt,uδu Au

(
1τC>u +

N
N + NτC

1τC≤u

)
1τD>u

]
1τD>t

∼=
∞

∑
u=t

EP
t

[
DFt,uδu Au

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤u

)
1τD>u

]
1τD>t,

since Assumption 1 and Equation (4) imply that

1τC>u +
N

N + NτC

1τC≤u = 1−
NτC

N + NτC

1τC≤u ∼= 1− (1 + ρCc (α)) y0 α

1− α + (1 + ρCc (α)) y0α
1τC≤u.
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Since V allows for the decomposition

V
(

t, X0
t , δt:∞

)
1τD>t ∼= δt At

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
1τD>t

+EP
t

[
DFt,t+1V

(
t + 1, X0

t+1, δt+1:∞

)
1τD>t+1

]
1τD>t, (21)

the optimal dividend rate sequence δ
opt
1:∞ can be constructed recursively using backward recursion

over time:

δ
opt
t = arg max

δt∈[0,δmax
t ]

{
Atδt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
(22)

+EP
t

V
(

t + 1, X0
t+1, δ

opt
t+1:∞

)
1 + w (Xt)

1τD>t+1

 1τD>t.

See Appendix D. Because At+1
At

= Dt
At

Dt+1
Dt

At+1
Dt+1

= Xt
Xt+1

(1 + ηt),

v
(

t, X0
t , δt:∞

)
1τD>t =

V
(
t, X0

t , δt:∞
)

At
1τD>t (23)

∼= δt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
1τD>t

+EP
t

[
DFt,t+1

Xt

Xt+1
(1 + ηt) v

(
t + 1, X0

t+1, δt+1:∞

)
1τD>t+1

]
1τD>t

and

δ
opt
t = arg max

δt∈[0,δmax
t ]

{
δt

(
1− (1 + ρCc (α)) y0α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)

+EP
t

 Xt

Xt+1
(1 + ηt)

v
(

t + 1, X0
t+1, δ

opt
t+1:∞

)
1 + w (Xt)

1τD>t+1

 1τD>t.

Therefore, we work with a standardized version of the primary equity holders’ share of cumulated
discounted dividends. Indeed, under this form, the dynamic optimization does not require the
modelling of the dynamics of A.

The dividend rate is bounded above. Indeed, if the dividend payment is too large, the equity
value will drop below its current level. More precisely, noting that Xt = (1 + δt) X0

t , the expected
variation of the pre-dividend equity is (see Appendix B.3)

EP
t

[
Et+1|δt+1=0 − Et

]
≤
(

mt+1 − (1 + δt) X0
t µt+1

(
(1 + δt) X0

t

))
At.

We restrict δt, making the right-hand side bound positive. Now, let x0 be the solution of mt+1 −
x0µt+1 (x0) = 0. Indeed, since xµ (x) is an increasing function of x starting at 0, a unique solution
exists. Since equity holders do not reduce the expected equity value deliberately, it follows that

mt+1 − (1 + δt) X0
t µt+1

(
(1 + δt) X0

t

)
≥ 0

⇐⇒ (1 + δt) X0
t µt+1

(
(1 + δt) X0

t

)
≤ mt+1

⇐⇒ (1 + δt) X0
t ≤ x0

⇐⇒ δt ≤
x0

X0
t
− 1.
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In addition, since x0
X0

t
− 1→ ∞ as X0

t → 0, this upper dividend rate bound is not active for small debt

ratio values. However, the dividend rate is generally lower than the expected asset returns, which
leads to δt ∈ [0, δmax

t ], where

δmax
t = min

(
max

(
x0 − X0

t
X0

t
, 0
)

, mt+1

)
. (24)

Dynamic programming optimization allows using a recursive method starting from T with
backward induction. At each time period, the value function is the sum of the immediate dividend and
the expected future dividend gain. To initialize the recursion, a long time horizon T is chosen for which
some simplifications are made. Because the model is Markovian, after some iterations, the terminal
conditions vanish and, for that reason, the following assumption has no impact on our numerical
results. The algorithm stops when the variations in the optimal dividend become very small. Then, for
time T, the following simplifications are to be assumed.

Assumption 3. For any t > T,

1. The asset returns are no longer uncertain, that is, Rt = mT , σ2
t = 0;

2. There is no more possibility of conversion, that is, the CoCo debt becomes a standard debt;
3. The dividends are the remaining part of the returns once the interest rate payment on the debts is deducted:

δt At = max (mT At − µtDt−1, 0) ; (25)

4. If the dividend payment mT At − µtDt−1 is positive, then there is no variation of the debt value, that is,
Dt = Dt−1 or, equivalently, ηt = 0;

5. The risk-free rate rt is constant and equal to r.

Since a potential conversion is no longer possible (Assumption 3-2), for all t > T, the coupon on
the CoCo debt is the same as the one on the ordinary debt, that is,

µt = r (1− zt−1) (1− yT) + b (Xt−1, 0) zt−1 (1− yT) + b (Xt−1, 0) yT

= r (1− zt−1) (1− yT) + b (Xt−1, 0) (1− (1− zt−1) (1− yT)) .

Assume for a moment that mT At − µtDt−1 ≥ 0. As a consequence of Assumption 3-3, ∀t > T,

FCFt − FFt = mT At−1 − (µt − ηt) Dt−1 − δt At = 0,

which implies that At = At−1. Therefore,

δt =
1
At

max (mT At − µtDt−1, 0) = max
(

mT − µt
At−1

At

Dt−1

At−1
, 0
)
= max (mT − µtXt−1, 0) .

Moreover, from Assumption 3-4, Dt = Dt−1, it follows that Xt = Xt−1 and µt+1 = µt. In addition,
a recursive argument leads to the following conclusion: if the dividend rate is positive, that is

0 ≤ δT+1 =
mT AT+1 − µT+1DT

AT+1
= mT − µT+1

AT
AT+1

XT = mT − µT+1XT ,

then for all t > T, Xt = XT , At = AT , µt = µT+1 and δt = δT+1 = mT − µT+1XT . The discount factor
then becomes

DFt,t+s =
t+s−1

∏
u=t

(1 + w(XT))
−1 = (1 + w (XT))

−s .
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If mT At − µtDt−1 < 0, then not only is there no dividend payment, but also the firm needs to
issue more debt to cover the interest expenses: Dt = Dt−1 + µtDt−1 −mT At. In that case,

FFt = µtDt−1 + Dt−1 − Dt

= µtDt−1 + Dt−1 − Dt−1 − µtDt−1 + mT At

= mT At

= FCFt

and At = At−1 + FCFt − FFt = At−1. Therefore, the debt is growing and the asset value is stable,
which implies that the debt ratio will increase until default.

Lemma 1. Under Assumption 3, the expected value of the discounted dividends at time T satisfies

V
(

T, X0
T , δT

)
1τD>T (26)

∼= AT

(
1− y0α

1− α + y0α
1τC≤T

){
δT + δT+1

(
exp (−h (XT))

1 + w (XT)− exp (−h (XT))

)}
1τD>T ,

where δT+1 = mT − µT+1XT , h (XT) = λD +
(

1
θD

max (XT ; 0)
)βD

and XT = (1 + δT) X0
T .

See proof in Appendix B.4.

4. Numerical Results

To generate realistic scenarios, the parameters correspond to the financial ratio of three banks
in three different countries (Europe, Canada and the United States). The aim is to analyze how “too
big to fail” banks can react in the case where there is or not CoCo in the debt structure. We focus
the analysis on three different periods corresponding to the pre-crisis (2006), the crisis (2008) and the
post-crisis (2015).

4.1. Data

The sample is composed of three banks listed as Global-Systemically Important Banks (G-SIBs):
Société Générale for Europe, Royal Bank of Canada for Canada and Bank of America in the United
States. For each bank and for each year, the debt ratio is calculated from Equation (2). The total amount
of asset (At), deposit (Ft), long and short-term debt (Bt) and CoCo (Ct) are obtained using Bloomberg
(Bloomberg Financial Analysis and Bloomberg Contingent Convertibles Search).

