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Abstract: This study utilizes the seven bivariate generalized autoregressive conditional
heteroskedasticity (GARCH) models to forecast the out-of-sample value-at-risk (VaR) of 21 stock
portfolios and seven currency-stock portfolios with three weight combinations, and then employs
three accuracy tests and one efficiency test to evaluate the VaR forecast performance for the
above models. The seven models are constructed by four types of bivariate variance-covariance
specifications and two approaches of parameters estimates. The four types of bivariate
variance-covariance specifications are the constant conditional correlation (CCC), asymmetric and
symmetric dynamic conditional correlation (ADCC and DCC), and the BEKK, whereas the two
types of approach include the standard and non-standard approaches. Empirical results show
that, regarding the accuracy tests, the VaR forecast performance of stock portfolios varies with
the variance-covariance specifications and the approaches of parameters estimate, whereas it does
not vary with the weight combinations of portfolios. Conversely, the VaR forecast performance of
currency-stock portfolios is almost the same for all models and still does not vary with the weight
combinations of portfolios. Regarding the efficiency test via market risk capital, the NS-BEKK model
is the most suitable model to be used in the stock and currency-stock portfolios for bank risk managers
irrespective of the weight combination of portfolios.

Keywords: value-at-risk; accuracy test; efficiency test; constant conditional correlation; dynamic
conditional correlation; stock market

1. Introduction

In recent years, volatility and value-at-risk (VaR) forecasts have been a key topic in the financial
field because they can be used to measure the risk of assets, especially for the VaR. However, why is the
VaR more popular than volatility when we measure the assets’ risk? The reason is that it can react to
the skewed and leptokurtic characteristics appearing at the return distribution of most financial assets
when the long and short positions of assets are considered. Owing to this merit, VaR has been widely
used in financial fields such as risk management, financial control, financial reporting, and computing
capital requirement. For example, the capital requirement is the amount of capital a bank or another
financial institution has to hold as required by its financial regulator. However, the capital requirements
for general market risk are based on the output of a bank’s internal value-at-risk model and are
calibrated to a common supervisory standard. In other words, a value-at-risk model produces an
estimate of the maximum amount that the bank can lose on a particular portfolio over a given holding
period and with a given degree of statistical confidence. Notably, if the bank’s internal value-at-risk
model overestimates the actual VaR, then the bank may lose the opportunity cost, whereas when this
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model underestimates the actual VaR, then the bank cannot recover the loss as the crisis happens.
Furthermore, there are a variety of empirical approaches to calculating value at risk. Hence, it is
important to select an appropriate empirical approach or model to precisely predict the risk.

Studies in the VaR literature have almost always focused on VaR forecasts and performance
comparison among several models (Bams et al. 2017; Bayer 2018; Laporta et al. 2018; Lee and Su 2012;
Su 2014a, 2014b, 2014c, 2015; Su et al. 2014; Yu et al. 2018). In contrast to previous studies, we wish
to apply the findings of this study to the real world. Hence, except for performing a VaR forecasts
performance comparison, this study combines an efficiency test with market risk capital (MRC) under
the 1996 Market Risk Amendment (MRA) of the Basel Capital Accord to select a suitable model to
manage a bank’s risk via the two-stage selection procedure of Sarma et al. (2003). MRC is the amount
of regulatory capital a bank must hold with respect to its market risk exposure. In addition, most past
studies of VaR have concentrated on the risk measure of a single asset (Lee and Su 2012; Su and
Hung 2011; Su 2014a, 2014b, 2015; Su et al. 2014). Actually, investors cannot just hold a single asset
during a real investment process. Hence, the risk measure of a portfolio has become a significant topic
today. This trend has led to the popularity of the multivariate GARCH models in recent research.
However, as the number of component assets of a portfolio increases, the difficulty of parameter
estimates of the multivariate GARCH models is rapidly enlarged. Hence, investors must consider not
only the accuracy of the model forecast but also the ease of use of the model when they choose an
appropriate empirical approach or model to predict the VaR. In the literature on empirical models,
studies have almost always used the CCC, DCC, or BEKK types of multivariate GARCH models to
explore empirical issues (Caporale et al. 2014; Li 2012; Moore and Wang 2014; Tamakoshi and Hamori
2014; Wang et al. 2010; Wang and Wang 2010; Weber 2013; Yaya et al. 2016). In contrast to the literature,
this study also considers the two-step asymmetric dynamic conditional correlation (ADCC) model of
Cappiello et al. (2006) (hereafter, NS-ADCC) because the ADCC model is the more general form of the
dynamic conditional correlation (DCC) model of Engle (2002). In other words, the DCC model is a
special case of the ADCC model.

Regarding the above multivariate GARCH models, they can be classified as the following
two categories when the interrelationship between two assets is discussed. The first class uses
the conditional variances and correlations to depict the correlative relationship between two assets
such as the constant conditional correlation (CCC) model of Bollerslev (1990), the DCC model of
Engle (2002), and the ADCC model of Cappiello et al. (2006) (Caporale et al. 2014; Moore and
Wang 2014; Tamakoshi and Hamori 2014; Yaya et al. 2016). The second class uses the conditional
variance-covariance matrix to explore the correlative relationship between two assets, such as the BEKK
model (Baldi et al. 2016; Chang et al. 2013; Lin and Li 2015; Liu et al. 2017). The first class of model
(CCC and DCC models) are also divided into two sub-categories depending on whether the parameters
are estimated by only one step or two successive steps. That is, the first sub-category is called the
standard approach, and it includes the standard CCC and DCC models (hereafter, S-CCC and S-DCC),
for which the parameters are estimated by one step only. In contrast, the second sub-category is called
the non-standard approach, and it contains the non-standard CCC, DCC, and ADCC models (hereafter,
NS-CCC, NS-DCC, and NS-ADCC), for which the parameters are estimated by two successive steps.
The difference between the two sub-categories is that the non-standard, or two-step model, is easy
to be estimated, and it is easy to be extended to the more flexible models. The second class of model,
the BEKK model, is also divided into two sub-categories depending on whether the parameters of the
model are simplified or not. That is, in the standard BEKK model (hereafter, S-BEKK), the parameters
are not simplified. Conversely, in the non-standard BEKK model (hereafter, NS-BEKK) derived by
Su (2014c), the parameters are simplified by adopting the suggestion of Moschini and Myers (2002).
Hence, the non-standard BEKK model has the same merits that the non-standard CCC and DCC models
own. That is, the non-standard BEKK model is easy to be estimated, and it is also easy to extend to
the more flexible models. Owing to the two-step model’s being easy to be estimated and extended to
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the more flexible models, the two-step or non-standard DCC1 is very useful for determining optimal
hedging strategies, volatility spillovers, and causality in volatility among financial commodities.
For example, Moore and Wang (2014) used the two-step bivariate DCC-GARCH model to investigate
the sources of the dynamic relationship between real exchange rates and stock return differentials in
relation to the US market for the developed and emerging Asian markets. Tamakoshi and Hamori
(2014) adopted a two-step bivariate asymmetric DCC-GARCH model (hereafter, ADCC-GARCH)
to examine the interdependence of US dollar exchange rates expressed in euros, British pounds,
and Swiss francs and to further explore the effect of Europe’s recent financial turmoil on these dynamic
correlations. Turhan et al. (2014) examined the dynamic relationship between crude oil and major asset
classes consisting of stock, bond, foreign exchange rate, and gold markets via the two-step bivariate
DCC-GARCH model with a mixed data sampling methodology. Ozkan and Erden (2015) applied the
two-step multivariate DCC-GARCH model to obtain the time-varying exchange rate pass-through
(ERPT) measure, then used a panel regression model to investigate the macroeconomic determinants
of the degree of ERPT. The ERPT denotes the transmission of the movements in exchange rates to
import prices and domestic prices.

Subsequently, this study mainly uses the two-stage selection procedure of Sarma et al. (2003)
to select a suitable model to manage the risk of the institution. The first stage is to perform the
accuracy tests via using three types of back-testing—Kupiec (1995) unconditional coverage test,
Christoffersen (1998) conditional coverage test, and Engle and Manganelli (2004) dynamic quantile
test—to evaluate the out-of-sample VaR forecast performance of the seven bivariate GARCH models:
the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-BEKK, and NS-ADCC. The samples include the 21
stock portfolios and seven currency-stock portfolios with three weight combinations. The results are
used to investigate which bivariate variance-covariance specification and which parameter estimate
approach has a better VaR forecast performance, and whether the asymmetric DCC model has a better
forecast performance than its corresponding symmetric one. In addition, this study also explores
whether the different weight combinations and component combinations of portfolios will affect the
results. The second stage is to execute an efficiency test via market risk capital to select a suitable
model to manage the risk of the bank. This is performed by the superior predictive ability (SPA)
test of Hansen (2005). Empirical results show that, regarding the accuracy tests, the VaR forecast
performance of stock portfolios varies with the variance-covariance specifications and the approaches
of parameters estimate. For example, the standard (respectively, non-standard) approach has better VaR
forecast performance for the DCC and BEKK (respectively, CCC) types of bivariate variance-covariance
specification. In particular, the DCC type of bivariate variance-covariance specification with the
standard approach achieves the best VaR forecast performance among the seven bivariate GARCH
models with no exception, indicating that this result is one of the most significant findings in this study.
Notably, the above findings do not change even if the weight combinations of the portfolios vary.
On the contrary, the VaR forecast performance of currency-stock portfolios is almost the same for all
models, and still does not vary with the weight combinations of the portfolios. Hence, the above VaR
forecast performance comparison results vary with the component combination of the portfolio but do
not vary with the weight combinations of portfolios for the accuracy tests. Regarding the efficiency
test via market risk capital, the NS-BEKK model is the most suitable model to be used in both the stock
and currency-stock portfolios for the bank risk manager, irrespective of the weight combination of the
portfolios, implying that the result is another one of the most significant findings in this study.

The remainder of this paper is organized as follows. Section 2 describes the empirical models
utilized in this study: the three correlation types of the bivariate GARCH model (CCC, DCC, ADCC)
and the variance-covariance type of the bivariate GARCH model (BEKK). Section 3 discusses the

1 Owing to the wide application of the DCC model, McAleer (2018) derived the stationarity and invertibility conditions of the
DCC model in order to provide a solid statistical foundation for the estimates of the DCC parameters.
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theory of three types of back-testing, market risk capital, and the superior predictive ability test that
are used to evaluate the VaR forecast performance for alternative VaR models. Section 4 states the
basic statistical features for the return series of both United States dollar index and seven stock indices
in American and Europe. Section 5 analyzes the empirical results of alternative bivariate GARCH
models and further explores the issues addressed in this study via the performance assessments of
VaR forecasts. Finally, the conclusion is drawn in the last section.

2. Methodology

As shown in the section of the introduction, the seven bivariate GARCH models are composed
of four bivariate variance-covariance specifications (i.e., the CCC, DCC, ADCC, and BEKK) with the
standard and non-standard approaches. Notably, only the non-standard approach is considered for the
ADCC specification (i.e., the NS-ADCC model). The four bivariate variance-covariance specifications
can roughly be classified into the following two categories. The first category uses the conditional
variances and correlations to depict the correlative relationship between two assets such as the CCC,
DCC, and the ADCC. The second category uses the conditional variance-covariance matrix to explore
the correlative relationship between two assets such as the BEKK model. Subsequently, the theory of
the above two categories of models is depicted at the following two subsections.

2.1. The Variance-Correlation Type of Bivariate GARCH Models

In this subsection, the CCC and DCC models are selected as the representative of the
variance-correlation type of bivariate GARCH models. The bivariate DCC-GARCH(1,1) model is
composed of a mean equation and a variance-covariance equation. Hence, the mean equation in the
vector form can be defined as follows.

rt = µ+ et, et|Ωt−1 = H1/2
t ·zt ∼ N(0, Ht), zt ∼ N(0, I) (1)

where rt = (r1,t, r2,t)
′ is a column vector of log returns, that is, ri,t = (lnPi,t − lnPi,t−1) × 100, Pi,t

denotes the close price of the ith stock index at time t; µ = (µ1,µ2)
′ denotes a column vector of the

above mean returns; et = (e1,t, e2,t)
′ is a column vector of the error terms; and zt follows a bivariate

Gaussian distribution with a mean zero and its variance-covariance matrix equals the identity matrix, I.
Conversely, the variance-covariance equation is expressed in the form of DCC-GARCH(1,1), and its
vector form is represented as follows.

Ht = Dt·Rt·Dt (2)

where Ht denotes the variance-covariance matrix; Dt = diag
(

h0.5
11,t, h0.5

22,t

)
is a diagonal matrix;

Rt = diag
(

q−0.5
11,t , q−0.5

22,t

)
·Qt·diag

(
q−0.5

11,t , q−0.5
22,t

)
is the correlation matrix, Qt =

(
qij,t

)
denotes a 2× 2

symmetric positive definite matrix, and can be expressed as Qt =
(
1− a′ − b′

)
Q + a′ut−1·u′t−1 +

b′Qt−1, ut = (u1,t, u2,t)
′ is a column vector with ui,t = ei,t/

√
hii,t, Q is the 2 × 2 unconditional

variance matrix of ut, and a′ and b′ are the non-negative scalar parameters satisfying the condition of
a′ + b′ < 1.2 Except for the DCC-GARCH(1,1) model, we also follow Tamakoshi and Hamori (2014) to
use the asymmetric DCC-GARCH(1,1) (hereafter, ADCC) model. The ADCC model is a special case of
the asymmetric generalized DCC (hereafter, AGDCC) proposed by Cappiello et al. (2006). This model
considers the asymmetry in the correlation and can better capture the heterogeneity present in the
data. In the AGDCC model, Qt =

(
qij,t

)
is expressed as follows.

Qt =
(

Q−A
′
QA− B

′
QB−G

′
NG

)
+ A

′
ut−1·u′t−1A + G

′
nt−1·n′t−1G + B

′
Qt−1B (3)

2 For more details about these two types of models, please see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009).
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where A, B, and G are the 2× 2 parameter matrices; Q and N are the unconditional correlation matrices
of ut and nt; and nt = I[ut < 0] ◦ ut, I[·] is a 2× 1 indicator function that takes on the value of 1 if the
argument is true and 0 otherwise; ‘◦’ denotes a Hadamard product; and Q = E[utu′t], and N = E[ntn′t].
Notably, the Q and N can be replaced with the sample analogues, T−1 ∑T

t=1 ut·u′t and T−1 ∑T
t=1 nt·n′t,

respectively. T denotes the sample size of the estimation period. If A, B, and G are respectively
replaced by scalars a, b, and g, then the AGDCC model degenerates into the ADCC model. Hence, the
ADCC model can be expressed as the following form.

Qt =
(
Q− a′Q− b′Q− g′N

)
+ a′ut−1·u′t−1 + g′nt−1·n′t−1 + b′Qt−1 (4)

where a′ = a2, b′ = b
2
, and g′ = g2. In this case, parameters a, b, and g are not restricted as positive

values. If g′ = 0, then the ADCC model degenerates into the DCC model created by Engle (2002).
The correlation matrix Rt can be expressed as follows.

Rt = diag
(

q−0.5
11,q , q−0.5

22,q

)
·Qt·diag

(
q−0.5

11,q , q−0.5
22,q

)
=

[
q−0.5

11,q 0
0q−0.5

22,q

][
q11,qq12,q
q12,qq22,q

][
q−0.5

11,q 0
0q−0.5

22,q

]

=

 1 q12,t·
(

q11,t·q22,t

)−0.5

q12,t·
(

q11,t·q22,t

)−0.5
1


(5)

Hence, Rt is also a symmetric positive definite matrix including the time varying conditional
correlations ρ12,t = q12,t/

√q11,t·q22,t and ρii,t = 1 for i = 1, 2. Owing to Ht = Dt·Rt·Dt,
the variance-covariance specification of bivariate DCC-GARCH(1,1) or bivariate ADCC-GARCH(1,1)
model is also expressed as the following matrix form.[

h11,t h12,t

h21,t h22,t

]
=

[
h0.5

11,t 0
0 h0.5

22,t

][
1 ρ12,t
ρ12,t 1

][
h0.5

11,t 0
0 h0.5

22,t

]

=

[
h11,t ρ12,t(h11,t·h22,t)

0.5

ρ12,t(h11,t·h22,t)
0.5 h22,t

] (6)

Therefore, h12,t = h21,t = ρ12,t
√

h11,t·h22,t and hii,t can be defined as any type of univariate
GARCH(1,1) model such as hii,t = ωi + αie2

i,t−1 + βihii,t−1 for i = 1, 2. Notably, the above bivariate
DCC-GARCH(1,1) model degenerates into the bivariate CCC-GARCH(1,1) model when the parameters
a′ and b′ are set as zero. Therefore, the log-likelihood function of the bivariate DCC-GARCH(1,1),
CCC-GARCH(1,1), and ADCC-GARCH(1,1) models can be written as follows:

L(Ψ) = ∑T
t=1 ln{f(rt|Ωt−1; Ψ )}

= −T
2 ln(2π)− 1

2 ∑T
t=1(ln|Ht|+ e′t·H−1

t ·et)
(7)

where Ψ = [µ1,µ2,ω1,α1,β1,ω2,α2,β2, ρ12] and
[
µ1,µ2,ω1,α1,β1,ω2,α2,β2, a′, b′

]
, respectively,

are the vector of parameters to be estimated for the bivariate CCC-GARCH(1,1) and bivariate
DCC-GARCH(1,1) models whereas Ψ = [µ1,µ2,ω1,α1,β1,ω2,α2,β2, a, b, g] is the vector of
parameters to be estimated for the bivariate ADCC-GARCH(1,1) model. T denotes the sample size of
the estimate period, f(·) denotes the bivariate normal density, Ωt−1 denotes the information set of all
observed returns up to time t− 1 whereas rt, et, and Ht are defined in Equations (1) and (2).

In addition, both the bivariate CCC-GARCH(1,1) model and the bivariate DCC-GARCH(1,1)
model can be classified into two sub-categories based on the procedure of the parameters estimate. If all
the parameters of these models are estimated via only one step, then the bivariate CCC-GARCH(1,1)
model and the bivariate DCC-GARCH(1,1) model are respectively named as the standard CCC
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(hereafter, S-CCC) model and the standard DCC (hereafter, S-DCC) model.3 On the contrary, when the
parameters of these models are estimated via two successive steps, the bivariate CCC-GARCH(1,1)
model and the bivariate DCC-GARCH(1,1) model are respectively named as the non-standard CCC
(hereafter, NS-CCC) model and the non-standard DCC (hereafter, NS-DCC) model. In this section,
we select the NS-ADCC model as an example to illustrate the estimating procedure of the non-standard
or two-step approach. The parameters of the bivariate ADCC-GARCH(1,1) model are estimated via
two successive steps only, hence, this model is named as the non-standard ADCC (hereafter, NS-ADCC)
model. The detailed estimate procedure of NS-ADCC model is listed as follows. First, two univariate
GARCH(1,1) models are fit for each of the two component assets’ return series (i.e., ri,t for i = 1, 2),
and then the estimates of variance series hii,t and residue series ei,t for i = 1, 2 are obtained. Hence, the
log-likelihood value LLi and the values of parameters µi,ωi, αi, and βi are obtained from the estimation
of the ith univariate GARCH(1,1) model corresponding to the ith component asset for i = 1, 2
during this step of estimation. Second, two standardized residual return series (ui,t for i = 1, 2) are
obtained by the residual return series (ei,t) divided by their estimated standard deviations series (

√
hii,t)

(i.e., ui,t = ei,t/
√

hii,t for i = 1, 2). In addition, the above two corresponding negative component
residual return series (ni,t for i = 1, 2) are obtained by the relation: ni,t = I[ui,t < 0]·ui,t where I[·] is an
indicator function that takes on the value of 1 if the argument is true and 0 otherwise. Subsequently,
the above two standardized residual return series (ui,t for i = 1, 2) and their corresponding negative
component residual return series (ni,t for i = 1, 2) are used to estimate the intercept parameters of the
conditional correlation (a, b, and g). During this step of estimation, the log-likelihood value LL3 and
the values of parameters a, b, andg are obtained from the estimation of the correlation matrix equation:
Qt =

(
Q− a′Q− b′Q− g′N

)
+ a′ut−1u′t−1 + g′nt−1n′t−1 + b′Qt−1 where a′ = a2, b′ = b

2
, and g′ = g2.

Notably, the two-step parameters estimate approach can be employed when the dimension of the
multivariate GARCH model is greater than two.

Under the framework of the parametric techniques (Jorion 2000), the one-day-ahead long
position VaR of a portfolio4 based on the bivariate CCC-GARCH(1,1), DCC-GARCH(1,1),
and ADCC-GARCH(1,1) models can be calculated as follows.

LVaRP,t = µP + zα·
√

ĥP,t+1|t

= ∑2
i=1 wi·µi + zα

√
∑2

i=1 ∑2
j=1 wiwjĥij,t+1|t

(8)

where µP is the conditional mean of return for a portfolio; wi is the weight of component asset i
(i.e., the share of asset i in a portfolio); µi is the conditional mean of return for component asset i,
and zα denotes the left-tailed percentile at α% for the standardized normal distribution; ĥij,t+1|t is the
one-step-ahead variance (respectively, covariance) forecast when i = j (respectively, i 6= j) conditional
on all information upon time t, and it can be obtained from Equation (6).

3 The parameters of the standard CCC and DCC models are estimated by the GARCH instruction provided by the Rats
6.0 program. The parameters of these models are estimated only by one step compared with the two steps’ CCC and
DCC models.

4 In a real case, if an institution wants to evaluate the operation performance of several fund managers that respectively
have different values of assets measured with different currencies, indicating that it is hard to evaluate their operation
performance when ‘the VaR expressed in actual monetary value’ is used. However, it is easy to evaluate their performance
as ‘the VaR expressed in return’ is utilized since the return is dimensionless. Notably, we can convert the above expression
via the following equation. ‘The VaR expressed in actual monetary value’ = ‘the VaR expressed in return’ * the value of
asset’s position. Taking an example to illustrate it, if the value of an asset is USD 1000, and its VaR expressed in return is
1.4091%, then ‘the VaR expressed in actual monetary value’ is equal to USD 14.091 (=1.4091%* USD1000).
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2.2. The Variance-Covariance Type of Bivariate GARCH Models

In this subsection, the BEKK5 model is chosen as the representative of the variance-covariance
type of bivariate GARCH models. The bivariate BEKK-GARCH(1,1) model can be classified into the
following two sub-categories based on the number of parameters to estimate in a model. The first
sub-category: the standard BEKK-GARCH(1,1) model (hereafter, S-BEKK)6 has eleven parameters.
The second sub-category: the non-standard BEKK-GARCH(1,1) model derived by Su (2014c) (hereafter,
NS-BEKK) has only nine parameters. The BEKK-GARCH model proposed by Engle and Kroner (1995)
is a restricted version of the VEC model7 and it has the attractive property of the conditional covariance
matrix being definitely positive owing to its matrix’s construction. Hence, the standard BEKK model
has the following form.

Ht = C′0C0 +
K

∑
k=1

p

∑
i=1

A′iket−ie′t−iAik +
K

∑
k=1

q

∑
j=1

G′jkHt−jGjk (9)

where Aik and Gjk are n×n dimensional matrices, and C0 is an upper triangular matrix. et−i is an n× 1
column vector of error terms, and Ht denotes the n× n dimensional variance-covariance matrix. The
decomposition of the constant term into a product of two triangular matrices is to ensure the positive
definiteness of Ht and the summation limit From the property of DMC, it holds that determines the
generality of the process. It should be clear that Equation (9) will be definitely positive under very weak
conditions. Furthermore, this representation is sufficiently general since it includes all positive definite
diagonal representations and nearly all positive definite VEC representations. To clearly illustrate
the BEKK-GARCH model, this study considers the bivariate BEKK-GARCH(1,1) model with the
restriction condition of ‘K = p = q = 1’ and ‘K = 2, and p = q = 1’ for the standard and non-standard
BEKK-GARCH models, respectively. The above standard and non-standard BEKK-GARCH models are
respectively named as the S-BEKK and NS-BEKK models. Hence, when the restrictions ‘K = p = q = 1
and n = 2’ are substituted into Equation (9), the S-BEKK model can be obtained as follows.

Ht = C′0C0 + A′11et−1e′t−1A11 + G′11Ht−1G11 (10)

where the parameters A11 and G11 are 2× 2 dimensional matrices and C0 is an upper triangular matrix.
They are defined as follows:

Ht =

 h11,t h12,t

h21,t h22,t

, et−1 =

 e1,t−1

e2,t−1

, C0 =

 c11 c12

0 c22

, A11 =

 a11 a12

a21 a22

, G11 =

 g11 g12

g21 g22

.

Hence, the S-BEKK model can also be expressed as follows. When the above matrix expression is
manipulated, we obtain that, first, the variance-covariance matrix Ht is a symmetric matrix (i.e., h12,t =

h21,t). Second, the model in Equation (10) includes eleven parameters (i.e., the elements in matrices C0,

5 The BEKK model is named after Baba et al. (1990).
6 The parameters of the standard BEKK model are estimated by the GARCH instruction provided by the Rats 6.0 program.

The parameters of these models are estimated only by one step. This approach is the same as the standard CCC and DCC
models mentioned above.

7 According to Bauwens et al. (2006), there are three non-mutually exclusive approaches to construct multivariate GARCH
models: (i) direct generalizations of the univariate GARCH model of Bollerslev (1986); (ii) linear combinations of univariate
GARCH models; and (iii) nonlinear combinations of univariate GARCH models. Notably, both the VEC and BEKK models
belong to the above first approach. In the general VEC model, each element of the conditional variance matrix (Ht) is a
linear function of the lagged squared errors and cross-products of errors and lagged values of the elements of Ht. The BEKK
model is a special case of the VEC model. Hence, the number of parameters in the BEKK model is less than that in the VEC
model. For example, the numbers of parameters in the VEC(1,1) and BEKK(1,1,1) models are n(n + 1)[n(n + 1) + 1]/2 and
n(5n + 1)/2, respectively. The BEKK(1,1,1) model is expressed as Equation (10) in this study.
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A11, and G11). Third, the elements of this variance-covariance matrix Ht is a function of e2
1,t−1, e2

2,t−1,
e1,t−1e2,t−1, h11,t−1, h22,t−1 and h12,t−1 and is expressed as follows.

h11,t = c2
11 + a2

11e2
1,t−1 + 2a11a21e1,t−1e2,t−1 + a2

21e2
2,t−1

+g2
11h11,t−1 + 2g11g21h12,t−1 + g2

21h22,t−1

h12,t = c12c11 + a11a12e2
1,t−1 + (a21a12 + a11a22)e1,t−1e2,t−1 + a21a22e2

2,t−1

+g11g12h11,t−1 + (g21g12 + g11g22)h12,t−1 + g21g22h22,t−1

h22,t = c2
22 + c2

12 + a2
12e2

1,t−1 + 2a12a22e1,t−1e2,t−1 + a2
22e2

2,t−1

+g2
12h11,t−1 + 2g12g22h12,t−1 + g2

22h22,t−1

(11)

where parameters a11, g11, c11, and c22 are restricted to be positive in order to avoid ‘the BEKK model
with K = 1′ being observationally equivalent structures8. Conversely, when the restrictions ‘K = 2,
p = q = 1, and n = 2’ are substituted into Equation (9), the NS-BEKK model can be obtained
as follows.

Ht = C′0C0 + A′11et−1e′t−1A11 + A′12et−1e′t−1A12 + G′11Ht−1G11 + G′12Ht−1G12 (12)

where the matrices Ht, C0 and the vector et−1 are defined as the same as in Equation (10) and the
parameters A11, A12, G11 and G12 are 2× 2 dimensional matrices, defined as follows.

A11 =

[
a11,1 0
0 a22,1

]
, A12 =

[
0 0
0 a22,2

]
, G11 =

[
g11,1 0
0 g22,1

]
, G12 =

[
0 0
0 g22,2

]

Subsequently, substitute these matrices into Equation (12), we first obtain that the
variance-covariance matrix Ht is a symmetric matrix (i.e., h21,t = h12,t). Second, the number of
parameters of the model in Equation (12) will decrease to nine (i.e., the elements in matrices C0, A11,
A12, G11 and G12). Third, the elements of this variance-covariance matrix Ht are expressed as the
similar form of univariate GARCH(1,1), and are represented as follows.

h11,t = ω1 + α1e2
1,t−1 + β1h11,t−1

h12,t = ω12 + α12e1,t−1e2,t−1 + β12h12,t−1

h22,t = ω2 + α2e2
2,t−1 + β2h22,t−1

(13)

where ω1 = c2
11, α1 = a2

11,1, β1 = g2
11,1, ω12 = c12c11, α12 = a11,1a22,1, β12 = g11,1g22,1, ω2 = c2

22 + c2
12,

α2 = a2
22,1 + a2

22,2, β2 = g2
22,1 + g2

22,2. Hence, the bivariate BEKK GARCH model with the restrictions
‘K = 2, and p = q = 1’ can be represented by a bivariate diagonal model in vech form.

vech(Ht) =


h11,t

h12,t

h22,t

 =


ω1

ω12

ω2

+


α1 0 0

0 α12 0

0 0 α2




e2
1,t−1

e1,t−1e2,t−1

e2
2,t−1

+


β1 0 0

0 β12 0

0 0 β2




h11,t−1

h12,t−1

h22,t−1

 (14)

where the vech operator takes the ‘lower triangular’ portion of a symmetric matrix and stacks each
element into a vector with a single column. This bivariate diagonal type of BEKK model uses only
9 parameters. Thus it is more parsimonious as compared to the 11 parameters for the S-BEKK model
under the condition of positive definite being fulfilled. Moreover, the parameters of the bivariate
S-BEKK and NS-BEKK models are also estimated by the maximum likelihood (ML) optimizing

8 Please see the Proposition 2.1 of Engle and Kroner (1995) for more details.
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numerically the Gaussian log-likelihood function. Hence, the log-likelihood function of these two
models can be written as follows:

L(Ψ) = ∑T
t=1 ln{f(rt|Ωt−1; Ψ )}

= −T
2

ln(2π)− 1
2 ∑T

t=1

(
ln|Ht|+ e′t·H−1

t ·et

) (15)

where Ψ = [µ1,µ2, c11, c12, c22, a11, a12, a21, a22, g11, g12, g21, g22] and [µ1,µ2,ω1,α1,β1,ω12,α12,β12,
ω2,α2,β2] respectively are the vector of parameters to be estimated for the bivariate S-BEKK and
NS-BEKK models, T denotes the sample size of estimate period, f(·) denotes the bivariate normal
density and Ωt−1 denotes the information set of all observed returns up to time t − 1. Notably,
the mean equation of these two models is also expressed in Equation (1).

Under the framework of the parametric techniques (Jorion 2000), the one-day-ahead long position
VaR of a portfolio based on the bivariate S-BEKK and NS-BEKK models can be calculated as:

LVaRP,t = µP + zα·
√

ĥP,t+1|t

= ∑2
i=1 wi·µi + zα

√
∑2

i=1 ∑2
j=1 wiwjĥij,t+1|t

(16)

where µP, wi, µi, and zα are defined as the same in Equation (8); ĥij,t+1|t is one-step-ahead variance
(respectively, covariance) forecast when i = j (respectively, i 6= j) conditional on all information upon
time t. ĥij,t+1|t can be obtained from Equation (11) for the S-BEKK model and Equation (13) for the
NS-BEKK model.

3. Assessment Methods of Alternative VaR Models

In the previous section, the seven bivariate GARCH models (S-CCC, NS-CCC, S-DCC, NS-DCC,
S-BEKK, NS-BEKK, and NS-ADCC) were used to calculate the parametric approach VaR for
21 bi-component stock portfolios9 and seven bi-component currency-stock portfolios. The stock
portfolios comprise of alternative two stock indices among seven stock markets in the US and Europe,
whereas the seven currency-stock portfolios comprise the US dollar index with alternative one stock
index among the seven stock markets. Moreover, many financial institutions are required to hold
capital against their market risk exposure. The MRC requirements are calculated based on VaR
estimates generated by the financial institutions’ own risk management models. Hence, the accuracy
of these VaR estimates is of concern to both financial institutions and their regulators. Thus, in this
study, three accuracy measure tests—Kupiec (1995) unconditional coverage test, Christoffersen (1998)
conditional coverage test, and Engle and Manganelli (2004) dynamic quantile test—are mainly used
to perform the back-testing of the VaR model, and the empirical results are used to compare the
VaR forecasting ability of the seven abovementioned models. Except for performing a VaR forecasts
performance comparison, this study combines an efficiency test with MRC to select a suitable model to
manage the risk to a bank via using the two-stage selection procedure of Sarma et al. (2003). Thus the
theory of MRC and the superior predictive ability (SPA) test of Hansen (2005) are also described in
this section.

3.1. The Failure Rate and Unconditional Coverage Test

If the predicted VaR is not able to cover the realized loss, this is termed as a violation. A binary
loss function (BLF) is merely the reflection of the likelihood ratio test of the unconditional coverage

9 Regarding the seven stock indices, the total number of bi-component portfolios can be calculated by C7
2 = 21.
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test (LRuc) and gives a penalty of one to each exception of the VaR. Hence, the BLF of a long position is
a Bernoulli random variable and it can be defined as follows.

BLt+1 =

{
1 if rP,t+1 < LVaRP,t+1|t
0 if rP,t+1 ≥ LVaRP,t+1|t

(17)

where BLt+1 denotes the one-day-ahead BLF of long position, and rP,t = w1r1,t + w2r2,t, and w1 =

w2 = 0.5 denote the component weights of an equal weight bi-component portfolio. However,
in this study, there are other two component weights’ combinations: w1 = 0.25, w2 = 0.75 and
w1 = 0.75, w2 = 0.25. If a VaR model truly provides the level of coverage defined by its confidence
level, then the average binary loss function (ABLF) or the failure rate over the full sample will equal c
for the (1− c)th percentile VaR.

Kupiec (1995) proposed the unconditional coverage test (LRuc) which is a likelihood ratio test for
testing the model accuracy. The null hypothesis of this test is that the probability of failure for each
trial (π̂) equals the specified model probability (p). The likelihood ratio test statistic is given by

LRuc = −2 ln
[

pn1(1− p)n0

π̂n1(1− π̂)n0

]
∼ χ2(1) (18)

where π̂ = n1/(n0 + n1) is the maximum likelihood estimate of p, n1 represents the total number
of VaR violations and n0 + n1 represents the full sample size. The LRuc test can be employed to
test whether the sample point estimate is statistically consistent with the VaR model’s prescribed
confidence level.

3.2. Conditional Coverage Test

Even if the LRuc test can reject a model that either overestimates or underestimates the true
but unobservable VaR, it cannot inspect whether the exceptions are randomly distributed. In a risk
management framework, it is significant that the VaR exceptions must be uncorrelated over time,
which hints that both the independence and unconditional coverage tests based on the evaluation of
interval forecasts must be simultaneously considered when the competition of a group of VaR models
is performing. Christoffersen (1998) thus proposed a conditional coverage test (LRcc) to jointly test
the correct unconditional coverage and serial independence. The LRcc test is a joint test of these two
properties and the corresponding test statistics are LRcc = LRuc + LRind when we condition on the
first observation. The LRind test denotes the likelihood ratio statistic that tests whether exceptions
are independent, and the LRuc is defined in the previous subsection. Therefore, under the null
hypothesis of the expected proportion of exceptions equals p and the failure process is independent,
the appropriate likelihood ratio test statistic is expressed as follows:

LRcc = LRuc + LRind = −2 ln

[
pn(1− p)T−n

π̂
n01
01 (1− π̂01)

n00 π̂
n11
11 (1− π̂11)

n10

]
∼ χ2(2) (19)

where nij denotes the number of observations with value i followed by value j (i, j = 0, 1), πij =

P{It = j|It−1 = i} (i, j = 0, 1), π̂01 = n01/(n00 + n01), π̂11 = n11/(n10 + n11).

3.3. Dynamic Quantile Test

Engle and Manganelli (2004) proposed the dynamic quantile (DQ) test to remedy the inefficiency
in the conditional coverage test by Christoffersen (1998). We define a sequence of indicator variables
for testing the VaR of the long position as follows.

HitL,t = I
(

rP,t+1 < LVaRP,t+1|t

)
− c (20)
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where HitL,t is an indicator function of the long position. Engle and Manganelli (2004) suggested to
jointly test that: (1) E(HitL,t) = 0; (2) HitL,t is uncorrelated with variables included in the information
set. These two tests can be done by using an artificial regression, HitL,t = XB + εt, where X is an N× k
matrix whose first column is a column of ones, and the remaining columns are additional explanatory
variables such as five lags of HitL,t and the current VaR, hence, k equals seven. Engle and Manganelli
(2004) showed that under the null hypothesis, the dynamic quantile test statistic is represented as
DQ = B̂

′
X
′
XB̂/c(1− c), where B̂ is the ordinary least squares estimate of B, and X

′
and B̂′ respectively

denotes the transpose of matrix X and vector B̂. The DQ test statistic has an asymptotic Chi-square
distribution with seven degrees of freedom, χ2(7).

3.4. Market Risk Capital and the Superior Predictive Ability Test

According to the 1996 Market Risk Amendment (MRA) to the Basel Capital Accord, the regulatory
capital for the trading positions of commercial banks is determined by the banks’ own internal
VaR estimates and then the market risk capital (MRC) loss function for a long position is expressed
as follows.

MRCt = max

[
VaRt(10, 0.99),

kt

60

59

∑
i=0

VaRt−i(10, 0.99)

]
(21)

where VaRt(10, 0.99) denotes the VaR estimate generated on day t under the conditions of a 99%
confidence level and a 10-day holding period, and it is expressed in return; kt is the MRA’s
multiplication factor that equals 3 to 4 depending on the number of exceptions over the past 250 days.
For example, the multiplier value is 3 when the exceptions are between 0 and 4; the multiplier values
are 3.4, 3.5, 3.65, 3.75, and 3.85 for the five through nine exceptions, respectively; and the multiplier
value is 4 as the exceptions are above 10. In other words, MRCt is the amount of regulatory capital a
bank must hold with respect to its market risk exposure. The MRA capital loss function has several
elements that reflect the bank regulators’ concerns. Given its actual use by market participants, the
regulatory loss function implied in the MRA is a natural way to evaluate the relative performance of
VaR estimates within an economic framework. For more details, please see Lopez (1999).