Figure 1 shows the evolution of the debt ratio over time, according to the banks. The French bank
has the highest debt ratio during the financial crisis of 2008. Nowadays, the French and the Canadian
banks appear to have the same level of debt in their financial structure. The decomposition of the debt
structure, as presented in Table 1, bring out that the French bank finance these activities with fewer
deposit and more bonds than the Canadian and U.S. Bank.
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Figure 1. Evolution of the debt ratio over time.

Table 1. Source of assets.

Société Générale Royal Bank of Canada Bank of America

Equity/Asset 5.41% 6.43% 10.62%
Deposit/Asset 40.60% 77.37% 58.86%

Bonds (including CoCo)/Asset 53.99% 16.20% 32.52%

The table presents the average of three financial ratios over 19 years, from 1999 to 2018. Asset is computed
using Equation (1). Deposit, Equity and Bonds (including CoCo) are based on the financial statement available
on Bloomberg.

CoCo was first launched in Europe at the end of 2009, after the financial crisis, to fulfill a need in
terms of risk management. CoCos appear as a potential solution to absorb losses when the capital of
banks fall below a certain level. CoCos issuance has started to rapidly increase since 2013/2014: under
Basel III, certain specific CoCos are categorized as additional Tier 1 Capital (AT1). Nowadays, CoCos
throughout the world are mainly issued by European and Asian companies. Canadian banks started
to issue CoCos in 2014 while American banks do not.

To initialize the dynamic optimization, the percentage of CoCos in the debt structure is assumed
to be 1%, since it is quite representative of the European and Canadian banks. Indeed, based on the
debt value and the amount of CoCos issued by banks, obtained from Bloomberg, the percentage of
CoCos in the debt structure is around 1.15% for European banks and around 0.64% for Canadian banks.
For the American bank, assuming 1% of CoCos could shed light on how it could help the bank in case
of financial distress.

Table 2 presents the parameter values obtained from the financial ratio of three banks, for
three different periods corresponding to the pre-crisis (2006), the crisis (2008) and the post-crisis
(2015). The critical debt ratio parameters (θC and θD) and the convexity parameters (βC and βD)
characterizing the conversion and default intensities were obtained by calibrating the conversion
and default probabilities (more details in Appendix C). The results obtained for the critical debt level
of the conversion intensity θC is near 95%. This is due to the fact that, under Basel III, CoCos that
have a minimum trigger level of 5.125% in terms of Common Equity Tier 1 by risk-weighted assets
and having perpetual coupons are qualified as additional tiers 1. Previously, there had been a trend
towards issuing CoCos with such characteristics. This corresponds to a trigger level imposed by the
regulator (α) in terms of debt ratio close to 1–5.125% of risk-weighted assets. The critical debt ratio
of the default intensity obtained, θD, is slightly greater than 100%. When a firm has more liabilities
than assets, there is a high risk of insolvent and excess leverage. The convexity conversion (default)
parameter, βC (βD), is designed to increase the conversion probability (default probability) rapidly
around the critical debt ratio θC (θD). This leads to high convexity parameters.

The credit risk management literature suggests that the recovery rate is around 40%, based mainly
on observed data (Altman and Kishore 1996; Duffie and Lando 2001). The risk-free rate corresponds
to the one-year zero coupon curve computed by the European Central Banking, Bank of Canada
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and the Federal Reserve Bank of St. Louis. rE
t corresponds to the Return on Equity (ROE). m is the

expected capital return expected by investors and is therefore not directly observable. We have chosen
to proxy mt by the average ROE over the last five years and the average risk-free rate, such that
mt = (1− x)r̄E

t + xr̄t.

Table 2. Parameter values of the dynamic optimization per bank per year.

Société Générale Royal Bank of Canada Bank of America
2006 2008 2015 2006 2008 2015 2006 2008 2015

Returns

rt 3.76% 1.99% −0.2% 4.07% 0.89% 0.51% 4.94% 0.28% 0.73%
rE

t 20.04% 7.02% 6.23% 23.21% 17.64% 18.42% 18.07% 1.81% 6.27%
m 3.07% 3.43% 1.26% 3.5% 4.35% 2.25% 3.84% 4.66% 0.36%
σ2 2% 2% 2%

Initial debt structure

F0 31.41% 29.71% 44.35% 79.58% 86.39% 83.45% 54.78% 56.13% 70.29%
y0 1% 1% 1%

Conversion risk

α 98.47% 98.43% 98.63% 97.86% 98.03% 98.03% 96.30% 96.28% 96.65%
βC 74.48 66.55 39.85
θC 97.42% 96.82% 94.69%
ρC 90% 90% 90%

Default risk

θD 107.7% 104.11% 107.29%
βD 47.2 69.9 40.46
λD 0 0 0
ρD 0.4 0.4 0.4

Numerical scheme

T 30 30 30
∆x 0.002 0.002 0.002
∆t 1 1 1

rt stands for risk-free rate and correspond to the one-year zero coupon curve computed by each central bank
of each region. rE

t stands for the Return on Equity. m stands for the average of the expected return on capital
and σ2 its variance. F0 means the percentage of deposit at time 0. y0 = C0/D0 is the initial proportion of
CoCo debt. The conversion and default intensities functions are respectively Equations (12) and (17). The debt
ratio mesh parameter ∆x represents the distance between two consecutive debt ratios. The time discretization
is ∆t = 1 year.

4.2. Empirical Results

Using the parameters presented in Table 2, Equations (14), (18) and (19) are used to compute the
one-year conversion probability and the one-year default probabilities as a function of the actual debt
ratio. Figure 2 shows that, for each bank and for each year, the conversion probability increases with
the debt ratio. Around the debt ratio critical level, the conversion probability tends to climb to 100%
reflecting the mandatory conversion. As expected, the presence of CoCo debt instruments reduces
the default probabilities. When there is no more CoCo in the debt structure, the default probability
increases more rapidly. It confirms that having CoCos in the debt structure acts like a safety buffer.
The conversion and default probabilities are not only driven by the intensity parameters, but also
by the actual market conditions, that is, the risk-free rate, the expected return on the capital, and
the debt structure. Figure 2 shows that the probabilities of default were greater in 2006, with more
indebted banks.
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Figure 2. One-year conversion and default probabilities. All curves are obtained from a Monte Carlo
simulation based on 2× 106 paths. The parameters are described in Table 2. Each column corresponds
to a specific bank and each line corresponds to a specific year. The dark grey dotted line represents the
conversion probability. The black line represents the one-year default probability in the presence of
CoCos in the debt structure. The light gray circle dash line represents the one-year default probability
without CoCos in the debt structure. The vertical dashed-dotted line corresponds to the trigger level (α)
of 1–5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt ratio observed
for the specified bank at the specified year.

Equations (A4)–(A6) give the coupon rate on the standard debt (with and without CoCos) and the
CoCo debt. CoCo debt holders face two risks: the risk of default (like the standard debt holders), plus
the risk of mandatory conversion. However, since at conversion, CoCo debt holders receive in terms
of equity the value of their investment, there is no conversion recovery risk. Figure 3 shows that when
the contingent debt is present in the debt structure, the CoCo debt is more expensive than the standard
debt. Moreover, as the contingent debt mitigates the default risk, the coupon rate of the ordinary debt
is notably lower in the presence of CoCos. Comparing the result for each bank and each year, Figure 3
shows that the coupons are lower over the years due to lower interest rate. The risk-free rates were
higher before the financial crisis and stayed at low levels after the crisis.
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Figure 3. CoCos and standard debts coupons. All curves are obtained from a Monte Carlo simulation
based on 2× 106 paths. The parameters are described in Table 2. Each column corresponds to a specific
bank and each line corresponds to a specific year. The dark grey dotted line represents the coupon on
the CoCo debt. The black line represents the coupon on the standard debt in the presence of CoCos in
the debt structure. The light gray circle dash line represents the coupon on the standard debt without
CoCos in the debt structure. The vertical dashed-dotted line corresponds to the trigger level (α) of
1–5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt ratio observed for
the specified bank at the specified year.