Subsequently, we will introduce the theory of the superior predictive ability (SPA) test by Hansen
(2005). The SPA test is used to explore whether any of the competing models significantly outperform
the benchmark. For the jth model, we generate a T number of VaR forecast: VaRj,t for t = 1, 2, . . . , T.
For every VaR forecast, we generate the loss function Lj,t ≡ MRCj,t that represents the function as
defined in Equation (21). The performance of the jth model relative to the benchmark 0th model at
time t can be defined as:

Fj,t = L0,t − Lj,t for j = 1, 2, . . . , m; t = 1, 2, . . . , T (22)

Assuming stability for Fj,t, we can define the expected performance of the jth model relative to the
benchmark as µj = E

(
Fj,t
)

for j = 1, 2, . . . , m. If the jth model outperforms the benchmark one, then the
value of µj will be positive. Hence, we can analyze whether any of the competing models significantly
outperform the benchmark via testing the null hypothesis that µj ≤ 0, for j = 1, 2, . . . , m. Consequently,
the null hypothesis that none of the models is better than the benchmark (i.e., no predictive superiority
over the benchmark itself) can be formulated as H0 : µmax ≡ max

(
µj ≤ 0, j = 1, 2, . . . , m

)
≤ 0.

The associated test statistic proposed by Hansen (2005) is expressed as follows.

TSPA = max

(√
TFj

ω̂jj
, j = 1, 2, . . . , m

)
(23)

where ω̂2
jj denotes a consistent estimate ofω2

jj = lim
T→∞

var
(√

TFj

)
, and Fj =

(
∑T

t=1 Fj,t

)
/T. A consistent

estimator ofωjj and p-value of test statistic TSPA can be obtained by the stationary bootstrap procedure
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by Politis and Romano (1994). More details of this procedure are illustrated in Hansen (2005) and
Hansen and Lunde (2005).

4. Data and Descriptive Statistics

The study data include the daily prices of the following seven stock indices (with abbreviations in
parentheses): the US NYSE (Ny), S&P500 (Sp), and Nasdaq (Na) in America; the France CAC40 (Ca),
Germany DAX (Da), UK FTSE (Ft), and Swiss SMI (Sm) in Europe; and the one US dollar index (Udi).
Subsequently, 21 alternative weight combinations’ bi-component stock portfolios are constructed
by choosing alternative two stock indices among the above seven stock indices, and they are the
Ny-Sp, Ny-Na, Ny-Ca, Ny-Da, Ny-Ft, Ny-Sm, Sp-Na, Sp-Ca, Sp-Da, Sp-Ft, Sp-Sm, Na-Ca, Na-Da,
Na-Ft, Na-Sm, Ca-Da, Ca-Ft, Ca-Sm, Da-Ft, Da-Sm, and Ft-Sm10. In addition, seven alternative weight
combinations’ bi-component currency-stock portfolios are constructed by the US dollar index with an
alternative one-stock index among the above seven stock indices: Udi-Ny, Udi-Sp, Udi-Na, Udi-Ca,
Udi-Da, Udi-Ft, and Udi-Sm. These 21 stock portfolios and seven currency-stock portfolios are used as
the data to evaluate the VaR of seven bivariate GARCH models. For example, the Ny-Sp pair of data
of an equal weight bi-component’s portfolio is constructed by NYSE and the S&P500 stock indices
with the same weights. The daily closing spot prices of the seven stock indices cover the period from
24 August 2000 (respectively, 3 February 2014) to 31 January 2014 (respectively, 7 March 2016) for the
estimation (respectively, forecast) period, totaling 3300 (respectively, 500) observations11. These trade
data for alternative stock indices were downloaded from http://finance.yahoo.com/. The trade data
of the US dollar index were downloaded from https://research.stlouisfed.org. Returns are defined as
the difference in the logarithms of two successive daily prices of stock index multiplied by 100.

Table 1 lists the basic statistical characteristics of the US dollar index and the seven stock indices’
return series for the overall sample periods. The average daily returns are positive for NYSE, S&P500,
Nasdaq, and DAX and negative for the other indices. However, they are very small compared to
their corresponding standard deviations except for the UDI, implying that the seven stock indices
are volatile in terms of price level except for UDI. Regarding the coefficient of skewness, most of
these return series are significantly left-skewed except for Nasdaq, CAC40, and DAX. As indicated
by the excess kurtosis, all the values significantly exceed zero at the 1% level, thereby inferring that
the distribution of returns has a larger and thicker tail than the normal distribution, and implying a
leptokurtic characteristic. Moreover, the J-B normality test statistic proposed by Jarque and Bera (1987)
are all significant at the 1% level and thus reject the hypothesis of normality, confirming that none of
the return series is normally distributed. The Ljung-Box Q2(24) statistics for the squared returns are all
significant at the 1% level and thus indicate that the return series exhibit serial dependence and strong
ARCH effects. Thus, the above preliminary data analysis suggests that the GARCH family models can
be used to seize the fat tails and time-varying volatility found in the above eight indices’ return series.

10 For each pair of data, they are retained for the same trade date and are deleted otherwise. Taking the Ny-Da pair of data as
an example, both NYSE and DAX are traded on 31 January 2002, thus the close prices of both data are retained on this date.
Conversely, if only NYSE is traded on 25 May 2003, whereas DAX is not traded on this date, then the close price of NYSE on
this date must be deleted, and vice versa.

11 When we conduct a hypothesis test there are two kinds of errors: type I and type II errors. Briefly, type I errors happen
when we reject a true null hypothesis whereas type II errors happen when we fail to reject a false null hypothesis. Although
the errors cannot be completely eliminated, we can minimize one type of error. However, when we try to decrease the
probability of one type of error, the probability for the other type increases. The only way to decrease these two types of
errors is to increase the sample size. Thus, in this study, we set the sample size of the estimation (respectively, forecast)
period as 3300 (respectively, 500). They are large enough in order to decrease type I and type II errors as much as we can.

http://finance.yahoo.com/
https://research.stlouisfed.org
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Table 1. The descriptive statistics of daily return for the overall period.

Mean Std. Dev. Max. Min. Skewness Kurtosis J-B Q2 (24)

NYSE 0.0089 1.2783 11.5257 −10.232 −0.2954 c 9.169 c 13,370.5 c 7455.9 c

S&P500 0.0074 1.2701 10.9571 −9.4695 −0.1789 c 8.1254 c 10,476.6 c 6366.9 c

Nasdaq 0.0042 1.5947 11.1594 −9.5876 0.0327 4.6001 c 3352.0 c 5291.3 c

CAC40 −0.0100 1.5396 10.5945 −9.4715 0.0105 4.6143 c 3372.2 c 3455.4 c

DAX 0.0079 1.5817 10.7974 −9.5756 −0.0399 4.4070 c 3076.9 c 3645.6 c

FTSE −0.0015 1.2463 9.3842 −9.2645 −0.0890 b 5.9661 c 5642.3 c 4986.8 c

SMI −0.0011 1.2668 10.7876 −10.518 −0.1255 c 8.2662 c 10,831.7 c 2591.4 c

UDI −0.0028 0.4755 2.1552 −4.1066 −0.2346 c 3.3553 c 1817.9 c 1062.7 c

Notes: (1) The superscripts b and c at each statistic denote that the values of that statistic are significant at the 5%
and 1% levels, respectively. (2) Kurtosis denotes the excess kurtosis. (3) J-B statistics are based on Jarque and Bera
(1987), and they are asymptotically chi-squared-distributed with 2 degrees of freedom. (4) Q2(24) statistics are
asymptotically chi-squared-distributed with 24 degrees of freedom.

5. Empirical Results and Analyses

In this study, the seven bivariate GARCH models: the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK,
NS-BEKK, and NS-ADCC models are utilized to estimate the VaR of 21 bi-component stock portfolios,
and seven bi-component currency-stock portfolios, and the further three accuracy measures: the LRuc,
LRcc, and DQ tests and one efficiency test are used to evaluate the out-of-sample VaR forecast
performance of the above seven bivariate GARCH models12. Before the performance competition of
VaR forecast for the above seven bivariate GARCH models is executed, the fitting ability of the above
seven models is explored via the empirical results of the parameters for the alternative models.

5.1. Estimation Results for Alternative Bivariate GARCH Models

In this subsection, only the empirical results of the non-standard or the two-step ADCC type of
the bivariate GARCH model (i.e., the NS-ADCC model) for the overall period are illustrated. Table 2
lists the empirical result of the NS-ADCC model for the six NYSE-based bi-component portfolios13.
Notably, via the example of Ny-Sp portfolio in this table, this two-step estimate procedure is performed
as follows. First, the parameters of the NS-ADCC model for two stock indices are estimated by using
the two independent univariate GARCH(1,1) models. Thus, the coefficients µ1(0.0505), ω1(0.0178),
α1(0.0886), β1(0.8986) and one log-likelihood value LL1 (−4800.17) for the first univariate GARCH(1,1)
model corresponding to the first component stock index are produced, and they are listed in the column
‘Ny-Sp’ in panel A of Table 2. Similarly, the coefficients µ2(0.0491),ω2(0.0168), α2(0.0880), β2(0.9000)
and one value of the log-likelihood LL2 (−4803.92) for the second univariate GARCH(1,1) model
corresponding to the second component stock index are produced and they are listed in the column
‘Ny-Sp’ in panel B of Table 2. In addition, the two variance series (i.e., h11,t, and h22,t) and two residue
series (i.e., e1,t and e2,t) are also obtained in this step. Second, the above two standardized residual
return series (ui,t for i = 1, 2) and their corresponding negative component residual return series
(ni,t for i = 1, 2) are used to estimate the intercept parameters of the conditional correlation matrix
equation listed in Equation (4). During this step of estimation, the values of parameters a(0.2041),
b(0.9738), and g(−2 × 10−5) and one log-likelihood value LL3 (−4386.75) are obtained, and they
are listed in panel C of Table 2. As shown in Table 2, the ωi,αi, and βi coefficients where i = 1, 2

12 The out-of-sample VaR forecast is executed via a rolling window approach. That is, the seven bivariate GARCH models are
estimated for each of 28 pair-wise data series, with a sample of 3300 daily returns, and then a one-day-ahead VaR forecast of
the bi-component portfolio for the next period is obtained. Subsequently, the estimation period is then rolled forward by
adding one new day and dropping the most distant day. Via repeating this procedure, the out-of-sample VaR forecasts are
computed for the next 500 days.

13 Due to the limited space, the empirical results of the other 22 bi-component portfolios for the NS-ADCC model, and
the empirical results for the other six bivariate GARCH models (i.e. the S-CCC, NS-CSS, S-DCC, NS-DCC, S-BEKK, and
NS-BEKK models) are all omitted here and are available upon request.
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are positive and significant at the 1% level for all six NYSE-based portfolios. Notably, the values
of ω1,α1, and β1 coefficients are all equal for all NYSE-based portfolios owing to having the same
first component asset within the two-step estimate procedure. Moreover, the values of parameters
a and b are all significantly positive, whereas the values of parameter g are very small and are not
significant for most cases, indicating that the asymmetric property of correlation seems not to exist
in the stock-based portfolios. Notably, the values of a2 + b

2
+ g2 for the six NYSE-based portfolios

are less than 1, indicating that the correlation matrix Qt is positive definite. In addition, the mean
conditional correlation for the overall period is between 0.4944 (Ny-Sm) and 0.9746 (Ny-Sp) for all
NYSE-based portfolios. Finally, the values of Q2

1(24) and Q2
2(24) test statistics are significant for most

of the six pairs of data. However, the values of the above statistics are significantly lower than those
appearing in Table 1. These results indicate that the serial correlation has been significantly reduced in
standard residuals, confirming that the NS-ADCC model addressed in this study is sufficient to correct
the serial correlation that exists in the conditional variance equation of these six pairs of returns series.

Table 2. The empirical results of NS-ADCC model.

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm

Panel A. The univariate GARCH(1,1) model for the first component stock index

µ1
0.0505

(0.015) c
0.0505

(0.015) c
0.0505

(0.015) c
0.0505

(0.015) c
0.0505

(0.015) c
0.0505

(0.015) c

ω1
0.0178

(0.003) c
0.0178

(0.003) c
0.0178

(0.003) c
0.0178

(0.003) c
0.0178

(0.003) c
0.0178

(0.003) c

α1
0.0886

(0.003) c
0.0886

(0.003) c
0.0886

(0.003) c
0.0886

(0.003) c
0.0886

(0.003) c
0.0886

(0.003) c

β1
0.8986

(0.006) c
0.8986

(0.006) c
0.8986

(0.006) c
0.8986

(0.006) c
0.8986

(0.006) c
0.8986

(0.006) c

Q2
1(24) 39.228 b 39.228 b 39.228 b 39.228 b 39.228 b 39.228 b

LL1 −4800.17 −4800.17 −4800.17 −4800.17 −4800.17 −4800.17

Panel B. The univariate GARCH(1,1) model for the second component stock index

µ2
0.0491

(0.015) c
0.0656

(0.018) c
0.0503

(0.018) c
0.0811

(0.018) c
0.0407

(0.014) c
0.0512

(0.016) c

ω2
0.0168

(0.001) c
0.0174

(0.001) c
0.0220

(0.001) c
0.0239

(0.002) c
0.0132

(0.001) c
0.0387

(0.001) c

α2
0.0880

(0.002) c
0.0758

(0.001) c
0.0872

(0.002) c
0.0926

(0.002) c
0.0945

(0.002) c
0.1242

(0.002) c

β2
0.9000

(0.001) c
0.9163

(0.001) c
0.9040

(0.001) c
0.8982

(0.001) c
0.8972

(0.002) c
0.8511

(0.001) c

Q2
2(24) 38.818 b 44.580 c 30.213 26.734 30.074 8.831
LL2 −4803.92 −5598.51 −5557.72 −5588.51 −4751.05 −4833.02

Panel C. The conditional correlation matrix equation

a 0.2041
(0.009) c

0.1925
(0.019) c

0.1000
(0.011) c

0.0715
(4 × 10−8) c

0.1451
(0.000) c

−0.101
(5 × 10−10) c

b
0.9738

(0.002) c
0.9782

(0.003) c
0.9939

(0.001) c
0.9934

(3 × 10−8) c
0.9619

(1 × 10−10) c
0.6633

(1 × 10−9) c

g −2 × 10−5

(3 × 10−5)
0.0701
(0.064)

−9 × 10−6

(0.035)
0.1044

(2 × 10−11) c
−1 × 10−5

(0.000) c
−1.3 × 10−4

(0.0) c
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Table 2. Cont.

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm

Panel C. The conditional correlation matrix equation

ρ12
0.9746
(0.014)

0.8748
(0.059)

0.6219
(0.093)

0.6326
(0.090)

0.5769
(0.051)

0.4944
(0.011)

LL3 −4386.75 −7768.51 −9449.89 −9428.01 −8758.57 −9078.06

Note: (1) The symbols Ny, Sp, Na, Ca, Da, Ft, and Sm denote the USNYSE, S&P500, and Nasdaq; France CAC40;
Germany DAX; United Kingdom FTSE; and Swiss SMI stock indices, respectively. (2) The superscripts b and c at
each coefficient estimate denote the value of that coefficient being significant at the 5% and 1% levels, respectively.
(3) Numbers in parentheses are standard errors. (4) LL1 and LL2 respectively indicate the log-likelihood value
for two independent univariate GARCH equations whereas LL3 denotes the log-likelihood value for the bivariate
ADCC equation. (5) Q2

1(24) and Q2
2(24) respectively denote the Ljung-Box Q test for the 24th order serial correlation

of the squared returns for the first and second component stock indices of an equal weight bi-component portfolio.
(6) ρ12 is the mean correlation between two component stock indices of an equal weight bi-component portfolio
during the first estimate period.

5.2. The Performance Assessments of VaR Forecasts

In this study, according to the procedure of the parameters estimate or the number of parameter
estimate of model (i.e., the approach of parameters estimate), the seven bivariate GARCH models:
the S-CCC, NS-CCC, S-DCC, NS-DCC, NS-ADCC, S-BEKK, and NS-BEKK models can be classified
into the following two categories: the standard CCC, DCC, and BEKK models (i.e., the S-CCC, S-DCC,
and S-BEKK models); and the non-standard CCC, DCC, ADCC, and BEKK models (i.e., the NS-CCC,
NS-DCC, NS-ADCC, and NS-BEKK models). Or, according to the specification depicting the correlative
relationship between two assets, they can be divided as the following four categories: the CCC
model by Bollerslev (1990) (i.e., the S-CCC and NS-CCC models), the DCC model by Engle (2002)
(i.e., the S-DCC and NS-DCC models), the ADCC model by Cappiello et al. (2006) (i.e., the NS-ADCC
model), and the BEKK model defined in Engle and Kroner (1995) (i.e., the S-BEKK and NS-BEKK
models). Subsequently, the above seven bivariate GARCH models are utilized to estimate the VaR of
the 21 bi-component stock portfolios and seven bi-component currency-stock portfolios, and then the
three accuracy measures and one efficiency test are used to evaluate the out-of-sample VaR forecast
performance of the above seven bivariate GARCH models. Further, regarding the results of accuracy
tests, this study explores which bivariate variance-covariance specification, which parameter estimate
approach has a better VaR forecast performance, and whether the asymmetric DCC model has t better
forecast performance than its corresponding symmetric one. In addition, this study also explores
whether the different weight combinations and the different component combinations of portfolios
affect the above comparison results. Regarding the results of the efficiency test, which determines
which model is the most suitable to manage the risk of a bank via combing the MRC. The above
efficiency test is performed by the superior predictive ability (SPA) test by Hansen (2005).

5.2.1. Preliminary Analysis of Average VaR Performance

In this subsection, the failure rate and the mean VaR14 during the out-of-sample period are first
used to evaluate the forecast performance of the above seven bivariate GARCH models: the S-CCC,
NS-CCC, S-DCC, NS-DCC, NS-ADCC, S-BEKK, and NS-BEKK models15. Basically, the greater
(respectively, smaller) the mean VaR of a model in the absolute value, the lower (respectively, higher)

14 The mean VaR is the average of all the VaR values over the out-of-sample period, and can be calculated by the following

equation: Mean VaR =
(

∑500
t=1 LVaRp,t

)
/500, where LVaRp,t denotes the value of the portfolio’s VaR at time t, and can be

calculated by Equation (8) or Equation (16). The sample size of the out-of-sample period is equal to 500 in this study.
15 Actually, it is very hard to compete against the models’ forecasting performance via the failure rate since it cannot provide

the significance level for the obtained conclusion. Owing to the above reason, the forecasting performance comparison of
alternative models based on the failure rate is listed in the section of ‘Preliminary analysis of average VaR performance’.
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the failure rate of the model. If, as reported in the empirical results, all the failure rates are almost higher
(respectively, lower) than the prescribed level, indicating that all models underestimate (respectively,
overestimate) the true VaR and if a model produces only lower (respectively, higher) failure rates or
the greater (respectively, smaller) mean VaR, then this model will have a better performance.

Regarding the bi-component stock portfolios with an equal weight, Table 3 (respectively, Table 4)
reports the failure rates (respectively, mean VaR) of long position for each of the seven bivariate
GARCH models under a 95% confidence level over the entire out-of-sample period16. Before the
implementation of more VaR evaluation tests, the failure rates and mean VaR can be considered as the
preliminary analysis of average VaR performance during the forecasting period. To easily explore the
issues addressed in this study, the corresponding comparison results of failure rates (respectively, mean
VaR) are summarized in panel A (respectively, panel B) of Table 5. Subsequently, we will illustrate
how to execute the several groups of model performance competition regarding the issues addressed,
and then depict how to summarize the comparison results in Table 5. As shown in Table 3, except
for a few cases such as the Na-Sm and Ca-Sm of S-DCC, all failure rates are almost higher than the
prescribed level, indicating that all models underestimate the true VaR. This result implies which kind
of VaR models can bear a better performance because they produce lower failure rates. According
to the issues addressed in this study, four categories of the model performance competitions will be
executed in this section. The first category of the model performance competition is the performance
competition between the standard approach and its corresponding non-standard approach based
on the same bivariate variance-covariance specification and it includes three groups of the model
performance competitions—the S-CCC vs. NS-CCC, the S-DCC vs. NS-DCC, and the S-BEKK vs.
NS-BEKK. The first category of the model performance competition is used to inspect which approach
of parameters estimate, the standard or non-standard approach, has a better VaR forecast performance,
and it is accomplished by finding the total number of portfolios with a lower value of the failure rate
between the standard approach and its corresponding non-standard approach that a specified bivariate
GARCH model has based on the same variance-covariance specification, and then these results are
summarized in column S1 in Table 3. For instance, regarding the first panel of Table 3, the S-CCC
(respectively, NS-CCC) model has the lower value of failure rate between the S-CCC and NS-CCC
models only for the Ny-Sp and Sp-Na portfolios (respectively, Ny-Da and Ny-Ft portfolios). Hence, the
numbers in column S1 corresponding to the S-CCC and NS-CCC models of the first panel in Table 3
are 2 and 2, respectively. Conversely, the S-DCC (respectively, NS-DCC) model has the lower value of
failure rate between the S-DCC and NS-DCC models for all seven portfolios (respectively, none of the
portfolios). Hence, the numbers in column S1 corresponding to the S-DCC and NS-DCC models of the
first panel in Table 3 are 7 and 0, respectively. Concerning the last group of the model performance
competition, the S-BEKK vs. NS-BEKK, and the other two panels, the results are summarized in
column S1 of Table 3 corresponding to the specified model and the specified panel with the same
inference process. Finally, regarding the 95% level, the results in column S1 corresponding to the three
panels of Table 3 are also respectively summarized at the three columns underneath the 95% level that
are also underneath S1 in Panel A of Table 5.

16 Notably, the failure rate and mean VaR is regarded as the preliminary analysis of the average VaR performance. They cannot
provide precise results. Moreover, due to the limited space, the detailed results of the VaR forecasting performance at the
99% level based on failure rate are omitted here and are available upon request. However, the summary results of this level
are also listed in Table 5.
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Table 3. The out-of-sample Value-at-risk (VaR) forecasts performance based on the failure rates.

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na S1 S2 S3 S4

S-CCC 0.056 0.072 0.078 0.086 0.082 0.068 0.072 2 0 0 -
NS-CCC 0.064 0.072 0.078 0.084 0.080 0.068 0.074 2 3 0 -
S-DCC 0.050 0.058 0.066 0.060 0.060 0.050 0.058 7 7 7 -

NS-DCC 0.064 0.072 0.074 0.084 0.074 0.072 0.074 0 4 0 2
S-BEKK 0.064 0.072 0.080 0.074 0.082 0.072 0.078 2 0 0 -

NS-BEKK 0.066 0.072 0.078 0.086 0.078 0.072 0.072 3 1 0 -
NS-ADCC 0.064 0.072 0.076 0.084 0.076 0.068 0.074 - - - 1

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-CCC 0.092 0.078 0.090 0.074 0.080 0.074 0.088 0 0 0 -
NS-CCC 0.080 0.076 0.084 0.070 0.080 0.072 0.088 5 2 0 -
S-DCC 0.060 0.058 0.074 0.058 0.058 0.070 0.064 7 6 6 -

NS-DCC 0.078 0.074 0.082 0.070 0.076 0.072 0.086 0 5 0 1
S-BEKK 0.076 0.068 0.090 0.074 0.078 0.068 0.082 3 1 1 -

NS-BEKK 0.080 0.078 0.080 0.072 0.076 0.076 0.080 4 3 0 -
NS-ADCC 0.080 0.074 0.082 0.070 0.076 0.070 0.082 - - - 2

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-CCC 0.072 0.074 0.068 0.060 0.072 0.066 0.072 2 1 1 -
NS-CCC 0.072 0.066 0.062 0.064 0.070 0.068 0.066 4 2 0 -
S-DCC 0.042 * 0.060 0.062 0.046 * 0.058 0.068 0.052 5 5 5 -

NS-DCC 0.072 0.064 0.062 0.060 0.072 0.068 0.068 0 2 0 1
S-BEKK 0.074 0.070 0.058 0.062 0.064 0.066 0.064 4 2 2 -

NS-BEKK 0.068 0.064 0.062 0.060 0.074 0.068 0.066 3 4 0 -
NS-ADCC 0.074 0.064 0.062 0.060 0.072 0.068 0.068 - - - 0

Note: (1) Ny, Sp, Na, Ca, Da, Ft and Sm denote the USNYSE, S&P500, and Nasdaq; France CAC40, Germany DAX;
United Kingdom FTSE; and Swiss SMI stock indices, respectively. (2) S-CCC and NS-CCC respectively denote
the standard and non-standard (i.e., the two-step) constant conditional correlation models; S-DCC and NS-DCC
respectively denote the standard and non-standard (i.e., the two-step) dynamic conditional correlation models;
S-BEKK denotes the standard BEKK model whereas NS-BEKK denotes the non-standard (i.e., the simplified) BEKK
model derived by Su (2014a); NS-ADCC denotes the non-standard (i.e., the two-step) asymmetric type of the
dynamic conditional correlation models. (3) The symbol ‘-’ in column S1, S2, S3, and S4 denotes that no comparison
result exists in this case. (4) The number in this table denotes the failure rate at the 95% level for equal weight
bi-component stock portfolios. (5) The superscript * represents that the empirical failure rate is lower than the
theoretical failure rate. (6) The bold font denotes the lower value of the failure rate when the predictive accuracies
of the two bivariate GARCH models are compared with each other based on the same bivariate models but with
different types of estimate approaches. (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK
vs. NS-BEKK) (7) The underlined font denotes the lowest value of failure rate when the predictive accuracies
of the three bivariate GARCH models are compared with each other based on the same estimated approaches
but with different types of bivariate models (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and
NS-BEKK). (8) The shaded font denotes the lowest value of the failure rate when the predictive accuracies of all
bivariate GARCH models except the NS-ADCC are compared with each other. (9) The italic font denotes the lower
value of failure rate when the predictive accuracies of the non-standard symmetric and asymmetric DCC bivariate
GARCH models are compared with each other (i.e., the NS-DCC vs. NS-ADCC). (10) The numbers in column
S1 denote the total number of portfolios that have the lower failure rate when the S-CCC, S-DCC, and S-BEKK
models are compared with the NS-CCC, NS-DCC, and NS-BEKK models, respectively. (11) The numbers in column
S2 denote the total number of portfolios that have the lowest failure rate when three bivariate GARCH models
(i.e., the S-CCC, S-DCC, and S-BEKK) or the other three bivariate GARCH models (i.e., the NS-CCC, NS-DCC, and
NS-BEKK) are compared with each other. (12) The numbers in column S3 denote the total number of portfolios
that have the lowest failure rate when all bivariate GARCH models except the NS-ADCC are compared with each
other. (13) The numbers in column S4 denote the total number of portfolios that have the lower failure rate when
the NS-DCC and NS-ADCC models are compared with each other.
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Table 4. The out-of-sample VaR forecasts performance based on the mean VaR.

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na S1 S2 S3 S4

S-CCC −1.4091 −1.4483 −1.5124 −1.5304 −1.2833 −1.3269 −1.4743 0 0 0 -
NS-CCC −1.4098 −1.4657 −1.5443 −1.5693 −1.3090 −1.3493 −1.4983 7 1 0 -
S-DCC −1.5538 −1.5421 −1.6369 −1.7554 −1.3867 −1.4296 −1.5800 7 7 7 -

NS-DCC −1.4102 −1.4910 −1.5578 −1.5693 −1.3243 −1.3507 −1.5198 0 7 0 4
S-BEKK −1.3908 −1.4551 −1.5733 −1.5852 −1.3034 −1.3448 −1.4913 4 0 0 -

NS-BEKK −1.3820 −1.4664 −1.5387 −1.5411 −1.3126 −1.3253 −1.4967 3 0 0 -
NS-ADCC −1.4102 −1.4909 −1.5551 −1.5693 −1.3234 −1.3479 −1.5198 - - - 0

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-CCC −1.4932 −1.5176 −1.2668 −1.3117 −1.5738 −1.6023 −1.3522 0 0 0 -
NS-CCC −1.5298 −1.5596 −1.2943 −1.3374 −1.6024 −1.6381 −1.3720 7 1 0 -
S-DCC −1.5915 −1.6840 −1.3337 −1.4311 −1.7643 −1.7069 −1.4406 7 7 7 -

NS-DCC −1.5432 −1.5586 −1.3081 −1.3427 −1.6171 −1.6402 −1.3913 0 6 0 4
S-BEKK −1.5550 −1.5769 −1.2827 −1.3176 −1.6229 −1.6598 −1.3950 6 0 0 -

NS-BEKK −1.5219 −1.5321 −1.2919 −1.3174 −1.6058 −1.6177 −1.3758 1 0 0 -
NS-ADCC −1.5415 −1.5611 −1.3061 −1.3380 −1.6178 −1.6425 −1.3865 - - - 3

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-CCC −1.3946 −1.9465 −1.6814 −1.7286 −1.6709 −1.7457 −1.4840 0 0 0 -
NS-CCC −1.4078 −2.0114 −1.7267 −1.7713 −1.7241 −1.7910 −1.5147 7 0 0 -
S-DCC −1.6290 −2.0847 −1.7812 −2.0290 −1.9297 −1.7918 −1.6887 6 7 6 -

NS-DCC −1.4211 −2.0574 −1.7398 −1.7773 −1.7435 −1.7951 −1.5154 1 7 1 2
S-BEKK −1.3816 −2.0203 −1.7504 −1.7624 −1.7478 −1.7912 −1.5184 6 0 0 -

NS-BEKK −1.4024 −2.0156 −1.7250 −1.7125 −1.7332 −1.7133 −1.4849 1 0 0 -
NS-ADCC −1.4111 −2.0557 −1.7398 −1.7773 −1.7435 −1.7951 −1.5154 - - - 0

Note: (1) Refer to notes 1–3 of Table 3. (2) The numbers in this table denote the mean VaR at the 95% level for
equal weight bi-component stock portfolios. (3) The bold font denotes the greater value of mean VaR in absolute
value when the predictive accuracies of two bivariate GARCH models are compared with each other based on
the same bivariate models but using different types of estimate approaches (i.e., S-CCC vs. NS-CCC; S-DCC
vs. NS-DCC; and S-BEKK vs. NS-BEKK). (4) The underlined font denotes the greatest value of mean VaR in
absolute value when the predictive accuracies of three bivariate GARCH models are compared with each other
based on the same estimated approaches but using different types of bivariate models (i.e., the S-CCC, S-DCC, and
S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK). (5) The shaded font denotes the greatest value of mean VaR in
absolute value when the predictive accuracies of all bivariate GARCH models except the NS-ADCC are compared
with each other. (6) The italic font denotes the greater value of mean VaR in absolute value when the predictive
accuracies of the non-standard symmetric and asymmetric DCC bivariate GARCH models are compared with each
other (i.e., the NS-DCC vs. NS-ADCC). (7) The numbers in column S1 denote the total number of portfolios that
have a greater value of mean VaR in absolute value when the S-CCC, S-DCC, and S-BEKK models are compared
with NS-CCC, NS-DCC, and NS-BEKK models, respectively. (8) The numbers in column S2 denote the total
number of portfolios that have the greatest value of mean VaR in absolute value when three bivariate GARCH
models (i.e., S-CCC, S-DCC, and S-BEKK) or the other three bivariate GARCH models (i.e., NS-CCC, NS-DCC, and
NS-BEKK) are compared with each other. (9) The numbers in column S3 denote the total number of portfolios that
have the greatest value of mean VaR in absolute value when all bivariate GARCH models except the NS-ADCC
are compared with each other. (10) The numbers in column S4 denote the total number of portfolios that have
the greater value of mean VaR in absolute value when the NS-DCC and NS-ADCC models are compared with
each other.
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Table 5. The summary results for the out-of-sample VaR forecasts performance of equal-weight stock portfolios based on the mean VaR and failure rate.

Panel A. Failure Rate

S1 S2 S3 S4

95% Level S1,95 99% Level S1,99 SS1 95% Level S2,95 99% Level S2,99 SS2 95% Level S3,95 99% Level S3,99 SS3 95% Level S4,95 99% Level S4,99 SS4

S-CCC 2 0 2 4 1 1 0 2 6 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 - - - - - - - - -
NS-CCC 2 5 4 11 1 2 5 8 19 3 2 2 7 2 2 4 8 15 0 0 0 0 1 0 0 1 1 - - - - - - - - -
S-DCC 7 7 5 19 5 7 5 17 36 7 6 5 18 5 6 5 16 34 7 6 5 18 5 6 5 16 34 - - - - - - - - -

NS-DCC 0 0 0 0 1 0 0 1 1 4 5 2 11 2 1 2 5 16 0 0 0 0 1 0 0 1 1 2 1 1 4 1 0 1 2 6
S-BEKK 2 3 4 9 2 4 5 11 20 0 1 2 3 4 1 3 8 11 0 1 2 3 4 1 3 8 11 - - - - - - - - -

NS-BEKK 3 4 3 10 1 2 2 5 15 1 3 4 8 3 3 2 8 16 0 0 0 0 3 2 0 5 5 - - - - - - - - -
NS-ADCC - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 0 3 0 0 0 0 3

Panel B. Mean VaR

S1 S2 S3 S4

95% Level S1,95 99% Level S1,99 SS1 95% Level S2,95 99% Level S2,99 SS2 95% Level S3,95 99% Level S3,99 SS3 95% Level S4,95 99% Level S4,99 SS4

S-CCC 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - -
NS-CCC 7 7 7 21 6 7 7 20 41 1 1 0 2 1 1 0 2 4 0 0 0 0 0 0 0 0 0 - - - - - - - - -
S-DCC 7 7 6 20 7 7 6 20 40 7 7 7 21 7 7 6 20 41 7 7 6 20 7 7 6 20 40 - - - - - - - - -

NS-DCC 0 0 1 1 0 0 1 1 2 7 6 7 20 7 6 7 20 40 0 0 1 1 0 0 1 1 2 4 4 2 10 4 4 2 10 20
S-BEKK 4 6 6 16 4 5 6 15 31 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 - - - - - - - - -

NS-BEKK 3 1 1 5 3 2 1 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - -
NS-ADCC - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 3 0 3 2 3 0 5 8

Note: (1) Refer to notes 2–3 of Table 3. (2) The numbers in the columns 95% underneath S1 and S2 at panel A (respectively, panel B), respectively, are summarized from the numbers in the
column S1 and S2 of Table 3 (respectively, Table 4) corresponding to the 95% level. (3) The numbers in the columns 95% underneath S3 and S4 at panel A (respectively, panel B), respectively,
are summarized from the numbers in column S3 and S4 of Table 3 (respectively, Table 4) corresponding to the 95% level. (4) The numbers in the columns S1,95 and S1,99 underneath S1 at
panel A (respectively, panel B), respectively, denote the total sum of three corresponding numbers in the columns 95% and 99% underneath S1 at panel A (respectively, panel B) and the
numbers in the column SS1 underneath S1 at panel A (respectively, panel B) denote the total sum of two corresponding numbers in the columns S1,95 and S1,99 underneath S1 at panel A
(respectively, panel B). (5) In the same inference process, the numbers in the column SS2 underneath S2 at panel A (respectively, panel B) denote the total sum of two corresponding
numbers in the columns S2,95 and S2,99 underneath S2 at panel A (respectively, panel B) whereas the numbers in the column SS3 underneath S3 at panel A (respectively, panel B) denote the
total sum of two corresponding numbers in the columns S3,95 and S3,99 underneath S3 at panel A (respectively, panel B). In addition, the numbers in the column SS4 underneath S4 at panel
A (respectively, panel B) denote the total sum of two corresponding numbers in the columns S4,95 and S4,99 underneath S4 at panel A (respectively, panel B). (6) The bold font in all columns
under S1 denotes the greater number when two numbers corresponding to two models are compared with each other and these two models have the same bivariate variance-covariance
specification but with different approaches of parameter estimates (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK vs. NS-BEKK). (7) The bold font in all columns
under S2 denotes the greatest number when three numbers corresponding to three models are compared with each other and these three models have the same approach of parameter
estimates but with different bivariate variance-covariance specification (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK). (8) The bold font in all columns under
S3 denotes the greatest number when six numbers corresponding to the six models are compared with each other, and these six models are the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK,
and NS-BEKK. (9) The bold font in all columns under S4 denotes the greater number when two numbers corresponding to two models are compared with each other. The two models are
the NS-DCC and NS_ADCC.
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The second category of the model performance competition is the performance competition
among the three types of bivariate variance-covariance specifications (i.e., the CCC, DCC, and BEKK)
based on the same approach of parameters estimate and it includes two groups of the model
performance competition—the S-CCC, S-DCC, and S-BEKK; and the NS-CCC, NS-DCC, and NS-BEKK.
The second category of the model performance competition is used to inspect which type of bivariate
variance-covariance specification has the best VaR forecast performance and it is achieved by finding
the total number of portfolios with the lowest value of the failure rate among three types of bivariate
variance-covariance specifications (i.e., the CCC, DCC, and BEKK) that a specified bivariate GARCH
model has based on the same approach of parameters estimate, and then these results are summarized
in column S2 in Table 3. For instance, regarding the first panel of Table 3, the S-DCC (respectively,
the S-CCC and S-BEKK) model has the lowest value of failure rate among the S-CCC, S-DC,C and
S-BEKK models for all seven portfolios (respectively, none of the portfolio). Hence, the numbers in
column S2 corresponding to the S-CCC, S-DCC, and S-BEKK models of the first panel in Table 3 are 0,
7, and 0, respectively. Similarity, the NS-CCC (respectively, NS-DCC) model has the lowest value of
failure rate among the NS-CCC, NS-DCC, and NS-BEKK models for the Ny-Sp, Ny-Da and Ny-Sm
portfolios (respectively, Ny-Sp, Ny-Ca, Ny-Da, and Ny-Ft portfolios) whereas the NS-BEKK has the
lowest value of failure rate only for Sp-Na. Hence, the numbers in column S2 corresponding to the
NS-CCC, NS-DCC, and NS-BEKK models of the first panel in Table 3 are 3, 4, and 1, respectively.
Concerning the other two panels, the results are summarized in column S2 of Table 3 corresponding
to the specified model and the specified panel with the same inference process. Finally, regarding
the 95% level, the results in column S2 corresponding to three panels of Table 3 are also respectively
summarized at the three columns underneath 95% level that are also underneath S2 in Panel A of
Table 5. The third category of the model performance competition is the performance competition
among all the bivariate GARCH models except the NS-ADCC model in order to inspect which model
has the best VaR forecast performance, and it is achieved by finding the total number of portfolios
with the lowest value of the failure rate among all the above six bivariate GARCH models that a
specified bivariate GARCH model has, and then these results are summarized in column S3 in Table 3.
For instance, regarding the first panel of Table 3, the S-DCC model has the lowest failure rate value
among all the bivariate GARCH models except the NS-ADCC model for all seven portfolios. Hence,
the number in column S3 corresponding to the S-DCC model of the first panel in Table 3 is 7 whereas
those corresponding to the other five models are all zero except the NS-ADCC model. Concerning the
other two panels, the results are summarized in column S3 of Table 3 corresponding to the specified
model and the specified panel with the same inference process. Finally, regarding the 95% level,
the results in column S3 corresponding to three panels of Table 3 are also respectively summarized at
the three columns underneath the 95% level that are also underneath S3 in Panel A of Table 5. The last
category of the model performance competition is the performance competition between the NS-DCC
and NS-ADCC models and is used to inspect whether the asymmetric DCC model has a better forecast
performance than its corresponding symmetric one. It is accomplished by finding the total number of
portfolios with a lower value of the failure rate between the NS-DCC and NS-ADCC models, and then
these results are summarized in column S4 in Table 3. For instance, regarding the first panel of Table 3,
the NS-DCC (respectively, NS-ADCC) model has the lower value of failure rate between the NS-DCC
and NS-ADCC models only for Ny-Ca and Ny-Ft portfolios (respectively, the Ny-Sm portfolio). Hence,
the numbers in column S4 corresponding to the NS-DCC and NS-ADCC models of the first panel
in Table 3 are 2 and 1, respectively. Concerning the other two panels, the results are summarized in
column S4 of Table 3 corresponding to the specified model and the specified panel with the same
inference process. Finally, regarding the 95% level, the results in column S4 corresponding to three
panels of Table 3 are also respectively summarized at the three columns underneath the 95% level that
are also underneath S4 in Panel A of Table 5.