The cost of debt (Equation (6)) is a weighted average of each component (deposit, standard debt
and CoCo debt). Figure 4 shows that the cost of debt increases for large debt ratio which is a direct
consequence of the coupon curve behavior (Figure 3). Even if the CoCo coupon rate is large relatively
to the standard debt coupon rate, for high-debt ratio, the presence of CoCo in the debt structure
reduces the cost of debt. Over the years, the cost of debt decreases, mainly due to the lower risk-free
rate. Because Royal Bank of Canada uses mainly deposits over bonds, the cost of debt is not so much
affected by the increase in the coupon value for high-debt ratio.
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Figure 4. Cost of the debt. All curves are obtained from a Monte Carlo simulation based on 2× 106

paths. The parameters are described in Table 2. Each column corresponds to a specific bank and each
line corresponds to a specific year. The black line represents the cost of debt when there is CoCos in
the debt structure. The light gray dashed line represents the cost of debt without CoCos in the debt
structure. The vertical black dashed-dotted line corresponds to the trigger level (α) of 1–5.125% of
risk-weighted assets. The dark grey dotted line corresponds to the debt ratio observed for the specified
bank at the specified year.

The cost of debt directly affects the cost of capital (Equation (20)). Indeed, the lower the cost of
capital, the more likely the bank is creating value. The cost of capital indicates the minimum rate of
return before generating profit. When the debt ratio is close to 0%, the bank is financed by equity: the
cost of capital corresponds to the cost of equity. Between the two extremes, the cost of capital tends to
decrease: the cost of debt is generally a cheaper source of financing than equity, except when the firm
is in financial distress. As shown in Figure 5, the equity return declines substantially during the 2008
financial crisis, especially for the American and European banks and stays at a low level after the crisis.
The low cost of capital for Société Générale and Bank of America in 2008 and 2010 is in line with the
low Return on Equity and risk-free rate observed for these periods. The effects of the 2008 financial
crisis were less important for the Canadian banks. In Europe, the 2011 debt crisis is also a reason for
these low interest rates and returns on equity. In all studied cases, the cost of capital is at its lowest just
before the debt ratio conversion trigger, around 95%. In Figure 5, we see that, for all studied cases,
the debt ratio is to the left of the debt ratio level that minimizes the cost of capital. In a multi-period
setting, banks use a precautionary cushion to stay away from the conversion and default thresholds.
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Figure 5. Cost of the capital. All curves are obtained from a Monte Carlo simulation based on 2× 106

paths. The parameters are described in Table 2. Each column corresponds to a specific bank and each
line corresponds to a specific year. The black line represents the cost of capital when there is CoCos
in the debt structure. The light gray dashed line represents the cost of capital without CoCos in the
debt structure. The vertical dashed-dotted line corresponds to the trigger level (α) of 1–5.125% of
risk-weighted assets. The dark grey dotted line corresponds to the debt ratio observed for the specified
bank at the specified year.

To mitigate the effect of Assumption 3, the dynamic optimization program (21) and (22) is applied
recursively using a backward recursion until there are no significant changes in the dividend policy
and the value of the discounted aggregated dividend per share. Figure 6 shows the optimal dividend
rate in function of the debt ratio at time t = T− 30. The optimal dividend rate is more permissive when
there is CoCo in the debt structure in 2008 and 2015. The difference between the optimal dividend
rate with and without CoCos is the largest for Bank of America during the financial crisis. The U.S.
banks were the most affected by the subprime crisis. The presence of CoCos in the debt structure has a
significant effect on the optimal dividend rate. The optimal dividend rate in 2015 for Bank of America
is very small (0.36%) due to the expected return on capital: we use a weighted average over the mean
ROE and risk-free rate over the last five years, and these parameters are very small due to the low
interest rate policy and the effect of the crisis.

Figure 7 shows the (normalized) discounted cumulated dividend value of the primary equity
holders at time t = T− 30. The primary equity holders have larger dividend gains when the CoCo debt
is part of the debt structure. This is due to the dilution effect created by the CoCo conversion: CoCo debt
holders become equity holders, then, mechanically, decrease the dividend-per-share. The (normalized)
discounted cumulated dividend value is at its maximum for a debt ratio around 50%, except for
Bank of America in 2015. For all studied cases, the observed debt ratio does not maximize the future
dividends. The level of the discounted cumulated dividend for Bank of America in 2008 reflects the
sudden financial crisis and our parametrization of the expected return on capital. The Return on Equity
was in average equal to 18.82% from 2003 to 2006, 10.77% in 2007 and 1.81% in 2008. The low ROE in
2008 affected the level of the cost of capital and so the discount factor used in the dynamic program.
However, the expected return on capital is difficult to estimate and so we use past observations on
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the ROE and risk free rate instead of prospective data. This leads to a high expected return on capital,
which affects the level of the optimal dividend rate. A sensitivity analysis follows.
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Figure 6. Optimal dividend at time T = 0. All curves are obtained from a Monte Carlo simulation
based on 2× 106 paths. The parameters are described in Table 2. Each column corresponds to a specific
bank and each line corresponds to a specific year. The black line represents the optimal dividend rate
when there is CoCos in the debt structure. The light gray dashed line represents the optimal dividend
rate without CoCos in the debt structure. The vertical dashed-dotted line corresponds to the trigger
level (α) of 1–5.125% of risk-weighted assets. The dark grey dotted line corresponds to the debt ratio
observed for the specified bank at the specified year.

4.3. Sensitivity Analysis

Sensitivity analysis is performed to examine how changes in the parameters affect our conclusions
and in particular the discounted cumulated dividend. First, what is the impact of letting the proportion
of CoCos in the debt structure increases from 1% to 10%, all other parameters being the same?
Obviously, Figure 8 shows that, after conversion, discounted cumulated dividends are much lower
because the dilution effect is more important: there is more debt converted to equity. Before the
conversion, there is not much impact or a slight decrease due to the modest increase of the conversion
risk. For a large debt ratio, the discounted cumulated dividends are slightly smaller.



Risks 2019, 7, 47 19 of 35

0% 50% 100%

0%

10%

20%

Société Générale-2006

0% 50% 100%

0%

10%

20%

Royal Bank of Canada-2006

0% 50% 100%

0%

10%

20%

Bank of America-2006

0% 50% 100%

0%

20%

40%

Société Générale-2008

0% 50% 100%

0%

20%

40%

Royal Bank of Canada-2008

0% 50% 100%

0%

100%

200%

300%

Bank of America-2008

0% 50% 100%

0%

10%

20%

30%

Société Générale-2015

0% 50% 100%

0%

10%

20%

Royal Bank of Canada-2015

0% 50% 100%

0%

2%

4%

6%

Bank of America-2015

Figure 7. (Standardized) value of discounted cumulated dividends at time T = 0. All curves are
obtained from a Monte Carlo simulation based on 2× 106 paths. The parameters are described in
Table 2. Each column corresponds to a specific bank and each line corresponds to a specific year. The
black line represents the case when there is CoCos in the debt structure. The light gray dashed line
represents the case without CoCos in the debt structure. The vertical dashed-dotted line corresponds
to the trigger level (α) of 1–5.125% of risk-weighted assets. The dark grey dotted line corresponds to
the debt ratio observed for the specified bank at the specified year.
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Figure 8. Discounted cumulated dividends at time T = 0, with y = 10%

Second, we analyse how good the situation is for the firms, that is, how firms with high Return on
Equity affect the dividends. We fix the ROE for each bank equal to the maximum ROE observed from
1999 to 2017, all other parameters being the same as in the base case. Changing the ROE also impacts
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the expected return on capital (m). These two parameters impact the cost of capital, the discount
factor and thus the discounted cumulated dividends as well as the optimal dividend rates. Indeed,
an increase of the expected return on capital leads to higher optimal dividend rates. For example,
the optimal dividend rate for Bank of America in 2015 increases at 2.97% and create higher discounted
cumulated dividends. In 2008, for Bank of America, increasing the ROE allows to have reasonable
values of discounted cumulated dividends, as shown in Figure 9. For Société Générale in 2008 and
2015, increasing the ROE slightly decrease the discounted cumulated dividends. There is a trade-off
between having high dividend today and a high dividend in the future, which can create impatience
for the equity holder. Indeed, increasing the Return on Equity increase the expected return on capital
due to our parametrization. This leads to an increase in the cost of capital that affects the discount
factor of the future dividend. It is not clear what is the expectation of the discounted cumulated
dividends in that context.
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Figure 9. Optimal dividend and discounted cumulated dividends at time T = 0, with high Return on
Equity.