Regarding the seven bivariate GARCH models, panel A of Table 5 summarizes the results of the
out-of-sample VaR forecasts’ performance of the equal weight bi-component stock portfolios based on
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failure rate for both 95% and 99% levels. Subsequently, in order to easily execute the competition of
predictive performances for the seven bivariate GARCH models, we sum the total number of portfolios
owning the lower or the lowest value of failure rate that a specified bivariate GARCH model has based
on two levels (i.e., the 95% and 99% levels) for each of the four categories of the model performance
competition, and list them in column SS1 underneath S1, column SS2 underneath S2, column SS3
underneath S3, and column SS4 underneath S4 for the first, second, third, and last categories of the
model performance competition, respectively. For instance, regarding the first category of the model
performance competition and regarding the 95% level, the total number of portfolios with the lower
value of the failure rate that the S-CCC model has is 4, that is, the summation of three numbers 2,
0, and 2. This number, 4, is listed in the entry corresponding to S-CCC model of the column S1,95

underneath S1. In the same inference, regarding the 99% level, the total number of portfolios with the
lower value of failure rate that the S-CCC model has is 2, that is, the summation of three numbers
1, 1, and 0. This number, 2, is listed in the entry corresponding to S-CCC model of the column S1,99

underneath S1. Finally, we sum the above two numbers, 4 and 2, and record this number, 6 at the entry
corresponding to the row S-CCC and column SS1 underneath S1. As shown in column SS1 underneath
S1 in panel A of Table 5, we find that the NS-CCC model has a better VaR forecast performance for
the CCC type of bivariate variance-covariance specification since this model has the larger number,
19 between the S-CCC (6) and NS-CCC (19) models, where the number in the brackets beside each
model denotes the summation of the total number of portfolios having the lower value of failure
rate for both 95% and 99% levels. In the same inference process, the S-DCC (respectively, S-BEKK)
model has a better VaR forecast performance for the DCC (respectively, BEKK) type of bivariate
variance-covariance specification. These results indicate that the standard approach has better VaR
forecast performance for the DCC and BEKK types of bivariate variance-covariance specification
whereas the non-standard or two-step approach has a better VaR forecast performance only for the
CCC type of bivariate variance-covariance specification. As reported in column SS2 underneath
S2 in panel A of Table 5, we find that the S-DCC model has the best VaR forecast performance
since this model has the larger number, 34, among the S-CCC (1), S-DCC (34), and S-BEKK (11)
models. On the contrary, the NS-CCC, NS-DCC, and NS-BEKK models seem to have the same VaR
forecast performance since these three models have a nearly equal number among the NS-CCC (15),
NS-DCC (16), and NS-BEKK (16) models. These results indicate that the DCC type of bivariate
variance-covariance specification has the best VaR forecast performance for the standard approach,
whereas the three types of bivariate variance-covariance specification seem to have the same VaR
forecast performance for the non-standard approach. As listed in column SS3 underneath S3 in panel
A of Table 5, we find that the S-DCC model has the best VaR forecast performance since this model
has the largest number, 34 among all six bivariate GARCH models. These results indicate that the
DCC type of bivariate variance-covariance specification with a standard approach has the best VaR
forecast performance. Finally, as shown in column SS4 underneath S4 in panel A of Table 5, we find
that the NS-DCC model has a better VaR forecast performance since this model has the larger number,
6 between the NS-DCC (6), and NS-ADCC (3) models. These results indicate that the asymmetric DCC
model does not have a better forecast performance than its corresponding symmetric one.

Regarding the bi-component stock portfolios with an equal weight, Table 4 reports the mean VaR
of long position for each of the seven bivariate GARCH models under a 95% confidence level over
the entire out-of-sample period17. The performance competition of four groups of models will be
executed with the same inference process as that implemented by the failure rate of Table 3. From
Table 4, we find that all the values of mean VaR are negative since only the long position is considered
in this study. As reported in the empirical results of Table 3, all models almost underestimate the

17 Due to the limited space, the detailed results of the VaR forecasting performance at the 99% level based on mean VaR are
omitted here and are available upon request. However, the summary results of this level are also listed in Table 5.
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true VaR since all failure rates are almost higher than the prescribed level. Moreover, the greater the
mean VaR of a model in absolute value, the lower the failure rate of the model, indicating that the
model with a greater value of mean VaR will bear better performance. Hence, regarding the 95%
level, the first category of the model performance competition is accomplished by finding the total
number of portfolios with a greater value of the mean VaR in absolute value between the standard
approach and its corresponding non-standard approach that a specified bivariate GARCH model has,
based on the same variance-covariance specification. Then these results are summarized in column S1
in Table 4. For instance, regarding the first panel of Table 4, the S-CCC (respectively, NS-CCC) model
has a greater value of mean VaR in absolute value between the S-CCC and NS-CCC models for none
of these portfolios (respectively, all of the portfolios). Hence, the numbers in column S1 corresponding
to the S-CCC and NS-CCC models of the first panel in Table 4 are 0 and 7, respectively. Concerning the
other two groups of the model performance competition (i.e., the S-DCC vs. NS-DCC; and the S-BEKK
vs. NS-BEKK), and the other two panels in Table 4, the results are summarized in column S1 of Table 4
corresponding to the specified model and the specified panel with the same inference process. Finally,
regarding the 95% level, the results in column S1 corresponding to three panels of Table 4 are also
respectively summarized at the three columns underneath the 95% level that are also underneath S1 in
Panel B of Table 5.

In the same inference process, regarding the 95% level, the second category of the model
performance competition is achieved by finding the total number of portfolios with the greatest value
of mean VaR in absolute value among the three types of bivariate variance-covariance specifications
(i.e., CCC, DCC, and BEKK) that a specified bivariate GARCH model has, based on the same approach
of parameters estimate. Then these results are summarized in column S2 in Table 4. Subsequently,
regarding the 95% level, the results in column S2 corresponding to three panels of Table 4 are also
respectively summarized at the three columns underneath the 95% level that are also underneath S2 in
Panel B of Table 5. Concerning the 95% level, the third category of the model performance competition
is achieved by finding the total number of portfolios with the greatest value of mean VaR in absolute
value among all bivariate GARCH models except the NS-ADCC model that a specified bivariate
GARCH model has, and then these results are summarized in column S3 in Table 4. Subsequently,
the results in column S3 corresponding to three panels of Table 4 are also respectively summarized
at the three columns underneath the 95% level that are also underneath S3 in Panel B of Table 5.
Regarding the 95% level, the last category of the model performance competition is accomplished by
finding the total number of portfolios with a greater value of mean VaR in absolute value between
the NS-DCC and NS-ADCC models, and then these results are summarized in column S4 in Table 4.
Subsequently, the results in column S4 corresponding to the three panels of Table 4 are also respectively
summarized at the three columns underneath the 95% level that are also underneath S4 in Panel B
of Table 5. Finally, we sum the total number of portfolios having a greater or the greatest value of
mean VaR in absolute value that a specified bivariate GARCH model has based on two levels (i.e., 95%
and 99% levels) for each of the four categories of the model performance competition and list them
in column SS1 underneath S1, column SS2 underneath S2, column SS3 underneath S3, and column
SS4 underneath S4 in Panel B of Table 5 for the first, second, third, and last categories of the model
performance competition, respectively.

As shown in column SS1 underneath S1, column SS2 underneath S2, column SS3 underneath S3,
and column SS4 underneath S4 in panel B of Table 5, we find that the results are almost the same as
those found in the case of the failure rate. That is, regarding the first group of performance competition,
the standard approach has a better VaR forecast performance for the DCC and BEKK types of bivariate
variance-covariance specification whereas the non-standard or two-step approach has a better VaR
forecast performance only for the CCC type of bivariate variance-covariance specification. Regarding
the third group of the performance competition, the DCC type of bivariate variance-covariance
specification with a standard approach has the best VaR forecast performance. With regard to the
last group of performance competition, the NS-DCC model has better VaR forecast performance than
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the NS-ADCC model. From the above findings, these results of the first, third, and last groups of the
performance competition are consistent with those found in the failure rate. Regarding the second
group of the performance competition, the DCC type of bivariate variance-covariance specification has
the best VaR forecast performance among all three types of bivariate variance-covariance specifications
irrespective of the standard or non-standard approach. This result is slightly different from that
found in the failure rate. Based on the failure rate, the DCC type of bivariate variance-covariance
specification has the best VaR forecast performance only for the standard approach, whereas three
types of bivariate variance-covariance specification seem to have the same VaR forecast performance
for the non-standard approach.

5.2.2. Summary Comparison Results Based on Alternative Accuracy Measures

In this subsection, the 21 equal weight bi-component stock portfolios are used as a sample and
three accuracy measures (i.e., LRuc, LRcc, and DQ) are utilized to perform the back-testing of each of the
seven bivariate GARCH models: the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-BEKK, and the
NS-ADCC models, and then the produced results are used to assess the VaR forecast performance for
the above seven models according to the issues explored in this study. In principle, the model with the
greater number that passes the above three back-testing bears a better performance than the model
with the smaller that number.

Table 6 reports the LRuc, LRcc, and DQ test statistics of long position for each of the seven bivariate
GARCH models under a 95% confidence level over the entire out-of-sample period18. Moreover,
regarding a specified model, the total number of portfolios that pass the LRuc, LRcc, and DQ types of
back-testing are counted and are respectively listed in column Sum of Panels A, B, and C in Table 6.
For example, regarding the first subpanel of Panel A in Table 6, both the S-CCC and NS-CCC models
pass the LRuc test only for the Ny-Sp and Ny-Sm portfolios. Hence, the numbers in column Sum
corresponding to the rows S-CCC and NS-CCC models of the first subpanel of Panel A in Table 6
are 2 and 2, respectively. Concerning the other five models and the other two subpanels, the results
are summarized in column Sum of Panel A in Table 6 corresponding to the specified model and the
specified subpanel with the same inference process. Finally, the results in column Sum corresponding
to three subpanels of Panel A in Table 6 are also respectively summarized at the three columns
underneath LRuc that are also underneath 95% in the first panel of Table 7. In the same inference,
the results in column Sum corresponding to three subpanels of Panel B (respectively, C) in Table 6 are
also respectively summarized at the three columns underneath LRcc (respectively, DQ) that are also
underneath 95% in the first panel of Table 7.

Table 6. The out-of-sample VaR forecasts performance based on alternative accuracy tests.

Panel A. The LRuc Test

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum

S-CCC
0.3653 4.5110 7.1022 11.3307 9.1101 3.0805 4.5110

2[0.5455] [0.0336] [0.0076] [0.0007] [0.0025] [0.0792] [0.0336]

NS-CCC
1.9027 4.5110 7.1022 10.1944 8.0790 3.0805 5.3168

2[0.1677] [0.0336] [0.0076] [0.0014] [0.0044] [0.0792] [0.0211]

S-DCC
0.0000 0.6421 2.4591 0.9921 0.9921 0.0000 0.6421

7[1.0000] [0.4229] [0.1168] [0.3192] [0.3192] [1.0000] [0.4229]

NS-DCC
1.9027 4.5110 5.3168 10.1944 5.3168 4.5110 5.3168

1[0.1677] [0.0336] [0.0211] [0.0014] [0.0211] [0.0336] [0.0211]

18 Due to the limited space, the detailed results of the VaR forecasting performance at the other three levels (90%, 99%, and
99.5%) based on the LRuc, LRcc, DQ tests are omitted here and are available upon request. However, the summary results of
these three levels are also listed in Table 7.
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Table 6. Cont.

Panel A. The LRuc Test

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum

S-BEKK
1.9027 4.5110 8.0790 5.3168 9.1101 4.5110 7.1022

1[0.1677] [0.0336] [0.0044] [0.0211] [0.0025] [0.0336] [0.0076]

NS-BEKK
2.4591 4.5110 7.1022 11.3307 7.1022 4.5110 4.5110

1[0.1168] [0.0336] [0.0076] [0.0007] [0.0076] [0.0336] [0.0336]

NS-ADCC
1.9027 4.5110 6.1810 10.1944 6.1810 3.0805 5.3168

2[0.1677] [0.0336] [0.0129] [0.0014] [0.0129] [0.0792] [0.0211]

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-CCC
15.0408 7.1022 13.7549 5.3168 8.0790 5.3168 12.5179

0[0.0001] [0.0076] [0.0002] [0.0211] [0.0044] [0.0211] [0.0004]

NS-CCC
8.0790 6.1810 10.1944 3.7650 8.0790 4.5110 12.5179

1[0.0044] [0.0129] [0.0014] [0.0523] [0.0044] [0.0336] [0.0004]

S-DCC
0.9921 0.6421 5.3168 0.6421 0.6421 3.7650 1.9027

6[0.3192] [0.4229] [0.0211] [0.4229] [0.4229] [0.0523] [0.1677]

NS-DCC
7.1022 5.3168 9.1101 3.7650 6.1810 4.5110 11.3307

1[0.0076] [0.0211] [0.0025] [0.0523] [0.0129] [0.0336] [0.0007]

S-BEKK
6.1810 3.0805 13.7549 5.3168 7.1022 3.0805 9.1101

2[0.0129] [0.0792] [0.0002] [0.0211] [0.0076] [0.0792] [0.0025]

NS-BEKK
8.0790 7.1022 8.0790 4.5110 6.1810 6.1810 8.0790

0[0.0044] [0.0076] [0.0044] [0.0336] [0.0129] [0.0129] [0.0044]

NS-ADCC
8.0790 5.3168 9.1101 3.7650 6.1810 3.7650 9.1101

2[0.0044] [0.0211] [0.0025] [0.0523] [0.0129] [0.0523] [0.0025]

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-CCC
4.5110 5.3168 3.0805 0.9921 4.5110 2.4591 4.5110

3[0.0336] [0.0211] [0.0792] [0.3192] [0.0336] [0.1168] [0.0336]

NS-CCC
4.5110 2.4591 1.4130 1.9027 3.7650 3.0805 2.4591

6[0.0336] [0.1168] [0.2345] [0.1677] [0.0523] [0.0792] [0.1168]

S-DCC
0.7107 0.9921 1.4130 0.1728 0.6421 3.0805 0.0415

7[0.3991] [0.3192] [0.2345] [0.6775] [0.4229] [0.0792] [0.8384]

NS-DCC
4.5110 1.9027 1.4130 0.9921 4.5110 3.0805 3.0805

5[0.0336] [0.1677] [0.2345] [0.3192] [0.0336] [0.0792] [0.0792]

S-BEKK
5.3168 3.7650 0.6421 1.4130 1.9027 2.4591 1.9027

6[0.0211] [0.0523] [0.4229] [0.2345] [0.1677] [0.1168] [0.1677]

NS-BEKK
3.0805 1.9027 1.4130 0.9921 5.3168 3.0805 2.4591

6[0.0792] [0.1677] [0.2345] [0.3192] [0.0211] [0.0792] [0.1168]

NS-ADCC
5.3168 1.9027 1.4130 0.9921 4.5110 3.0805 3.0805

5[0.0211] [0.1677] [0.2345] [0.3192] [0.0336] [0.0792] [0.0792]

Panel B. The LRcc Test

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum

S-CCC
0.4874 4.5806 8.3725 14.2417 11.1676 5.8915 4.5806

4[0.7836] [0.1012] [0.0152] [0.0008] [0.0037] [0.0525] [0.1012]

NS-CCC
2.3481 4.5806 8.3725 13.5015 10.4649 5.8915 5.3441

4[0.3091] [0.1012] [0.0152] [0.0011] [0.0053] [0.0525] [0.0691]

S-DCC
0.4258 0.7050 3.8973 8.3789 3.3337 4.4727 1.6051

6[0.8082] [0.7029] [0.1424] [0.0151] [0.1888] [0.1068] [0.4481]

NS-DCC
2.3481 4.5806 7.1218 13.5015 8.8586 6.6231 5.9173

3[0.3091] [0.1012] [0.0284] [0.0011] [0.0119] [0.0364] [0.0518]

S-BEKK
2.3481 4.5806 10.4649 8.8586 11.1676 8.4983 7.4256

2[0.3091] [0.1012] [0.0053] [0.0119] [0.0037] [0.0142] [0.0244]

NS-BEKK
2.7784 4.5806 8.3725 14.2417 9.8444 6.6231 4.5806

3[0.2492] [0.1012] [0.0152] [0.0008] [0.0072] [0.0364] [0.1012]

NS-ADCC
2.3481 4.5806 7.7056 13.5015 9.3082 5.8915 5.9173

4[0.3091] [0.1012] [0.0212] [0.0011] [0.0095] [0.0525] [0.0518]
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Table 6. Cont.