Finally, we change the default intensity to have higher default probabilities, reflecting bad
conditions for banks. We assume a one-year default probability of 8% around the critical debt ratio
imposed by the regulator. An increase of the default probability decreases the value of the discounted
cumulated dividend faster when the bank is largely indebted, as shown in Figure 10. As expected,
when the bank is not so much indebted, there is no or a slight decrease in the level of the discounted
cumulated dividend, especially, in the absence of CoCo in the debt structure, as observed for Société
Générale in 2006 and 2008.
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Figure 10. Optimal dividend and discounted cumulated dividends at time T = 0, with higher default
probabilities

5. Conclusions

We introduced a reduced form approach that also includes information about the financial health
of the firm to model the impact of CoCos in the debt structure by taking into account the uncertainty
and the time-varying default and conversion risks. To analyze the impact of CoCos in the bank’s
capital structure, we set up a hypothetical capital structure consisting of equity, ordinary debt and
CoCo debt in order to understand the benefits/costs of convertible contingent debt. Real parameters
are used, corresponding to three banks considered as G-SIBs (too big to fail) in three different markets
(Europe, Canada and the United States) and for three periods (pre-crisis, crisis and post-crisis) to
generate scenarios. Results reveal that CoCos reduce the cost and the risk of standard debt when they
are being added to the capital structure. In fact, CoCos acts as a precautionary buffer to prolong the
default time and hence to reduce the risk of default for ordinary debt. Meanwhile, CoCo itself is a more
expensive instrument compared to the ordinary debt, remembering that it has zero chance of recovery
on default. Furthermore, the results show that the presence of CoCos in the debt structure reduce the
total cost of debt, knowing that the cost of debt is a weighted average of each debt component. From
the point of view of primary equity holders, the presence of CoCos in the bank’s capital structure
increases the aggregated value for shareholders. The optimal dividend policy derived from the
dynamic optimization suggests paying more dividends when the CoCo is active and leads to higher
aggregated dividends, especially in the context of crisis and low return.
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Appendix A. The Floating Rates

Since pricing is performed under the risk-neutral measure, the first step is to determine the risk
factor Q−dynamics.
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Appendix A.1. The Q−Dynamics of the Debt Ratio

The model uncertainty is captured by the noise series
{

εPt
}

t∈N. The link between the P probability
measure and some risk neutral probability measure Q is achieved through a Radon–Nikodym
derivative dQ

dP . The latter is based on the Girsanov theorem,

dQ
dP

∣∣∣
Ft+1

dQ
dP

∣∣∣
Ft

= exp
(

γεPt+1 −
γ2

2

)
,

where the γ parameter is interpreted as the price of risk. The conditional risk-neutral moment
generating function (MGF) of εPt+1 is

MQ
t (x) = EQ

[
e−xεPt+1

∣∣∣Ft

]
= EP

[
exp

(
γεPt+1 −

γ2

2

)
e−xεPt+1

∣∣∣∣Ft

]
= exp

(
1
2

x2 − xγ

)
,

which corresponds to the MGF of a Gaussian random variable with expectation −γ and variance 1.
Thus, we construct a risk-neutral noise term centred at zero:

εQt+1 = εPt+1 + γ.

Under the risk-neutral measure Q, the asset return satisfies

Rt+1 = mt+1 + σt+1εPt+1 = mt+1 + σt+1

(
εQt+1 − γ

)
= mt+1 − γσt+1︸ ︷︷ ︸

rt+1

+ σt+1εQt+1 = RQ
t+1.

Therefore, mt+1 = rt+1 + γσt+1 and the risk-neutral debt ratio dynamics are

XQ
t+1 =

(1 + δt+1) (1 + ηt+1) Xt(
1 + RQ

t+1

)
− (µt+1 − ηt+1) Xt

(A1)

=
(1 + δt+1) (1 + ηt+1) Xt(

1 + RQ
t+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt) Xt

1τC>t+1

+
(1 + δt+1) (1 + ηt+1) Xt(

1 + RQ
t+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt) Xt

1τC=t+1

+
(1 + δt+1) (1 + ηt+1) Xt(

1 + RQ
t+1

)
− (rt+1 (1− zt) + b (Xt, 0) zt) Xt

1τC<t+1.

The conversion decision depends on the debt ratio, given that there is no dividend payment,
δt+1 = 0 , no change in debt structure, ηt+1 = 0, and with the CoCo interest payment. More precisely,

XQ,C
t+1 =

Xt

1 + RQ
t+1 − (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt) Xt

and
GQ

t+1 = g
(

XQ,C
t+1

)
. (A2)
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The default intensity is computed after the conversion (if the latter has not already occurred):

XQ,D
t+1 =

(1 + ηt+1) Xt(
1 + RQ

t+1

)
− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt) Xt

1τC>t

+
Xt

1 + RQ
t+1 − (rt+1 (1− zt) + b (Xt, 0) zt) Xt

1τC≤t,

and
HQ

t+1 = h
(

XQ,D
t+1

)
. (A3)

Appendix A.2. Credit Sensitive Debt

Lemma A1. Assume that the time t + 1 value of the standard risky debt is

B(t+1)−1τD>t = Bt
(
(1 + b (Xt, yt)) 1τD>t+1 + ρD1τD=t+1

)
1τD>t.

Then, the interest rate b (Xt, yt) of the standard debt satisfies

b
(

XQ
t , 0

)
1τC≤t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t + 1 |τD > t, τC ≤ t ]
− 1
)]

1τC≤t (A4)

and

b
(

XQ
t , yt

)
1τC>t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t + 1 |τD > t, τC > t ]
− 1
)]

1τC>t, (A5)

where rt is the risk-free rate and ρD represents the recovery rate.

See proof in Appendix B.1. The risk-neutral survival probabilities are provided by Lemma A5.

Appendix A.3. Convertible Contingent Debt

Lemma A2. Assume that the time t + 1 value of the convertible contingent debt is

Ct
(
(1 + c (Xt)) 1τC>t+1 + (1 + ρCc (Xt)) 1τC=t+1

)
1τD>t+1.

It follows that the convertible contingent debt interest rate satisfies

c (Xt) 1τC>t1τD>t (A6)

=
(1 + rt) 1τC>t1τD>t −Qt [τD > t + 1| τC > t, τD > t]

Qt [τC > t + 1| τC > t, τD > t] + ρCQt [τD > t + 1 and τα = t + 1| τC > t, τD > t]
1τC>t1τD>t.

Remark A1. If ρC = 1, then c (Xt) = b
(

XQ
t , yt

)
, where ρD = 0.

See proof in Appendix B.2. The risk-neutral conditional probabilities are detailed in Lemmas A3–A5.

Appendix A.4. Conditional Probabilities

The proofs of the following lemmas are available in the Appendix B.5.

Lemma A3 (No conversion risk-neutral probability).

Qt [τC > t + 1| τα > t, τD > t] = Qt [τα > t + 1 and τD > t + 1| τα > t, τD > t]

= EQ
t

[
exp

(
−HQ

t+11τC>t − GQ
t+1

)∣∣∣ τα > t, τD > t
]

,
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where GQ
t+1 and HQ

t+1 are defined by Equations (A2) and (A3).

Lemma A4 (Conversion and survival risk-neutral probability).

Qt [τα = t + 1 and τD > t + 1| τα > t, τD > t]

= EQ
t

[
exp

(
−HQ

t+11τC>t

) (
1− exp

(
−GQ

t+1

))∣∣∣ τC > t, τD > t
]

,

where GQ
t+1 and HQ

t+1 are defined at Equations (A2) and (A3).

Lemma A5 (Survival risk-neutral probabilities).

Qt [τD > t + 1 |τD > t, τα > t ] = EQ
t

[
exp

(
−HQ

t+11τC>t

)∣∣∣ τD > t, τα > t
]

,

Qt [τD > t + 1 |τD > t, τα ≤ t ] = EQ
t

[
exp

(
−HQ

t+11τC≤t

)∣∣∣ τD > t, τα ≤ t
]

,

where HQ
t+1 is defined at Equation (A3).

Appendix A.5. Approximations

Appendix A.5.1. Approximation of b (x, 0)

From Equation (A1), we note that XQ,D
t+1 can be viewed as a function of RQ

t+1. To emphasize

this relation, we write XQ,D
t+1 = XQ,D

t+1

(
RQ

t+1

)
. Since RQ

t+1 is centered at rt+1, a Taylor expansion of

exp
(
−h
(

XQ,D
t+1

))
around RQ

t+1 = rt+1 leads to

EQ
t

[
exp

(
−h
(

XQ,D
t+1

))]
1τD>t ∼= exp

(
−h
(

XQ,D
t+1 (rt+1)

))
− exp

(
−h
(

XQ,D
t+1 (rt+1)

))
h′
(

XQ,D
t+1 (rt+1)

) ∂XQ,D
t+1

∂RQ
t+1

(rt+1)EQ
t

[(
RQ

t+1 − rt+1

)]
︸ ︷︷ ︸

=0

,

that is,

Qt [τD > t + 1 |τD > t, τα ≤ t ] ∼= exp
(
−h
(

Xt

1 + rt+1 − (rt+1 (1− zt) + b (Xt, 0) zt) Xt

))
1τC≤t.

Placing it back in Equation (A4),

b (x, 0) ∼= rt + (1− ρD + rt)

(
exp

(
h
(

x
1 + rt+1 − (rt+1 (1− zt) + b (x, 0) zt) x

))
− 1
)

.

Appendix A.5.2. Approximation of b (x, y) and c (x)

Similarly, let

XQ,D
t+1 (rt+1) 1τC>t =

(1− yt) Xt

(1 + rt+1)− (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + yt) Xt
,

XQ,C
t+1 (rt+1) =

Xt
1 + rt+1 − (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt) Xt

.
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From Lemmas A3–A5, we derive the following approximations:

Qt [τD > t + 1 |τD > t, τα > t ] ∼= e−h
(

XQ,D
t+1 (rt+1)1τC>t

)
,

Qt [ τC > t + 1| τC > t, τD > t] ∼= e−h
(

XQ,D
t+1 (rt+1)1τC>t

)
−g
(

XQ,C
t+1 (rt+1)

)
,

Qt [ τα = t + 1 and τD > t + 1| τα > t, τD > t] ∼= e−h
(

XQ,D
t+1 (rt+1)1τC>t

) (
1− e−g

(
XQ,C

t+1 (rt+1)
))

.

Placing it back in Equations (A5) and (A6) leads to

b (Xt, yt) ∼= rt + (1− ρD + rt)
(

eh(XQ,D
t+1 (rt+1)1τC>t) − 1

)
,

c (Xt) ∼=
(1 + rt)− e−h(XQ,D

t+1 (rt+1)1τC>t)

e−h(XQ,D
t+1 (rt+1)1τC>t)−g(XQ,C

t+1 (rt+1)) + ρCe−h(XQ,D
t+1 (rt+1)1τC>t)

(
1− e−g(XQ,C

t+1 (rt+1))
)

=
(1 + rt) exp

(
h
(

XQ,D
t+1 (rt+1) 1τC>t

))
− 1

(1− ρC) exp
(
−g
(

XQ,C
t+1 (rt+1)

))
+ ρC

.

Appendix B. Proofs

Appendix B.1. Standard Bond Floating Coupon Rate

Proof of Lemma A1. The time t price of a credit-sensitive debt is denoted Bt. At time t + 1, there is
an interest rate payment of Btb

(
XQ

t , yt

)
if no default occurs and there is a recovery of ρDB(t+1)− in

case of default. We set the interest rate b
(

XQ
t , yt

)
such that the next period debt value, before the

dividend payment, remains constant, that is, B(t+1)− = Bt. Interestingly, the floating rate is affected
by the presence (or absence) of the CoCo debt instrument. We therefore study two cases: τC > t and
τC ≤ t.

If τC ≤ t, then the standard risky bond pricing corresponds to the classic case:

Bt1τC≤t1τD>t = EQ
t


(

Bt + Btb
(

XQ
t , 0

))
1τD>t+1 + ρDBt1τD=t+1

1 + rt

 1τC≤t1τD>t

= BtE
Q
t


(

1 + b
(

XQ
t , 0

))
1τD>t+1 + ρD

(
1− 1τD>t+1

)
1 + rt

 1τC≤t1τD>t

= Bt

ρD +
(

1− ρD + b
(

XQ
t , 0

))
Qt [τD > t + 1 |τD > t, τC ≤ t ]

1 + rt
1τC≤t1τD>t.

Since

ρD +
(

1− ρD + b
(

XQ
t , 0

))
Qt [τD > t + 1 |τD > t, τC ≤ t ]

1 + rt
1τC≤t1τD>t = 1τC≤t1τD>t,

b
(

XQ
t , 0

)
1τC≤t1τD>t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t + 1 |τD > t, τC ≤ t ]
− 1
)]

1τC≤t1τD>t.

Similarly, if τC > t, then the risky debt interest rate is

b
(

XQ
t , yt

)
1τC>t1τD>t =

[
rt + (1− ρD + rt)

(
1

Qt [τD > t + 1 |τD > t, τC > t ]
− 1
)]

1τC>t1τD>t.
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Appendix B.2. Convertible Bond Floating Coupon Rate

Proof of Lemma A2. The goal is to choose the coupon rate c (Xt) so that the convertible contingent
debt value at time t + 1 is the same as its value at time t, that is C(t+1)− = Ct.

Assume that τC > t and that τD > t, since, otherwise, the convertible instrument is worth 0.
In that case, the time t value of the convertible contingent debt value satisfies

Ct1τC>t1τD>t = EQ
t

[
Ct + c (Xt)Ct

1 + rt
1τD>t+11τα>t+1 +

Ct + ρCc (Xt)Ct
1 + rt

1τD>t+11τα=t+1

]
1τC>t1τD>t,

which is equivalent to

1τC>t1τD>t = EQ
t

[
1 + c (Xt)

1 + rt
1τD>t+11τα>t+1 +

1 + ρCc (Xt)

1 + rt
1τD>t+11τα=t+1

]
1τC>t1τD>t

=
1

1 + rt

(
(1 + c (Xt))EQ

t
[

1τD>t+11τα>t+1
∣∣ τC > t, τD > t

]
+ (1 + ρCc (Xt))EQ

t
[

1τD>t+11τα=t+1
∣∣ τC > t, τD > t

] ) 1τC>t1τD>t.