Panel B. The LRcc Test

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-CCC
16.9305 8.3725 17.5529 7.1218 10.4649 11.0641 15.0612

0[0.0002] [0.0152] [0.0001] [0.0284] [0.0053] [0.0039] [0.0005]

NS-CCC
10.4649 9.3082 15.4585 4.7351 10.4649 8.4983 15.0612

1[0.0053] [0.0095] [0.0004] [0.0937] [0.0053] [0.0142] [0.0005]

S-DCC
1.7585 3.3432 5.9173 3.3432 1.6051 8.2299 5.5328

6[0.4150] [0.1879] [0.0518] [0.1879] [0.4481] [0.0163] [0.0628]

NS-DCC
8.3725 8.8586 12.8426 4.7351 7.7056 8.4983 14.2417

1[0.0152] [0.0119] [0.0016] [0.0937] [0.0212] [0.0142] [0.0008]

S-BEKK
9.3082 5.891 17.5529 11.0641 8.3725 5.8915 11.1676

2[0.0095] 5[0.0525] [0.0001] [0.0039] [0.0152] [0.0525] [0.0037]

NS-BEKK
9.1201 8.3725 12.2670 6.6231 7.7056 11.3752 12.2670

0[0.0104] [0.0152] [0.0021] [0.0364] [0.0212] [0.0033] [0.0021]

NS-ADCC
10.4649 8.8586 12.8426 4.7351 7.7056 8.2299 12.8426

1[0.0053] [0.0119] [0.0016] [0.0937] [0.0212] [0.0163] [0.0016]

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-CCC
8.4983 11.0641 5.8915 5.5726 8.4983 7.9810 6.6231

2[0.0142] [0.0039] [0.0525] [0.0616] [0.0142] [0.0184] [0.0364]

NS-CCC
8.4983 10.7855 3.4251 5.5328 6.2122 8.0564 2.7784

3[0.0142] [0.0045] [0.1804] [0.0628] [0.0447] [0.0178] [0.2492]

S-DCC
7.5978 1.7585 2.0071 5.7610 1.6051 5.8915 4.0175

6[0.0223] [0.4150] [0.3665] [0.0561] [0.4481] [0.0525] [0.1341]

NS-DCC
8.4983 10.9746 3.4251 3.3337 8.4983 8.0564 3.2955

3[0.0142] [0.0041] [0.1804] [0.1888] [0.0142] [0.0178] [0.1924]

S-BEKK
11.0641 10.7251 3.3432 3.4251 3.6140 7.9810 2.3481

4[0.0039] [0.0046] [0.1879] [0.1804] [0.1641] [0.0184] [0.3091]

NS-BEKK
5.8915 10.9746 3.4251 5.5726 8.8586 8.0564 2.7784

4[0.0525] [0.0041] [0.1804] [0.0616] [0.0119] [0.0178] [0.2492]

NS-ADCC
11.0641 10.9746 3.4251 3.3337 8.4983 8.0564 3.2955

3[0.0039] [0.0041] [0.1804] [0.1888] [0.0142] [0.0178] [0.1924]

Panel C. The DQ Test

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum

S-CCC
10.3218 12.2181 12.0662 33.4966 26.8956 12.3289 10.0792

5[0.1710] [0.0936] [0.0983] [0.0000] [0.0003] [0.0902] [0.1841]

NS-CCC
10.2944 12.0725 11.9839 28.8697 27.2485 12.5786 10.8587

5[0.1724] [0.0981] [0.1010] [0.0001] [0.0003] [0.0830] [0.1448]

S-DCC
3.7374 8.5843 7.3272 19.6552 18.7722 10.3007 13.4539

5[0.8094] [0.2838] [0.3956] [0.0063] [0.0089] [0.1721] [0.0617]

NS-DCC
10.3132 12.1512 11.2779 37.2880 22.0679 13.0092 12.2997

5[0.1715] [0.0956] [0.1269] [0.0000] [0.0024] [0.0718] [0.0911]

S-BEKK
10.0575 12.2142 16.0366 19.1733 23.0047 20.5890 14.0009

3[0.1853] [0.0937] [0.0247] [0.0076] [0.0017] [0.0044] [0.0511]

NS-BEKK
10.1730 12.5699 11.8918 34.6125 24.0851 11.2893 10.2065

5[0.1789] [0.0833] [0.1041] [0.0000] [0.0011] [0.1264] [0.1771]

NS-ADCC
10.3132 12.1526 11.5718 33.5806 23.4834 12.5590 12.3032

5[0.1715] [0.0956] [0.1155] [0.0000] [0.0014] [0.0836] [0.0910]

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-CCC
30.3576 18.2263 37.9757 16.0300 15.2448 24.5045 31.0751

0[0.0000] [0.0109] [0.0000] [0.0248] [0.0329] [0.0009] [0.0000]

NS-CCC
20.2060 18.0954 37.3363 12.2757 15.3185 18.6607 31.1347

1[0.0051] [0.0115] [0.0000] [0.0918] [0.0321] [0.0093] [0.0000]

S-DCC
4.3366 6.6243 13.7254 11.9702 3.6055 15.4307 12.6713

6[0.7402] [0.4690] [0.0562] [0.1015] [0.8239] [0.0308] [0.0805]
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Table 6. Cont.

Panel C. The DQ Test

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

NS-DCC
14.5434 18.7120 30.9949 12.2764 14.4964 18.6412 30.5141

1[0.0423] [0.0091] [0.0000] [0.0918] [0.0430] [0.0093] [0.0000]

S-BEKK
16.1927 13.1625 35.5377 20.6767 15.3437 13.9051 20.7264

2[0.0234] [0.0682] [0.0000] [0.0042] [0.0318] [0.0528] [0.0041]

NS-BEKK
12.8649 18.0528 39.2391 13.9991 13.9110 25.1249 29.5862

3[0.0754] [0.0117] [0.0000] [0.0511] [0.0527] [0.0007] [0.0001]

NS-ADCC
20.5613 18.7242 31.0229 12.2829 14.4518 18.1772 34.3521

1[0.0044] [0.0090] [0.0000] [0.0916] [0.0437] [0.0111] [0.0000]

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-CCC
25.8101 22.3909 10.9822 12.0453 17.3897 17.2360 26.4417

2[0.0005] [0.0021] [0.1393] [0.0990] [0.0150] [0.0159] [0.0004]

NS-CCC
25.8747 21.4803 7.6053 12.5239 13.7256 17.2310 7.1334

4[0.0005] [0.0031] [0.3686] [0.0845] [0.0562] [0.0159] [0.4151]

S-DCC
13.3830 3.3975 4.8187 10.4288 13.2134 17.0012 10.4312

6[0.0633] [0.8459] [0.6820] [0.1655] [0.0670] [0.0173] [0.1654]

NS-DCC
25.8073 21.9385 7.7121 7.7693 19.4782 16.9916 9.4860

3[0.0005] [0.0026] [0.3586] [0.3533] [0.0068] [0.0174] [0.2196]

S-BEKK
23.7673 21.6152 7.5296 9.2160 10.0008 17.0505 6.3742

4[0.0012] [0.0029] [0.3758] [0.2375] [0.1885] [0.0170] [0.4967]

NS-BEKK
12.0903 21.9022 7.6893 11.8549 17.9357 16.7977 17.1000

3[0.0976] [0.0026] [0.3607] [0.1054] [0.0122] [0.0187] [0.0167]

NS-ADCC
31.0924 21.9193 7.7121 7.7693 19.4782 16.9965 9.4886

3[0.0000] [0.0026] [0.3586] [0.3533] [0.0068] [0.0174] [0.2194]

Note: (1) Refer to notes 1–2 of Table 3. (2) The numbers in this table denote the value of the three accuracy tests at
the 95% level for equal weight bi-component stock portfolios. The number in the bracket underneath the preceding
number denotes the corresponding p-value of that test statistic. (3) The bold font indicates that the null hypothesis
of the specific test statistic is accepted at the 5% significance level. (4) The LRuc (respectively, LRcc) test statistic is
asymptotically χ2(1) (respectively, χ2(2)) distributed and its corresponding critical values at the 5% significance
level is 3.841 (respectively, 5.991). On the contrary, the DQ test statistic is asymptotically χ2(7) distributed and its
corresponding critical values at the 5% significance level is 14.067. (5) The numbers in column Sum denote the total
number of portfolios passing the specific test at the 5% significance level.

Table 7 summarizes the results of the above three accuracy tests (i.e., LRuc, LRcc, and DQ) for
four levels (i.e., 90%, 95%, 99%, and 99.5%) based on 21 equal weight bi-component stock portfolios
as a sample. Subsequently, regarding all 21 equal weight bi-component stock portfolios, we sum the
total number of portfolios that pass the three accuracy measures (i.e., LRuc, LRcc, and DQ) under
the 90% (respectively, 95%) level for each of the seven bivariate GARCH models, and list them in
column S90 (respectively, S95) underneath the 90% (respectively, 95%) level at the first panel in Table 7.
In other words, the numbers in column S90 (respectively, S95) underneath the 90% (respectively, 95%)
level at the first panel of Table 7 denote the summation of three corresponding numbers in columns
S90,uc, S90,cc and S90,dq (respectively, S95,uc, S95,cc and S95,dq). Moreover, the numbers in column S90,uc

(respectively, S90,cc) underneath the 90% denote the summation of three corresponding numbers in
column LRuc (respectively, LRcc) underneath the 90% whereas those in column S90,dq underneath the
90% denote the summation of three corresponding numbers in column DQ underneath the 90%. In the
same inference process, we sum the total number of portfolios that pass the three accuracy measures
(i.e., LRuc, LR and DQ) under a 99% (respectively, 99.5%) level for each of the seven bivariate GARCH
models and list them in column S99 (respectively, S995) underneath a 99% (respectively, 99.5%) level at
the second panel of Table 7.

In the same inference process that is executed in the previous subsection, four categories of the
model performance competition will be executed in this section according to the issues addressed in
this study. The issues are respectively explored for the 90%, 95%, 99%, and 99.5% levels via the numbers
in column S90 underneath the 90% level, S95 underneath the 95% level, S99 underneath the 99% level,
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and S995 underneath the 99.5% level in Table 7. The first category of the model performance competition
is used to inspect which approach of parameters estimate (i.e., the standard or non-standard approach)
has a better VaR forecast performance based on the same bivariate variance-covariance specification.
We find that the NS-CCC model has a better VaR forecast performance than the S-CCC model for the
CCC type of bivariate variance-covariance specification for most of the four levels since the NS-CCC
model has the larger total number of portfolios that pass three accuracy measures except the 99.5%
level. For example, regarding the 90% level, the NS-CCC model has the larger number, 38 between the
S-CCC (33) and NS-CCC (38) models, where the number in the brackets beside each model denotes the
summation of the total number of portfolios that pass three accuracy measures for the 90% level. In the
same inference process, the S-DCC (respectively, S-BEKK) model has a better VaR forecast performance
for the DCC (respectively, BEKK) type of bivariate variance-covariance specification for all levels.
These results indicate that the standard approach has better VaR forecast performance for the DCC
and BEKK types of bivariate variance-covariance specification whereas the non-standard approach has
a better VaR forecast performance only for the CCC type of bivariate variance-covariance specification.
These results are consistent with those found in the failure rate and mean VaR.

The second category of the model performance competition is used to inspect which type
of bivariate variance-covariance specification will have the best VaR forecast performance based
on the same approach of parameters estimate. We find that the S-DCC model has the best VaR
forecast performance since this model has the largest total number of portfolios that pass the three
accuracy measures among the S-CCC, S-DCC, and S-BEKK models for all four levels. On the contrary,
the NS-CCC, NS-DCC, and NS-BEKK models seem to have the same VaR forecast performance since,
for these three models, the corresponding total numbers of portfolios that pass the three accuracy
measures are almost equal. For example, regarding the 90% (respectively, 95%) level, the above
total numbers are 38 (respectively, 27), 42 (respectively, 23), 38 (respectively, 25) for the NS-CCC,
NS-DCC, and NS-BEKK models, respectively. Conversely, regarding the 99% (respectively, 99.5%)
level, the above total numbers are 6 (respectively, 2), 5 (respectively, 5), 9 (respectively, 3) for the
NS-CCC, NS-DCC, and NS-BEKK models, respectively. The above results indicate that the DCC
type of bivariate variance-covariance specification has the best VaR forecast performance only for the
standard approach, whereas three types of bivariate variance-covariance specifications seem to have
the same VaR forecast performance for the non-standard approach. In other words, the above results
are completely consistent with those found in the failure rate, whereas they are slightly different from
those found in the mean VaR. The third category of the model performance competition is used to
inspect which model has the best VaR forecast performance among all the bivariate GARCH models
except the NS-ADCC model. We find that the S-DCC model has the best VaR forecast performance
since this model has the largest total number of portfolios that pass three accuracy measures among
all bivariate GARCH models excluding or including the NS-ADCC model. These results indicate
that the DCC type of bivariate variance-covariance specification with the standard approach has the
best VaR forecast performance. These results are consistent with those found in the failure rate and
mean VaR. Finally, the last or the fourth category of the model performance competition is used to
explore whether the two-step asymmetric DCC model has a better performance than its corresponding
symmetric one. We find that both the NS-ADCC and NS-DCC models almost have the same forecast
performance since the NS-ADCC model has a larger total number of portfolios that pass three accuracy
measures for the 95% and 99.5% levels whereas the NS-DCC model has the larger total number of
portfolios that pass the three accuracy measures for the 90% and 99% levels. For example, regarding
the 90% (respectively, 95%) level, the above total numbers are 42 (respectively, 23) and 40 (respectively,
26) for the NS-DCC and NS-ADCC models, respectively. Conversely, regarding the 99% (respectively,
99.5%) level, the above total numbers are 5 (respectively, 5) and 0 (respectively, 7) for the NS-DCC and
NS-ADCC models, respectively.
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Table 7. The summary results for the out-of-sample VaR forecasts performance of equal-weight stock portfolios based on alternative accuracy tests.

90% Level 95% Level

LRuc S90,uc LRcc S90,cc DQ S90,dq S90 LRuc S95,uc LRcc S95,cc DQ S95,dq S95

S-CCC 7 7 4 18 5 2 1 8 3 2 2 7 33 2 0 3 5 4 0 2 6 5 0 2 7 18
NS-CCC 7 7 5 19 6 3 2 11 3 3 2 8 38 2 1 6 9 4 1 3 8 5 1 4 10 27
S-DCC 7 7 7 21 7 7 4 18 6 4 3 13 52 7 6 7 20 6 6 6 18 5 6 6 17 55

NS-DCC 7 7 6 20 6 5 3 14 3 3 2 8 42 1 1 5 7 3 1 3 7 5 1 3 9 23
S-BEKK 7 7 7 21 5 5 4 14 3 2 3 8 43 1 2 6 9 2 2 4 8 3 2 4 9 26

NS-BEKK 7 7 4 18 7 4 2 13 3 2 2 7 38 1 0 6 7 3 0 4 7 5 3 3 11 25
NS-ADCC 7 7 6 20 6 4 3 13 3 2 2 7 40 2 2 5 9 4 1 3 8 5 1 3 9 26

99% Level 99.5% Level

LRuc S99,uc LRcc S99,cc DQ S99,dq S99 LRuc S995,uc LRcc S995,cc DQ S995,dq S995

S-CCC 2 1 0 3 1 0 0 1 1 0 0 1 5 2 1 0 3 0 0 0 0 0 0 0 0 3
NS-CCC 1 1 0 2 1 0 1 2 1 0 1 2 6 1 1 0 2 0 0 0 0 0 0 0 0 2
S-DCC 4 5 4 13 3 2 2 7 2 2 2 6 26 5 5 5 15 1 0 0 1 1 0 3 4 20

NS-DCC 1 0 0 1 1 0 1 2 1 0 1 2 5 2 3 0 5 0 0 0 0 0 0 0 0 5
S-BEKK 2 3 0 5 2 2 0 4 1 1 1 3 12 2 4 1 7 0 0 1 1 1 0 2 2 10

NS-BEKK 1 1 1 3 2 1 1 4 1 0 1 2 9 1 2 0 3 0 0 0 0 0 0 0 0 3
NS-ADCC 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 6 0 0 0 0 0 0 1 1 7

Note: (1) Refer to note 2 of Table 3. (2) The numbers in the columns LRuc, LRcc, and DQ underneath the 95% level at the first panel are respectively summarized from the numbers in
the column Sum of Panels A, B, and C in Table 6. (3) The numbers in the columns S95,uc (S99,uc), S95,cc (S99,cc), and S95,dq (S99,dq) underneath the 95% (99%) level at the first (second)
panel denote the total number of portfolios that pass the LRuc, LRcc, and DQ tests at the specified model for all 21 bi-component stock portfolios, respectively. (4) The numbers in
column S95 (S99) underneath the 95% (99%) level at the first (second) panel denote the total sum of three corresponding numbers in columns S95,uc (S99,uc), S95,cc (S99,cc), and S95,dq (S99,dq)
representing the total number of portfolios that pass the LRuc, LRcc, or DQ tests at the specified model for the 95% (99%) level. (5) In the same inference process, the numbers in column
S90 (S995) underneath the 90% (99.5%) level at the first (second) panel denote the total sum of three corresponding numbers in columns S90,uc (S995,uc), S90,cc (S995,cc), and S90,dq (S995,dq).
(6) The bold font in columns S90, S95, S99, and S995 denotes the greater number when two numbers corresponding to two models are compared with each other and these two models have
the same bivariate variance-covariance specification but a different parameter estimate approach (i.e., the S-CCC vs. NS-CCC; the S-DCC vs. NS-DCC; and the S-BEKK vs. NS-BEKK).
(7) The underlined font in columns S90, S95, S99, and S995 denotes the greatest number when three numbers corresponding to the three models are compared with each other and these three
models have the same parameter estimate approach but a different bivariate variance-covariance specification (i.e., the S-CCC, S-DCC, and S-BEKK; the NS-CCC, NS-DCC, and NS-BEKK).
(8) The shade font in columns S90, S95, S99, and S995 denotes the greatest number when six numbers corresponding to the six models are compared with each other and these six models are
the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, and NS-BEKK models. (9) The italic font in columns S90, S95, S99, and S995 denotes the greater number when two numbers corresponding
to two models are compared with each other and these two models are the NS-DCC and NS-ADCC.
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To sum up, irrespective of the results from the preliminary analysis of the average VaR
performance in the previous subsection or the results from the three types of back-testing in this
subsection, we get the following conclusions: first, the standard approach has a better VaR forecast
performance for the DCC and BEKK types of bivariate variance-covariance specification whereas
the non-standard approach has a better VaR forecast performance only for the CCC type of bivariate
variance-covariance specification; second, the DCC type of bivariate variance-covariance specification
has the best VaR forecast performance for the standard approach whereas three types of bivariate
variance-covariance specification seem to have the same VaR forecast performance for the non-standard
approach; third, the DCC type of bivariate variance-covariance specification with the standard
approach has the best VaR forecast performance among all the bivariate GARCH models including
the NS-ADCC model; fourth, both the NS-ADCC and NS-DCC models almost have the same VaR
forecast performance. Finally, we firmly believe that the DCC type of bivariate variance-covariance
specification plays a significantly important role as the dynamic risk is measured.