Consequently,

c (Xt) 1τC>t1τD>t

=
(1 + rt) 1τC>t1τD>t − EQ

t
[

1τD>t+1
∣∣ τC > t, τD > t

]
EQ

t
[

1τD>t+11τα>t+1
∣∣ τC > t, τD > t

]
+ ρCEQ

t
[

1τD>t+11τα=t+1
∣∣ τC > t, τD > t

]1τC>t1τD>t.

Lastly, note that 1τD>t+11τα>t+1 = 1τC>t+1.

Appendix B.3. The Equity Value Variation

From Equations (7) and (8), it follows that

Et+1 − Et

= At+1 − Dt+1 − Et

=
(1 + Rt+1) At − (µt+1 − ηt+1) Dt

1 + δt+1
− Dt (1 + ηt+1)− (At − Dt)

=

(
Rt+1 − δt+1

1 + δt+1
− µt+1 + ηt+1δt+1

1 + δt+1
Xt

)
At.

Therefore,

EP
t

[
Et+1|δt+1=0 − Et

]
= EP

t [Rt+1 − µt+1Xt] At =
(

mt+1 − EP
t [µt+1] Xt

)
At1τC≤t,

where

EP
t [µt+1]

= (rt+1 (1− zt) + b (Xt, 0) zt) 1τC≤t

+ (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt))Pt [τC = t + 1 |τC > t ] 1τC>t

+ (rt+1 (1− zt) (1− yt) + b (Xt, yt) zt (1− yt) + c (Xt) yt)Pt [τC > t + 1 |τC > t ] 1τC>t.
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Appendix B.4. The Value of Expected Discounted Dividends at T

Proof of Lemma 1. Since u > T, we can substitute Xu = XT , Au = AT , µu = µT+1, δ∗u = δ∗T+1 =

mT − µT+1XT , and DFT+1,T+1+u = (1 + w (XT))
−u in Equation (21). Therefore,

V
(

T + 1, X0
T+1

)
1τD>T+1

∼=
∞

∑
u=T+1

EP
T+1

[
DFT+1,uδu Au

(
1− y0α

1− α + y0α
1τC≤u

)
1τD>u

]
1τD>T+1

= δT+1 AT

(
1− y0α

1− α + y0α
1τC≤T

) ∞

∑
u=T+1

(1 + w (XT))
−(T+1−u) EP

T+1 [1τD>u] 1τD>T+1.

Because the debt ratio remains constant over time, the default intensity is

Hu = HT = λD +

(
1

θD
max (XT ; 0)

)βD

.

Therefore, the conditional survival probability EP
T+1 [1τD>u] 1τD>T+1 = exp (− (u− T − 1) HT) and

V
(

T + 1, X0
T+1

)
1τD>T+1

∼= δT+1 AT

(
1− y0α

1− α + y0α
1τC≤T

) ∞

∑
s=0

(
exp (−HT)

1 + w (XT)

)s
1τD>T+1.

The final result is obtained using the geometrical series property ∑∞
s=0 as = (1− a)−1 , provided that

|a| < 1:

V
(

T + 1, X0
T+1

)
1τD>T+1 ∼= δT+1 AT

(
1− y0α

1− α + y0α
1τC≤T

)(
1 +

exp (−HT)

1 + w (XT)− exp (−HT)

)
1τD>T+1

and

V
(

T, X0
T , δT

)
1τD>T

∼=
{

δT AT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EP

T

[
V
(
T + 1, X0

T+1
)

1 + w (XT)
1τD>T+1

]}
1τD>T

=

{
δT AT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EP

T

[
V
(
T + 1, X0

T+1
)

1 + w (XT)
EP

T+1
[
1τD>T+1

]]}
1τD>T

=

{
δT AT

(
1− y0α

1− α + y0α
1τC≤T

)
+ EP

T

[
V
(
T + 1, X0

T+1
)

1 + w (XT)
exp (−HT+1)

]}
1τD>T

=

{
δT AT

(
1− y0α

1− α + y0α
1τC≤T

)
+

V
(
T + 1, X0

T
)

1 + w (XT)
exp (−HT)

}
1τD>T

= AT

(
1− y0α

1− α + y0α
1τC≤T

){
δT + δT+1

(
exp (−HT)

1 + w (XT)− exp (−HT)

)}
1τD>T .
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Appendix B.5. Proofs of Lemmas A3–A5

Proof of Lemma A3. Note that {τC > t− 1} = {τα > t− 1} ∩ {τD > t− 1} . Once we condition on
the time t debt ratio, the events {τα > t} and {τD > t} are independent. Therefore,

Qt (τα > t and τD > t |τα > t− 1, τD > t− 1 )

= Qt (τD > t |τα > t− 1, τD > t− 1 )Qt (τα > t |τα > t− 1, τD > t− 1 )

= exp
(
−HQ

t 1τC>t−1

)
exp

(
−GQ

t

)
1τα>t−11τD>t−1.

Finally, the law of iterated conditional expectation implies that

Qt (τα > t + 1 and τD > t + 1 |τα > t, τD > t )

= EQ
t

[
EQ

t+1
[

1τα>t+11τD>t+1
∣∣ τα > t, τD > t

]∣∣∣ τα > t, τD > t
]

= EQ
t

[
exp

(
−HQ

t+11τC>t

)
exp

(
−GQ

t+1

)∣∣∣ τα > t, τD > t
]

.

Proof of Lemma A4. Given the time t debt ratio, the events {τα = t} and {τD > t} are independent.
Therefore,

Qt (τα = t and τD > t |τα > t− 1, τD > t− 1 )

= Qt (τD > t |τα > t− 1, τD > t− 1 )Qt (τα = t |τα > t− 1, τD > t− 1 )

= exp
(
−HQ

t 1τC>t−1

) (
1− exp

(
−GQ

t

))
1τα>t−11τD>t−1

and

Qt (τα = t + 1 and τD > t + 1 |τα > t, τD > t )

= EQ
t
[
1τα=t+11τD>t+1 |τα > t, τD > t

]
= EQ

t

[
EQ

t+1
[
1τα=t+11τD>t+1 |τα > t, τD > t

]
|τα > t, τD > t

]
= EQ

t

[
exp

(
−HQ

t+11τC>t

) (
1− exp

(
−GQ

t+1

))
|τα > t, τD > t

]
.

Proof of Lemma A5. First, Qt [τD > t + 1| τα > t, τD > t] is a consequence of Lemmas A3 and A4:

Qt [τD > t + 1| τα > t, τD > t]

= Qt [τα > t + 1 and τD > t + 1| τα > t, τD > t]

+Qt [τα = t + 1 and τD > t + 1| τα > t, τD > t]

= EQ
t

[
exp

(
−HQ

t+11τC>t

)∣∣∣ τC > t, τD > t
]

.

We now compute Qt [τD > t + 1 |τD > t, τα ≤ t ] . Since

Qt [τD > t |τα ≤ t− 1, τD > t− 1 ] = exp
(
−HQ

t 1τC≤t−1

)
1τα≤t−11τD>t−1,
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Qt [τD > t + 1 |τD > t, τα ≤ t ] = EQ
t
[
1τD>t+1 |τD > t, τα ≤ t

]
= EQ

t

[
EQ

t+1
[
1τD>t+1 |τD > t, τα ≤ t

]
|τD > t, τα ≤ t

]
= EQ

t

[
exp

(
−HQ

t+11τC≤t

)∣∣∣ τD > t, τα ≤ t
]

.

Appendix C. Calibration of Default and Conversion Probabilities

We use the one-year default probability computed by Bloomberg in order to calibrate the one-year
default probability. We also impose a default probability of 1.5% around the critical debt ratio imposed
by the regulator. Using a log-linearization of Equation (19), the function Ht+1 can be expressed
such that

Ht+1 = − log(1− Pt+1 (τD = t + 1 |τC ≤ t, τD > t )).

Fixing the coefficient βD, a log-linear regression can be done. We have

− log (1− Pt+1(τD = t + 1 |τC ≤ t, τD > t)) = β0 + β1 (Xt+1)
βD ,

where β0 = λ and β1 =

(
1

θD

)βD

. A simple transformation of β1 gives the estimated parameter θD:

θD =

(
1
β1

)1/βD

.

From Equation (14), we can isolate the parameter θC, such that

θC =
XC

t+1(
− log(1− Pt+1(τC = t + 1 |τC > t))− Ht+11τC>t+1

)1/βC
.

The conversion probability is calibrated such that there is a 10% conversion probability over
the observed mean debt ratio and a 90% conversion probability at the trigger level imposed by the
regulator. We are in the presence of two equations with two unknown parameters: θC and βC. The
observed mean debt ratio, denoted by X̄obs, corresponds to the average debt ratio from 2004 to 2017.
The trigger level used, denoted by X̄obs

α , is the average trigger level imposed by the regulator from
2004 to 2017. Solving the system of equation, we have

θC = exp

{
log( fα) log(X̄obs)− log( fX) log(X̄obs

α )

log( fα)− log( fX)

}
,

βC =
log( fα) log( fα)− log( fα) log( fX)

log( fα) log(X̄obs
α )− log( fα) log(X̄obs)

,

where

fα = − log(1− 0.9)−

λ +

(
X̄obs

α

θC

)1/βD
 ,

fX = − log(1− 0.1)−

λ +

(
X̄obs

θC

)1/βD
 .
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Appendix D. Finding the Optimal Dividend Rate Sequence

Appendix D.1. Post-Conversion Optimal Dividend Rates

We use the subscript C to indicate that the conversion occurred, that is, to indicate that τC ≤ t.
Let vC

(
t, X0

t , δt:∞
)
= A−1

t VC
(
t, X0

t , δt:∞
)

and v∗C
(
t, X0

t
)
= A−1

t VC
(
t, X0

t , δ∗t:∞
)

, where δ∗t:∞ represents
the optimal dividend rates from t onward when τC ≤ t. In that case, since

At+1

At
=

Dt

At

Dt+1

Dt

At+1

Dt+1
1τC≤t =

Xt

Xt+1
(1 + ηt+1) 1τC≤t =

Xt

Xt+1
,

Equation (22) becomes

δ∗t = arg max
δt∈[0,δmax

t ]
At

{
δt

(
1− (1 + ρCc (α)) y0 α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)

+ EP
t

[
Xt

Xt+1

v∗C
(
t + 1, X0

t+1
)

1 + w (Xt)
1τD>t+1

]}
1τD>t.

The conditional expectation is evaluated numerically. More precisely, let

0 = x0 < x1 < ... < xn = 1

be a discretization of the pre-dividend debt ratio X0
t+1 support. For i ∈ {1, 2, ..., n}, ξi = (xi−1 + xi) /2

is the mid-point of each interval. Assuming that X0
t = ξi and that the dividend rate for that particular

state is δt,i, Equations (10), (9), (6), (16), and (24) become respectively

Xt,i = (1 + δt,i) ξi,

Xt+1 =
(1 + δt+1) Xt,i

(1 + Rt+1)− µt+1,iXt,i
,

µt+1,i = rt+1 (1− zt) + b (Xt,i, 0) zt,

XD
t+1 =

Xt,i

(1 + Rt+1)− µt+1,iXt,i
= Xt+1|δt+1=0 , and

δmax
t,i = min

(
max

(
x∗0 − ξi

ξi
, 0
)

, mt+1

)
,

where x∗0 is the solution of mt+1 − x∗0 [rt+1 (1− zt) + b (x∗0 , 0) zt] = 0. As shown in the Appendix D.3,
the transition probabilities are

πij (δt,i) = Pt

[
xj−1 ≤ X0

t+1 < xj,τD > t + 1
∣∣∣ τC ≤ t, X0

t = ξi

]
∼=

[
Φ
(

ϕi,j−1 (δt,i)
)
−Φ

(
ϕi,j (δt,i)

)]
exp

(
−h
(
ξ j
))

, (A7)

where Φ is the cumulative distribution function of a standard normal random variable and

ϕi,j (δt,i) =

(
x−1

j + µt+1,i

)
Xt,i − 1−mt+1

σt+1
. (A8)
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Lastly,

EP
t

[
Xt,i

Xt+1

v∗C
(
t + 1, X0

t+1
)

1 + w (Xt,i)
1τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τα ≤ t, τD > t

]

∼=
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w ((1 + δt,i) ξi)

πij (δt,i) ,

δ∗t,i = arg max
δt,i∈[0,δmax

t,i ]
δt,i

(
1− (1 + ρCc (α)) y0 α

1− α + (1 + ρCc (α)) y0α
1τC≤t

)
(A9)

+
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w ((1 + δt,i) ξi)

πij (δt,i) ,

and

v∗C (t, ξi) = δ∗t,i
(1 + ρCc (α)) y0 α

1− α + (1 + ρCc (α)) y0α
1τC≤t (A10)

+
n

∑
j=1

(
1 + δ∗t,i

)
ξi(

1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w

((
1 + δ∗t,i

)
ξi

)πij
(
δ∗t,i
)

.

Appendix D.2. Pre-Conversion Optimal Dividend Rates

We use the subscript NC to indicate that the CoCo debt is not yet converted, that is, to indicate that
τC > t. Let vNC

(
t, X0

t , δt:∞
)
= A−1

t VNC
(
t, X0

t , δt:∞
)

and v∗∗NC
(
t, X0

t
)
= A−1

t VNC

(
t, X0

t , δ
opt
t:∞

)
, where

δ
opt
t:∞ is the optimal dividend rate sequence:

δ
opt
t+1 = δ∗t+11τC=t+1 + δ∗∗t+11τC>t+1.

In that case, Equation (22) becomes

δ∗∗t = arg max
δt∈[0,δmax

t ]
At

{
δt + EP

t

[
(1 + ηt+1)

Xt

Xt+1

A−1
t+1VC

(
t + 1, Xt+1, δ∗t+1:∞

)
1 + w (Xt)

1τC=t+11τD>t+1

]

+ EP
t

 Xt

Xt+1

A−1
t+1VNC

(
t + 1, X0

t+1, δ
opt
t+1:∞

)
1 + w (Xt)

1τC>t+11τD>t+1

 1τD>t

= arg max
δt∈[0,δmax

t ]
At

{
δt + (1− yt)EP

t

[
Xt

Xt+1

v∗C
(
t + 1, X0

t+1
)

1 + w (Xt)
1τC=t+11τD>t+1

]
(A11)

+ EP
t

[
Xt

Xt+1

v∗∗NC
(
t + 1, X0

t+1
)

1 + w (Xt)
1τC>t+11τD>t+1

]}
1τD>t.
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Assuming that X0
t = ξi and that the dividend rate for that particular state is δt,i, then

Equations (10), (9), (6), (13), (16) and (24) become

Xt,i = (1 + δt,i) ξi

Xt+1 =
(1 + δt+1) (1− yt) Xt,i

(1 + Rt+1)− (µt+1,i − c (Xt,i) yt + yt) Xt,i
1τα=t+1 +

(1 + δt+1) Xt,i

(1 + Rt+1)− µt+1,iXt,i
1τα>t+1,

µt+1,i = rt+1 (1− zt) (1− yt) + b (Xt,i, yt) zt (1− yt) + c (Xt,i) yt,

XC
t+1 = X0

t+1

∣∣∣
τa>t+1

=
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

,

XD
t+1 = X0

t+1

∣∣∣
τa=t+1

=
(1− yt) X0

t+1

∣∣
τa>t+1

1− (1− c (Xt,i)) yt X0
t+1

∣∣
τa>t+1

, and

δmax
t,i = min

(
max

(
x∗∗0 − ξi

ξi
, 0
)