5.3. Robust Check for the Performance Assessments of VaR Forecasts

To check whether a different portfolio (different components with different weights) has the
same VaR forecast comparison results with the equal-weight bi-component portfolio described in
the previous section, we add the following two additional sub-issues in this section. First we add
two other weight combinations (w1 = 25%, w2 = 75%; and w1 = 75%, w2 = 25%) for the original
21 stock-based bi-component portfolios to investigate whether the different weight combinations of
portfolios will affect the VaR forecast comparison results. Second, this work also considers Udi as a
new component asset to construct seven currency-stock-based bi-component portfolios to investigate
whether the different component combinations of portfolios will affect the VaR forecast comparison
results. In addition, besides the three accuracy tests, we also perform an efficiency test via the MRC
to analyze whether any of the competing models significantly outperform the benchmark, and then
select the most suitable model for the risk management of a bank.

5.3.1. Can the Weight Combinations of Portfolios Affect the Performance of VaR Forecasts?

Regarding the above first sub-issue, we summarize the results of Table 7 again to easily compare
the results for the three weight combinations of stock-based portfolios. Taking an example of the
90% level, the numbers in column S90,uc (respectively, S90,cc) of Table 7 are recorded in column LRuc

(respectively, LRcc) underneath the 90% level in panel A of Table 8. Similarly, the numbers in column
S90,dq (respectively, S90) of Table 7 are recorded in column DQ (respectively, Sum) underneath the 90%
level in panel A of Table 8. Subsequently, via following the procedure in the case of equal-weight
bi-component portfolios, we summarize the results of three accuracy tests for the weight combinations:
w1 = 25%, and w2 = 75% (respectively, w1 = 75%, and w2 = 25%) in panel B (respectively, C) of
Table 8. Table 8 lists all summary results of the out-of-sample VaR forecasts performance for the three
weight combinations of stock-based portfolios. Then we execute four groups of the model performance
comparisons as listed in Section 5.2.2. As reported in Table 8, regarding the three weight combinations,
we find that, first, the NS-CCC model has a better VaR forecast performance than the S-CCC model for
the CCC type of bivariate variance-covariance specification for most cases because the NS-CCC model
has a larger total number of portfolios that pass the three accuracy measures except for the cases of
the 99.5% level in panel A and both the 99% and 99.5% levels in panel C. Using the same inference
process, the S-DCC model has a better VaR forecast performance than the NS-DCC model for all cases.
Conversely, the S-BEKK model has a better VaR forecast performance than the NS-BEKK model except
for the 90%, 95%, and 99% levels in panel B. Second, the S-DCC model has the best VaR forecast
performance because this model has the largest total number of portfolios that pass the three accuracy
measures among the S-CCC, S-DCC, and S-BEKK models for all cases. In contrast, the NS-CCC,
NS-DCC, and NS-BEKK models seem to have the same VaR forecast performance because, for these
three models, the corresponding total numbers of portfolios that pass the three accuracy measures are
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almost equal. Third, the S-DCC model has the best VaR forecast performance because this model has
the largest total number of portfolios that pass the three accuracy measures among all seven bivariate
GARCH models for all cases. Fourth, both the NS-ADCC and NS-DCC models have almost the same
VaR forecast performance because, for these two models, the corresponding total numbers of portfolios
that pass the three accuracy measures are almost equal.

From this, we reach the following conclusions irrespective of weight combinations. First,
the standard approach has a better VaR forecast performance for the DCC and BEKK types of
bivariate variance-covariance specifications, whereas the non-standard approach has better VaR
forecast performance only for the CCC type of bivariate variance-covariance specification. Second,
the DCC type of bivariate variance-covariance specification has the best VaR forecast performance
only for the standard approach, whereas three types of bivariate variance-covariance specifications
seem to have the same VaR forecast performance for the non-standard approach. Third, the DCC
type of bivariate variance-covariance specification with the standard approach shows the best VaR
forecast performance among the seven bivariate GARCH models. Fourth, the NS-ADCC and NS-DCC
models have almost the same VaR forecast performance. These findings can also be observed from the
numbers in the column SUM of Table 8. Hence the different weight combinations of portfolios do not
affect the VaR forecast comparison results for the stock-based portfolio. Notably, the finding that the
DCC type of bivariate variance-covariance specification with the standard approach (i.e., the S-DCC
model) shows that the best VaR forecast performance among the seven bivariate GARCH models is
the most significant because there is no exception in this group in terms of the model performance
comparisons for all four levels and for all three weight combinations.

5.3.2. Can the Component Combinations of Portfolios Affect the Performance of VaR Forecasts?

Regarding this second sub-issue, Table 9 reports the out-of-sample VaR forecasts performance
of seven equal-weight currency-stock portfolios based on alternative accuracy tests for the 90% level.
Subsequently, we summarize the results of Table 9 in Table 10 to easily compare the results for three
weight combinations of currency-stock-based portfolios. For example, the numbers in column Sum
in panel A (respectively, B) in Table 9 are recorded in column LRuc (respectively, LRcc) underneath
the 90% level in panel A of Table 10. Conversely, the numbers in column Sum in panel C in Table 9
are recorded in column DQ underneath the 90% level in panel A of Table 10. Table 10 lists all the
summary results of the out-of-sample VaR forecast performance for three weight combinations of
currency-stock-based portfolios. Then we execute four groups of the model performance comparisons
imitating the same process performed in Table 8. Before we perform this analysis, we find a specific
phenomenon existing in Table 10 compared to Table 8. For example, the total numbers of portfolios
that pass three accuracy measures are almost equal for most cases, such as all four levels of panel A;
the 99% and 99.5% levels of panel B; the 90% and 95% levels of panel B except for the S-CCC model;
and the 90%, 95%; and 99.5% levels of panel C except for the S-CCC model. Taking an example of the
90% level of panel A, the total numbers of portfolios that pass the three accuracy measures are 17, 18,
20, 20, 19, 20, and 21 for the S-CCC, NS-CCC, S-DCC, NS-DCC, S-BEKK, NS-BEKK, and NS-ADCC
models, respectively. This phenomenon indicates that all seven models seem to have the same VaR
forecast performance because the seven numbers are almost the same.

Subsequently, we execute four groups of the model performance comparisons. As reported
in Table 10, regarding the three weight combinations, we find that, first, both the S-CCC and
NS-CCC models seem to have the same VaR forecast performance because, for these two models,
the corresponding total numbers of portfolios that pass the three accuracy measures are almost equal
except for the cases of the 90% and 95% levels of panel B and all levels of panel C. The phenomenon
is more significant for both the S-DCC and NS-DCC models and for both the S-BEKK and NS-BEKK
models because, regarding these two pairs of models, the total numbers of portfolios that pass the
three accuracy measures are almost equal for all three panels and for all three levels. Second, the
S-DCC (respectively, NS-DCC) model seems to have the best VaR forecast performance because this
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model has the largest total number of portfolios that pass the three accuracy measures among the
S-CCC, S-DCC, and S-BEKK (respectively, NS-CCC, NS-DCC, and NS-BEKK) models for most cases.
However, this result is not significant because the corresponding total numbers are almost equal for
these three models. Third, the seven models seem to have the same VaR forecast performance because
the models with the largest total number of portfolios that pass the three accuracy measures among
the seven models are uniformly distributed in all seven models. Fourth, the NS-ADCC and NS-DCC
models have almost the same VaR forecast performance because the corresponding total numbers of
portfolios that pass the three accuracy measures are almost equal for these two models.

From this, we reach the following conclusions irrespective of weight combinations. All seven
models seem to have the same VaR forecast performance. This result is consistent with that found
at the preliminary analysis in the previous paragraph. These findings can also be roughly observed
from the numbers in the column SUM of Table 10. Hence the different weight combinations of
portfolios do not affect the comparison results for the currency-stock-based portfolio. To sum up,
the weight combinations of portfolios do not affect the comparison results for both the currency-stock
and stock-based portfolios. However, the different component combinations of portfolios will affect
the comparison results.

5.3.3. Efficiency Evaluation Test via Market Risk Capital

Through performing the VaR forecasts’ performance comparison among all seven models via three
accuracy tests, we know which approach of parameters estimate (i.e., the standard or non-standard
approach) has a better VaR forecast performance for a specific type of bivariate variance-covariance
specification and which type of bivariate variance-covariance specification (i.e., the CCC, DCC,
or BEKK) has a better VaR forecast performance for a specific approach of parameters estimate
and, more strictly, which model has the best VaR forecast performance among all seven models.
The question is how to use these findings in real cases such as the risk management of a bank. That is,
which model is more suitable for banking risk management? Thus, via combining the MRC under
the 1996 MRA to the Basel Capital Accord, this study utilizes the two-stage selection procedure of
Sarma et al. (2003) to select a suitable model to manage the institutional risk. Regarding the above
two-stage selection procedure, the first stage of the model selection involves several statistical accuracy
tests (e.g., LRuc, LRcc, and DQ) that were executed previously. On the other hand, the second stage
includes an efficiency test based on specific loss functions such as the MRC loss function. To repeat,
the MRC is the amount of regulatory capital a bank must hold with respect to its market risk exposure.
Regarding the above efficiency test, we use the superior predictive ability (SPA) test by Hansen (2005).
The null hypothesis of this test is that none of the models is better than the benchmark. If the p-value
of this test statistic is greater than the 10% level, then the null hypothesis is accepted, or the benchmark
model shows better performance than the other competing models. In the SPA test, each competing
model has to take turns being the benchmark model. Hence, we perform this test seven times for the
seven bivariate GARCH models.

As defined by the MRC in Equation (21), the values of MRC depend on the values of VaR at the
99% level. Hence, we only consider four models (S-DCC, NS-DCC, NS-BEKK, and NS-ADCC19) to
perform the efficiency test. That is, we exclude the other three models (S-CCC, NS-CCC, and S-BEKK)
because they have no portfolios passing the alternative accuracy test at the first stage. For example,
the total number of tests passing the three accuracy tests is zero for the S-CCC model in panel B of
Table 10 (i.e., w1 = 25%, and w2 = 75% weight combination of currency-stock portfolio), the NS-CCC
model in panel A of Table 10 (i.e., w1 = 50%, and w2 = 50% weight combination of currency-stock

19 Even if the total number of passing three accuracy tests is zero for the NS-ADCC model at panel A of Table 8 (i.e., w1 =
50%, and w2 = 50% weight combination of stock portfolio), we considered this model since the NS-DCC model is the
special case of NS-ADCC model.



Risks 2018, 6, 133 32 of 42

portfolio), and the S-BEKK model in panel B of Table 8 (i.e., w1 = 25%, and w2 = 75% weight
combination of stock portfolio). Table 11 lists the results of the efficiency evaluation test based on
MRC for equal-weight bi-component stock and currency-stock portfolios20. Moreover, regarding a
specified model, the total number of portfolios that pass the SPA test is counted and listed in column
Sum of Table 11. For example, regarding the first subpanel of panel A of Table 11, no stock portfolio
passes the SPA test for both the NS-DCC and NS-ADCC models; only the Ny-Ft portfolio passes this
test for the S-DCC model and all seven stock portfolios pass this test for the NS-BEKK model. Hence,
the numbers in column Sum corresponding to the rows S-DCC, NS-DCC, NS-BEKK, and NS-ADCC
models of the first subpanel of panel A of Table 11 are 1, 0, 7, and 0, respectively. We also count the
total number of portfolios that pass the SPA test for a specified model when taking 21 stock portfolios
as a whole, and then record it in parentheses “( )” in column Sum in the third subpanel of panel A.
As reported there, the total numbers of portfolios that pass the SPA test for the S-DCC, NS-DCC,
NS-BEKK, and NS-ADCC models respectively are 8, 2, 21, and 2 when taking 21 stock portfolios as a
whole. These results are also summarized in column “w1 = 0.5, w2 = 0.5” underneath Stock portfolios
in Table 12. With the same inference process, the total numbers of portfolios that pass the SPA test for
the S-DCC, NS-DCC, NS-BEKK, and NS-ADCC models respectively are 5, 0, 7, and 1 when taking
seven currency-stock portfolios as a whole. These results are recorded in the column Sum of panel B in
Table 11 and also summarized in column “w1 = 0.5, w2 = 0.5” underneath Currency-stock portfolios in
Table 12. In Table 11, we also show that when a model passes the SPA test, the corresponding MRC is
almost the smallest among all competing models’ MRCs.

Table 12 lists the summary results of the efficiency evaluation test based on MRCs for three
weight combinations of stock and currency-stock portfolios. As reported in Table 12, we find that
the NS-BEKK model has the best efficiency, followed by the S-DCC model for all the cases of three
weight combinations of both the stock and currency-stock portfolios because the NS-BEKK model
has the largest total number of portfolios that pass the SPA test. For example, as shown in column
“w1 = 0.5, w2 = 0.5” underneath Stock portfolios in Table 12, the total number of portfolios that
pass the SPA test is equal to 21 for the NS-BEKK model. This number, 21, is the largest among
the 8 (the S-DCC), 2 (the NS-DCC), 21 (the NS-BEKK), and 2 (the NS-ADCC). These results indicate
that irrespective of the weight combination of the portfolios, the NS-BEKK is the most suitable model
to be used in the stock- and currency-stock-based portfolio by the bank risk manager. In addition,
we are surprised that the NS-BEKK model is selected from the efficiency evaluation test for both the
stock- and currency-stock-based portfolios, whereas the S-DCC model is chosen from the accuracy
tests only for the stock-based portfolio. The reason we guess for this is that the three accuracy tests are
based on the one-day VaR, whereas the efficiency evaluation test is based on the MRC that depends
on the 10-day VaR at the 99% confidence level and the MRA’s multiplication factor. As to the other
reasons, they are left for future investigations.

20 Due to the limited space, the results of the efficiency evaluation test based on MRC for the other two weight combinations
stock and currency-stock portfolios are omitted here and are available upon request. However, the summary results of the
above results are also listed in Table 12.
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Table 8. All the summary results of the out-of-sample VaR forecast performances for the three weight combinations stock portfolios.

Panel A. w1=50%, and w2=50% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 18 8 7 33 5 6 7 18 3 1 1 5 3 0 0 3 59
NS-CCC 19 11 8 38 9 8 10 27 2 2 2 6 2 0 0 2 73
S-DCC 21 18 13 52 20 18 17 55 13 7 6 26 15 1 4 20 153

NS-DCC 20 14 8 42 7 7 9 23 1 2 2 5 5 0 0 5 75
S-BEKK 21 14 8 43 9 8 9 26 5 4 3 12 7 1 2 10 91

NS-BEKK 18 13 7 38 7 7 11 25 3 4 2 9 3 0 0 3 75
NS-ADCC 20 13 7 40 9 8 9 26 0 0 0 0 6 0 1 7 73

Panel B. w1=25%, and w2=75% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 10 5 3 18 7 6 7 20 1 0 0 1 2 0 0 2 41
NS-CCC 20 14 11 45 13 11 11 35 2 1 1 4 3 0 3 6 90
S-DCC 21 16 14 51 18 12 14 44 11 5 4 20 12 2 6 20 135

NS-DCC 20 14 11 45 13 11 11 35 1 1 1 3 2 0 3 5 88
S-BEKK 19 11 11 41 15 8 9 32 0 0 0 0 5 1 4 10 83

NS-BEKK 17 14 11 42 11 11 12 34 0 0 1 1 1 0 1 2 79
NS-ADCC 19 14 11 44 13 11 11 35 1 1 1 3 2 0 3 5 87

Panel C. w1=75%, and w2=25% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 16 15 10 41 12 11 10 33 7 2 0 9 8 0 0 8 91
NS-CCC 20 17 14 51 16 16 13 45 1 2 1 4 4 0 1 5 105
S-DCC 21 19 17 57 20 19 17 56 13 5 2 20 11 3 4 18 151

NS-DCC 21 16 14 51 17 16 14 47 3 2 1 6 4 0 0 4 108
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Table 8. Cont.

Panel C. w1=75%, and w2=25% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-BEKK 21 17 14 52 19 18 16 53 6 3 2 11 7 1 1 9 125
NS-BEKK 20 16 12 48 18 15 12 45 2 1 1 4 3 0 0 3 100
NS-ADCC 21 16 14 51 18 15 14 47 2 2 1 5 3 0 0 3 106

Note: (1) Refer to note 2 of Table 3. (2) The numbers in columns LRuc, LRcc, and DQ underneath the 90% level at panel A are the numbers in columns S90,uc, S90,cc, and S90,dq underneath the
90% level in Table 7. Similarly, the numbers in column Sum underneath the 90% level at panel A are the numbers in columns S90 underneath the 90% level case in Table 7. As to the
numbers in columns LRuc, LRcc, DQ, and Sum underneath the 95%, 99%, 99.5% levels in panel A, they are defined as the 90% level. (3) The numbers in the column Sum at each panel denote
the total sum of three corresponding numbers in columns LRuc, LRcc, and DQ. (4) The numbers in the column SUM at each panel denote the total sum of the four corresponding numbers
in the columns Sum of the 90%, 95%, 99%, and 99.5% levels. (5) The bold font in the columns Sum, and SUM denotes the greater number when two numbers corresponding to two models
are compared with each other and these two models have the same bivariate variance-covariance specification but a different parameter estimate approach (i.e., the S-CCC vs. NS-CCC;
the S-DCC vs. NS-DCC; and the S-BEKK vs. NS-BEKK). (6) The underlined font in the columns Sum, and SUM denotes the greatest number when three numbers corresponding to three
models are compared with each other and these three models have the same parameter estimate approach but with different bivariate variance-covariance specifications (i.e., the S-CCC,
S-DCC, and S-BEKK; NS-CCC, NS-DCC, and NS-BEKK). (7) The shaded font in the columns Sum, and SUM denotes the greatest number when seven numbers corresponding to even
models are compared with each other. (8) The italic font in the columns Sum, and SUM denotes the greater number when two numbers corresponding to two models are compared with
each other, and these two models are the NS-DCC and NS-ADCC.

Table 9. The out-of-sample VaR forecasts performance of the equal weight currency-stock portfolios based on alternative accuracy tests for the 90% level.

Udi-Ny Udi-Sp Udi-Na Udi-Ca Udi-Da Udi-Ft Udi-Sm Sum

Panel A. The LRuc test

S-CCC 0.3643[0.5461] 0.0899[0.7642] 0.0000[1.0000] 1.7119[0.1907] 5.8681[0.0154] 0.0000[1.0000] 1.0466[0.3062] 6
NS-CCC 0.0220[0.8818] 0.0223[0.8811] 0.0220[0.8818] 1.3597[0.2435] 5.8681[0.0154] 0.0878[0.7669] 0.3474[0.5555] 6
S-DCC 0.0899[0.7642] 1.1375[0.2861] 0.8303[0.3621] 0.0000[1.0000] 1.3597[0.2435] 0.0223[0.8811] 0.8303[0.3621] 7

NS-DCC 0.2036[0.6517] 1.9058[0.1674] 0.0899[0.7642] 0.0220[0.8818] 1.3597[0.2435] 0.0223[0.8811] 0.5729[0.4491] 7
S-BEKK 0.0878[0.7669] 0.0000[1.0000] 0.0220[0.8818] 2.5309[0.1116] 7.2612[0.0070] 0.1965[0.6575] 1.3597[0.2435] 6

NS-BEKK 0.0899[0.7642] 1.9058[0.1674] 0.0000[1.0000] 0.1965[0.6575] 1.7119[0.1907] 0.0878[0.7669] 0.2036[0.6517] 7
NS-ADCC 0.2036[0.6517] 1.9058[0.1674] 0.0899[0.7642] 0.0220[0.8818] 1.3597[0.2435] 0.0223[0.8811] 0.3643[0.5461] 7
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Udi-Ny Udi-Sp Udi-Na Udi-Ca Udi-Da Udi-Ft Udi-Sm Sum

Panel B. The LRcc test

S-CCC 0.5221[0.7702] 0.1279[0.9380] 2.4 × 10−5[0.9999] 2.4195[0.2982] 6.0139[0.0494] 5.0545[0.0798] 6.0584[0.0483] 5
NS-CCC 0.1643[0.9211] 0.0313[0.9844] 0.0329[0.9836] 2.2588[0.3232] 6.0139[0.0494] 4.1640[0.1246] 7.0446[0.0295] 5
S-DCC 0.5617[0.7551] 1.1650[0.5584] 0.8347[0.6587] 1.9366[0.3797] 3.1793[0.2039] 3.7804[0.1510] 7.1652[0.0278] 6

NS-DCC 0.2911[0.8645] 2.0396[0.3606] 0.1279[0.9380] 2.9583[0.2278] 2.2588[0.3232] 3.7804[0.1510] 6.3292[0.0422] 6
S-BEKK 0.1634[0.9215] 2 × 10−5[0.9999] 0.0329[0.9836] 2.9262[0.2315] 7.2906[0.0261] 5.5319[0.0629] 5.8702[0.0531] 6

NS-BEKK 0.1279[0.9380] 2.0396[0.3606] 2 × 10−5[0.9999] 1.3339[0.5132] 2.4195[0.2982] 2.6549[0.2651] 9.3299[0.0094] 6
NS-ADCC 0.2911[0.8645] 2.0396[0.3606] 0.1279 [0.9380] 2.9583[0.2278] 2.2588[0.3232] 3.7804[0.1510] 5.5747[0.0615] 7

Panel C. The DQ test

S-CCC 1.9277[0.9637] 1.1787[0.9914] 2.3263[0.9395] 5.2358[0.6312] 9.1635[0.2411] 8.9207[0.2583] 14.5328[0.0424] 6
NS-CCC 2.5911[0.9200] 1.3865[0.9859] 2.4799[0.9286] 6.1659[0.5205] 9.1240[0.2438] 7.4978[0.3789] 13.0912[0.0699] 7
S-DCC 3.5911[0.8254] 2.1972[0.9481] 4.8508[0.6781] 8.3832[0.3000] 13.7697[0.0554] 7.4171[0.3867] 11.3058[0.1258] 7

NS-DCC 2.7042[0.9109] 2.7454[0.9075] 2.4149[0.9333] 8.0607[0.3272] 10.8364[0.1459] 6.9173[0.4375] 9.9127[0.1935] 7
S-BEKK 2.4411[0.9314] 2.3166[0.9402] 2.5963[0.9196] 7.0117[0.4276] 11.5043[0.1180] 9.6540[0.2090] 12.9049[0.0744] 7

NS-BEKK 2.3700[0.9365] 2.3697[0.9365] 2.2142[0.9470] 6.5538[0.4767] 9.2576[0.2346] 6.5970[0.4720] 12.8241[0.0765] 7
NS-ADCC 2.6933[0.9118] 3.0184[0.8832] 2.5772[0.9211] 8.0607[0.3272] 10.8363[0.1459] 6.9173[0.4375] 11.0342[0.1371] 7

Note: (1) Refer to notes 1–2 of Table 3. In addition, the symbol Udi denotes the US dollar index. (2) The numbers in this table denote the values of three accuracy tests (i.e., LRuc, LRcc, and
DQ) at the 90% level for equal weight bi-component currency-stock portfolios. On the contrary, the numbers in the bracket beside the preceding numbers denote the corresponding p-values
of those test statistics. (3) The bold font indicates that the null hypotheses of the LRuc, LRcc, and DQ tests statistics are accepted at the 5% significance level. (4) The LRuc (respectively, LRcc)
test statistic is asymptotically distributed χ2(1) (respectively, χ2(2)) and its corresponding critical value at the 5% significance level is 3.841 (respectively, 5.991). Conversely, the DQ test
statistic is asymptotically distributed χ2(7) and its corresponding critical value at the 5% significance level is 14.067. (5) The numbers in column Sum denote the total number of portfolios
passing the above the three accuracy tests at the 5% significance level.
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Table 10. All the summary results of the out-of-sample VaR forecast performance for the three weight combinations of currency-stock-based portfolios.

Panel A. w1=50%, and w2=50% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 6 5 6 17 5 3 4 12 1 0 0 1 0 0 0 0 30
NS-CCC 6 5 7 18 5 3 4 12 0 0 0 0 0 0 0 0 30
S-DCC 7 6 7 20 6 7 5 18 1 2 0 3 0 1 1 2 43

NS-DCC 7 6 7 20 6 7 5 18 1 2 1 4 0 1 2 3 45
S-BEKK 6 6 7 19 3 5 4 12 0 0 0 0 0 0 0 0 31

NS-BEKK 7 6 7 20 6 7 6 19 1 2 1 4 0 0 1 1 44
NS-ADCC 7 7 7 21 6 6 5 17 1 1 1 3 0 1 2 3 44

Panel B. w1=25%, and w2=75% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NS-CCC 7 6 6 19 6 6 6 18 0 1 1 2 0 0 0 0 39

S-DCC 7 6 7 20 7 5 5 17 2 1 1 4 3 0 0 3 44

NS-DCC 7 6 7 20 7 5 5 17 0 2 1 3 0 0 1 1 41
S-BEKK 7 6 6 19 5 4 4 13 0 0 1 1 0 0 0 0 33

NS-BEKK 7 6 6 19 7 5 4 16 0 1 1 2 0 0 1 1 38
NS-ADCC 7 6 7 20 7 5 5 17 0 2 1 3 0 0 1 1 41

Panel C. w1=75%, and w2=25% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

S-CCC 0 1 4 5 2 2 6 10 7 4 4 15 7 3 4 14 44

NS-CCC 7 7 7 21 7 7 7 21 3 2 0 5 3 0 0 3 50
S-DCC 7 5 6 18 7 6 7 20 5 2 2 9 4 0 2 6 53
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Table 10. Cont.

Panel C. w1=75%, and w2=25% bi-component portfolios

90% Level 95% Level 99% Level 99.5% Level
SUM

LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum LRuc LRcc DQ Sum

NS-DCC 7 5 6 18 7 7 7 21 7 3 3 13 6 0 2 8 60
S-BEKK 7 7 7 21 7 7 6 20 3 2 0 5 3 0 0 3 49

NS-BEKK 7 5 6 18 7 7 7 21 5 2 3 10 5 0 2 7 56
NS-ADCC 7 6 6 19 7 7 7 21 7 3 3 13 6 0 2 8 61

Note: (1) Refer to note 2 of Table 3. (2) The numbers in columns LRuc, LRcc, and DQ underneath the 90% level at panel A are the numbers in the columns Sum at Panels A, B, and C in
Table 9. The numbers in the column Sum underneath the 90% level at panel A are the total sum of three corresponding numbers in columns LRuc, LRcc, and DQ. As to the numbers in
columns LRuc, LRcc, DQ, and Sum underneath the 95%, 99%, 99.5% levels at panel A, they are defined as the 90% level case. (3) As to the other notes, please refer to the notes 3–8 in Table 8.

Table 11. The efficiency evaluation test based on the market risk capital for equal weight stock and currency-stock portfolios.

Panel A. The bi-component stock portfolios

Ny-Sp Ny-Na Ny-Ca Ny-Da Ny-Ft Ny-Sm Sp-Na Sum

S-DCC
7.8910(1.724) 8.0044(2.008) 8.2003(2.348) 8.4113(1.788) 6.8843(1.994) 6.9209(2.080) 8.0728(2.027)

1[0.000] [0.000] [0.000] [0.000] [0.510] [0.010] [0.000]

NS-DCC
7.2111(2.455) 7.5252(2.501) 7.9801(2.340) 8.0803(2.160) 7.0083(2.383) 6.8579(2.166) 7.6419(2.577)

0[0.000] [0.004] [0.000] [0.000] [0.000] [0.000] [0.007]

NS-BEKK
7.0659(2.337) 7.3937(2.269) 7.8118(2.146) 7.8791(1.923) 6.8751(2.120) 6.6864(1.885) 7.4977(2.295)

7[0.498] [0.528] [0.568] [0.619] [0.557] [0.523] [0.535]

NS-ADCC
7.2111(2.455) 7.5250(2.501) 7.9720(2.367) 8.0878(2.163) 7.0207(2.425) 6.8287(2.112) 7.6419(2.577)

0[0.000] [0.001] [0.000] [0.000] [0.001] [0.000] [0.004]

Sp-Ca Sp-Da Sp-Ft Sp-Sm Na-Ca Na-Da Na-Ft

S-DCC
7.8820(2.256) 8.2991(1.942) 6.8906(2.186) 6.9046(2.072) 8.3522(1.901) 8.3967(1.829) 7.0895(1.999)

2[0.037] [0.000] [0.104] [0.000] [0.019] [0.073] [0.634]

NS-DCC
7.8908(2.339) 8.0216(2.170) 6.9040(2.405) 6.7965(2.182) 8.1983(2.369) 8.3949(2.230) 7.2283(2.402)

0[0.000] [0.000] [0.003] [0.000] [0.031] [0.000] [0.011]

NS-BEKK
7.7161(2.116) 7.8271(1.902) 6.7619(2.113) 6.6260(1.868) 8.1093(2.122) 8.2155(1.924) 7.1130(2.097)

7[0.520] [0.665] [0.917] [0.523] [0.733] [0.945] [0.442]

NS-ADCC
7.8820(2.368) 8.0500(2.172) 6.8929(2.407) 6.7560(2.148) 8.2153(2.413) 8.4142(2.221) 7.2187(2.453)

0[0.000] [0.000] [0.006] [0.000] [0.013] [0.000] [0.066]
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Panel A. The bi-component stock portfolios

Na-Sm Ca-Da Ca-Ft Ca-Sm Da-Ft Da-Sm Ft-Sm

S-DCC
7.5970(1.947) 10.2190(2.242) 9.2129(1.436) 8.8354(1.232) 8.5388(0.915) 9.3045(1.837) 8.1860(2.395)

5(8)[0.000] [0.822] [0.140] [0.465] [0.889] [0.548] [0.000]

NS-DCC
7.0929(2.193) 10.6129(2.697) 9.1373(2.960) 9.1406(2.709) 9.1602(2.746) 9.1858(2.414) 7.9692(2.715)

2(2)[0.000] [0.000] [0.005] [0.000] [0.889] [0.548] [0.002]

NS-BEKK
6.9765(1.852) 10.3884(2.538) 8.9687(2.588) 8.7994(2.439) 9.0521(2.563) 8.7474(2.143) 7.7521(2.266)

7(21)[0.856] [0.178] [0.889] [0.548] [0.889] [0.548] [0.521]

NS-ADCC
7.0177(2.155) 10.6069(2.707) 9.1373(2.960) 9.1406(2.709) 9.1602(2.746) 9.1864(2.415) 7.9690(2.715)

2(2)[0.144] [0.000] [0.008] [0.000] [0.889] [0.548] [0.001]

Panel B. The bi-component currency-stock portfolios

Udi-Ny Udi-Sp Udi-Na Udi-Ca Udi-Da Udi-Ft Udi-Sm Sum

S-DCC
4.1895(1.214) 4.2479(1.338) 4.7965(1.348) 6.2143(1.543) 6.3642(1.361) 4.8727(1.547) 5.1948(1.394)

5[0.002] [0.433] [0.028] [0.115] [0.388] [0.315] [0.297]

NS-DCC
4.1493(1.220) 4.2775(1.272) 4.7987(1.332) 6.2952(1.528) 6.4516(1.314) 4.9358(1.567) 5.2512(1.328)

0[0.005] [0.000] [0.000] [0.000] [0.000] [0.000] [0.001]

NS-BEKK
4.1102(1.214) 4.2392(1.233) 4.7541(1.236) 6.1904(1.469) 6.3584(1.270) 4.8605(1.536) 5.1756(1.149)

7[0.649] [0.634] [0.927] [0.885] [0.612] [0.685] [0.703]

NS-ADCC
4.1486(1.223) 4.2577(1.276) 4.7742(1.341) 6.2952(1.528) 6.4516(1.315) 4.9358(1.567) 5.2512(1.328)

1[0.002] [0.049] [0.129] [0.000] [0.000] [0.000] [0.001]

Note: (1) The symbols Ny, Sp, Na, Ca, Da, Ft, Sm, and Udi denote the USNYSE, S&P500, and Nasdaq; France CAC40; Germany DAX; United Kingdom FTSE; Swiss SMI stock indices; and
the US dollar index, respectively. (2) S-DCC and NS-DCC respectively denote the standard and non-standard (i.e., the two-step) dynamic conditional correlation models; NS-BEKK denotes
the non-standard (i.e., the simplified) BEKK model derived by Su (2014a), whereas NS-ADCC denotes the non-standard (i.e., the two-step) asymmetric type of dynamic conditional
correlation models. (3) The numbers in this table and parentheses ‘( )’ denote the mean values and standard deviation of market risk capital, respectively. The numbers in the brackets ‘[ ]’
denote the reality check p-value of the Hansen’s consistent test for the market risk capital-based loss function. In the SPA test, each competing model has to take turns to be the benchmark
model and the null hypothesis is that none of the models is better than the benchmark. The number of bootstrap replications to calculate the p-values is 1000 and the dependency
parameter q is 0.5. (4) The bold font in brackets ‘[ ]’ denotes a p-value greater than 10% level, indicating that the above null hypothesis is accepted or that the benchmark model has a better
performance than the other competing model. (5) The numbers in the column Sum denote the total number of bi-component portfolios that adopt the SPA test for a specified model.
(6) The bold font in the column Sum denotes the greatest number among the four numbers in an alternative subpanel. (7) The numbers in the parentheses ‘( )’ of the column Sum at the
third subpanel of panel A denote the total number of portfolios that adopt the SPA test for a specified model when taking 21 bi-component stock portfolios as a whole.
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Table 12. The summary results of the efficiency evaluation test based on the market risk capital (MRC)
for the three weight combinations of the stock and currency-stock portfolios.

Stock Portfolios Currency-Stock Portfolios

w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

0.5 0.5 0.25 0.75 0.75 0.25 0.5 0.5 0.25 0.75 0.75 0.25

S-DCC 8 8 7 5 4 0
NS-DCC 2 0 1 0 1 0
NS-BEKK 21 19 20 7 7 7
NS-ADCC 2 0 1 1 1 0

Note: (1) S-DCC and NS-DCC respectively denote the standard and non-standard (i.e., the two-step) dynamic
conditional correlation models; NS-BEKK denotes the non-standard (i.e., the simplified) BEKK model derived by
Su (2014a), whereas NS-ADCC denotes the non-standard (i.e., the two-step) asymmetric type of dynamic conditional
correlation model. (2) w1 and w2 are the weights of the two component assets of portfolios. (3) The numbers are
summarized from those in the column Sum of Table 11 and denote the total number of bi-component portfolios that
adopt the SPA test for a specified model. Notably, there are 21 bi-component stock portfolios and 7 bi-component
currency-stock portfolios. (4) The bold font denotes the greatest number among the four numbers in each column.

6. Conclusions

In this study, the seven bivariate GARCH models were mainly used to forecast the out-of-sample
VaR of 21 equal-weight bi-component portfolios composed of alternative two indices among seven
stock indices in America and Europe. The seven bivariate GARCH models were composed of four
bivariate variance-covariance specifications with two parameter estimate approaches. Subsequently,
the out-of-sample forecast results were used to investigate which bivariate variance-covariance
specification and which parameter estimate approach has a better VaR forecast performance and
whether the asymmetric DCC model has a better forecast performance than its corresponding
symmetric one. To explore whether a different portfolio (different components with different weights)
has the same comparison results with the equal-weight portfolio, two additional sub-issues were
explored. First, we added two other weight combinations (w1 = 25%, w2 = 75%; and w1 = 75%,
w2 = 25%) for the original 21 stock-based portfolios to investigate whether the different weight
combinations would affect the comparison results. Second, we also considered the US dollar index
(Udi) as the new component asset to construct seven currency-stock-based bi-component portfolios to
investigate whether the different component combinations of portfolios would affect the comparison
results. Finally, via combining the MRC under the 1996 MRA to the Basel Capital Accord, we used
the two-stage selection procedure of Sarma et al. (2003) to select a suitable model to manage the
institutional risk.

The empirical findings can be summarized as follows. Regarding the stock portfolios, we find
the following findings irrespective of weight combinations. First, the standard approach has a better
VaR forecast performance for the DCC and BEKK types of bivariate variance-covariance specification,
whereas the non-standard approach has a better VaR forecast performance only for the CCC type of
bivariate variance-covariance specification. Second, the DCC type of bivariate variance-covariance
specification has the best VaR forecast performance only for the standard approach, whereas three
types of bivariate variance-covariance specification seem to have the same VaR forecast performance
for the non-standard approach. Third, the DCC type of bivariate variance-covariance specification
with the standard approach shows the best VaR forecast performance among the seven bivariate
GARCH models. This result is one of the most significant findings in this study. Fourth, the NS-ADCC
and NS-DCC models have almost the same VaR forecast performance. Hence, the different weight
combinations of portfolios seem to not affect the comparison results for the stock-based portfolio.
On the other hand, regarding the currency-stock portfolios, all seven models seem to have the same
VaR forecast performance irrespective of weight combinations, indicating that the different weight
combinations seem not to affect the comparison results for the currency-stock-based portfolio. Hence,
regarding the accuracy test, the VaR forecast performance comparison results vary with the component
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combination of the portfolio but do not vary with the weight combinations of the portfolios. Finally,
regarding the efficiency evaluation test via market risk capital, we find that the NS-BEKK is the most
suitable model to be used in stock- and currency-stock-based portfolios for the bank risk manager,
irrespective of the weight combination of portfolios. This is another of the most significant findings in
this study.

Based on these findings, one important policy implication is proposed: the bank risk manager
should select the NS-BEKK model to forecast the VaR of both the stock and currency-stock
portfolios because the BEKK type of bivariate variance-covariance specification with the non-standard
approach (i.e., with simplified parameters) produces the smallest value of MRC among all competing
models’ MRCs.
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