, mt+1

)
,

where x∗∗0 is the solution of mt+1 − x∗∗0 [rt+1 (1− zt) (1− yt) + b (x∗∗0 , yt) zt (1− yt) + c (x∗∗0 ) yt] = 0.
As shown in Appendix D.3, the transition probabilities are

π∗ij (δt,i) (A12)

= Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa=t+1

< xj, τα = t + 1, τD > t + 1
∣∣∣∣ τC > t, Xt|δt=0 = ξi

]
∼=

(
1− exp

(
−g

(
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

)))
exp

(
−h
(
ξ j
))

×
[
Φ
(

ϕ∗i,j−1 (δt,i)
)
−Φ

(
ϕ∗i,j (δt,i)

)]
with

ϕ∗i,j (δt,i) =

[
x−1

j (1− yt) + µt+1,i + (1− c (Xt,i)) yt

]
Xt,i − 1−mt+1

σt+1
(A13)

and

π∗∗ij (δt,i) (A14)

= Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa>t+1

< xj, τα > t + 1, τD > t + 1
∣∣∣∣ τC > t, Xt|δt=0 = ξi

]
∼= exp

(
−g
(
ξ j
)
− h

(
(1− yt) ξ j

1− (1− c (Xt,i)) ytξ j

)) [
Φ
(

ϕ∗∗i,j−1 (δt,i)
)
−Φ

(
ϕ∗∗i,j (δt,i)

)]
with

ϕ∗∗i,j (δt,i) =

(
x−1

j + µt+1,i

)
Xt,i − 1−mt+1

σt+1
. (A15)

The conditional expectations are approximated with

EP
t

[
Xt

Xt+1

v∗C
(
t + 1, X0

t+1
)

1 + w (Xt)
1τC=t+11τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τC > t

]

∼=
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w ((1 + δt,i) ξi)

π∗ij (δt,i)
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and

EP
t

[
Xt

Xt+1

v∗∗NC
(
t + 1, X0

t+1
)

1 + w (Xt)
1τC>t+11τD>t+1

∣∣∣∣∣ Xt|δt=0 = ξi, τC > t

]

∼=
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗∗t+1,j

)
ξ j

v∗∗NC
(
t + 1, ξ j

)
1 + w ((1 + δt,i) ξi)

π∗∗ij (δt,i) .

Lastly,

δ∗∗t,i = arg max
δt,i∈[0,δmax

t,i ]
At

δt,i + (1− yt)
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w ((1 + δt,i) ξi)

π∗ij (δt,i)

+
n

∑
j=1

(1 + δt,i) ξi(
1 + δ∗∗t+1,j

)
ξ j

v∗∗NC
(
t + 1, ξ j

)
1τC>t+1

1 + w ((1 + δt,i) ξi)
π∗∗ij (δt,i)

 1τD>t.

v∗NC (t, ξi) ∼= δ∗∗t,i + (1− yt)
n

∑
j=1

(
1 + δ∗∗t,i

)
ξi(

1 + δ∗t+1,j

)
ξ j

v∗C
(
t + 1, ξ j

)
1 + w

((
1 + δ∗∗t,i

)
ξi

)π∗ij
(
δ∗∗t,i
)

+
n

∑
j=1

(
1 + δ∗∗t,i

)
ξi(

1 + δ∗∗t+1,j

)
ξ j

v∗∗NC
(
t + 1, ξ j

)
1 + w

((
1 + δ∗∗t,i

)
ξi

)π∗∗ij
(
δ∗∗t,i
)

. (A16)

Appendix D.3. Proofs

Appendix D.3.1. Proof of Equation (A7)

Pt

[
xj−1 ≤ X0

t+1 < xj

∣∣∣ τC ≤ t, X0
t = ξi

]
= Pt

[
xj−1 ≤

Xt,i

(1 + Rt+1)− µt+1,iXt,i
< xj

∣∣∣∣ τC ≤ t, X0
t = ξi

]
= Pt

[
x−1

j <
(1 + Rt+1)− µt+1,iXt,i

Xt,i
≤ x−1

j−1

∣∣∣∣ τC ≤ t, X0
t = ξi

]
= Pt

[
ϕi,j (δt,i) <

Rt+1 −mt+1

σt+1
≤ ϕi,j−1 (δt,i)

∣∣∣∣ τC ≤ t, X0
t = ξi

]
,

where the ϕi,j (δt,i) are provided in Equation (A8). The proof is completed by noting that

Rt+1 −mt+1

σt+1

∣∣∣∣
Ft

is a standard normal random variable. Finally,

Pt

[
xj−1 ≤ X0

t+1 < xj,τD > t + 1
∣∣∣ τC ≤ t, X0

t = ξi

]
= Pt

[
τD > t + 1| τC ≤ t, X0

t = ξi, xj−1 ≤ X0
t+1 < xj

]
Pt

[
xj−1 ≤ Xt+1|δt+1=0 < xj

∣∣∣ τC ≤ t, X0
t = ξi

]
∼= exp

(
−h
(
ξ j
))

Pt

[
xj−1 ≤ Xt+1|δt+1=0 < xj

∣∣∣ τC ≤ t, X0
t = ξi

]
.
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Appendix D.3.2. Proof of Equation (A12)

The probability that X0
t+1

∣∣
τa=t+1 lies between xj−1 and xj is

Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa=t+1

< xj

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
xj−1 ≤

(1− yt) Xt,i

(1 + Rt+1)− (µt+1,i − c (Xt,i) yt + yt) Xt,i
< xj

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
x−1

j ≤
(1 + Rt+1)− (µt+1,i − c (Xt,i) yt + yt) Xt,i

(1− yt) Xt,i
< x−1

j−1

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
ϕ∗i,j (δt,i) <

Rt+1 −mt+1

σt+1
≤ ϕ∗i,j−1 (δt,i)

∣∣∣∣ τC > t, X0
t = ξi

]
= Φ

(
ϕ∗i,j−1 (δt,i)

)
−Φ

(
ϕ∗i,j (δt,i)

)
,

where ϕ∗i,j (δt,i) is defined at Equation (A13).
The probability that X0

t+1

∣∣
τa=t+1 is contained between xj−1 and xj while the conversion occurs

without the firm default is

Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa=t+1

< xj, τα = t + 1, τD > t + 1
∣∣∣∣ τC > t, X0

t = ξi

]
= Pt

[
τα = t + 1

∣∣∣∣xj−1 ≤ X0
t+1

∣∣∣
τa=t+1

< xj, τC > t, X0
t = ξi

]
×Pt

[
τD > t + 1

∣∣∣∣xj−1 ≤ X0
t+1

∣∣∣
τa=t+1

< xj, τC > t, X0
t = ξi

]
×Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa=t+1

< xj

∣∣∣∣ τC > t, X0
t = ξi

]
∼=

(
1− exp

(
g

(
X0

t+1

∣∣
τa=t+1

(1− yt) + (1− c (Xt,i)) yt X0
t+1

∣∣
τa=t+1

)))
× exp

(
−h
(
ξ j
)) [

Φ
(

ϕ∗i,j−1 (δt,i)
)
−Φ

(
ϕ∗i,j (δt,i)

)]
.

Appendix D.3.3. Proof of Equation (A14)

Pt

[
xj−1 ≤ X0

t+1

∣∣∣
τa>t+1

< xj

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
xj−1 ≤

Xt,i

(1 + Rt+1)− µt+1,iXt,i
< xj

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
x−1

j <
(1 + Rt+1)− µt+1,iXt,i

Xt,i
≤ x−1

j−1

∣∣∣∣ τC > t, X0
t = ξi

]
= Pt

[
ϕ∗∗i,j (δt,i) <

Rt+1 −mt+1

σt+1
≤ ϕ∗∗i,j−1 (δt,i)

∣∣∣∣ τC > t, X0
t = ξi

]
,

where the ϕ∗∗i,j (δt,i) are provided in Equation (A15).
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