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Abstract: Based on suitable left-truncated or censored data, two flexible classes of M-estimations of
Weibull tail coefficient are proposed with two additional parameters bounding the impact of extreme
contamination. Asymptotic normality with

√
n-rate of convergence is obtained. Its robustness is

discussed via its asymptotic relative efficiency and influence function. It is further demonstrated by
a small scale of simulations and an empirical study on CRIX.
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1. Introduction

The estimation of tail quantities plays an important role in extreme value statistics.
One challenging problem is to select extreme sample fraction to balance the asymptotic variance
and bias. Meanwhile, this requires a large and ideal sample from the underlying distribution.
Indeed, in practical data analysis, it is not unusual to encounter outliers or mis-specifications of
the underlying model which may have a considerable impact on the estimation results. A typical
treatment is then required for instance by down-weighting its influence on the estimation in various
standards, see e.g., Basu et al. (1998); Beran and Schell (2012); Vandewalle et al. (2004, 2007);
Goegebeur et al. (2015); Liu and Tang (2010).

Given the wide applications of Weibull-type distributions and little studies on its robust
estimations, this paper shall address this issue concerning its tail quantities. Let X1, . . . , Xn be
an independent and identically distributed sequence from parent X ∼ F(x) satisfying

1− F(x) = exp{−xα`(x)} for large x, (1)

where α > 0 is the so-called Weibull tail coefficient (WTC) and `(x) is a slowly varying function at
infinity, i.e., (cf. Bingham et al. (1987))

lim
t→∞

`(tx)/`(x) = 1, ∀x > 0.

Prominent instances of Weibull-type distributions of F are Gaussian (α = 2), gamma, Logistic and
exponential (α = 1) and extended Weibull (any α > 0) distributions (cf. Gardes and Girard (2008)).
As an important subgroup of light-tailed distributions, Weibull-type distributions are of great use in
hydrology, meteorology, environmental and actuarial science, to name but a few (cf. Arendarczyk
and Dȩbicki (2011); Beirlant and Teugels (1992); Dȩbicki et al. (2018); Hashorva and Weng (2014)).
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Meanwhile, the WTC governs the tail behavior of F, and the larger the WTC is, the faster the
tail of F decays. Dedicated estimations of WTC have thus been proposed and most of them
are based on an asymptotically vanishing sample fraction of high quantiles, which asymptotic
normality is achieved under certain second-order condition specifying the rate of convergence of
`(tx)/`(t) to 1, see e.g., Girard (2004); Gardes and Girard (2008); Goegebeur et al. (2010); Asimit
et al. (2010). Indeed, most data-sets from applied-oriented fields are relative large and with certain
deviations from the pre-supposed model. For instance, it occurs with the slowly varying function `(·)
(where 1− F(x) = exp{−xα`(x)}) in the left part of the distributions. To the best of our knowledge,
it is new to investigate the robust Weibull tail estimations when only a small sample is available.

Inspired by the theory of robust inference in Huber (1964), we propose two classes of robust
estimations of WTC. Denote for given c0 > 0

h(t) = (c0t− 1) ln t− 1, t > 0. (2)

Clearly, we have g(x; α) = −α−1h(xα) is the score function of

X ∼ FW(x; α) = 1− exp{−c0xα}, x > 0, α > 0. (3)

Please note that h(t), t > 0 is not monotone and thus one cannot directly weaken the effect of
outliers by bounding score function g(x; α). On the other hand, most interest of risk management lies
principally in the extreme large risks. This motivates us to consider some tailored h(t) according to
certain left-truncated/censored Weibull distributions with the same Weibull tail coefficient α under
considerations. Namely, we set below t0 = arg mint≥1 h(t) with h specified by (2) and

h̃(t) = h(t), t ≥ 1, h∗(t) = h(t), t ≥ t0, (4)

which properties are stated as below.

Lemma 1. Let X ∼ FW(x; α) and X̃ = X|{X ≥ 1} ∼ F̃W(x; α). Then h̃←(y) = inf{t ≥ 1 : h̃(t) ≥ y}, y ≥ −1
is strictly increasing, and −α−1h̃(xα) is the score function of F̃W(x; α). Moreover, h∗(xα), x ≥ x0 = t1/d0

0 is
strictly increasing provided that α ≥ d0 > 0.

Basically, both h̃← and h∗ are certain modifications of h via its valued interval and domain region.
Now, we are ready to state our M-estimations of Weibull tail coefficient using the M-estimation
process based on the alternative samples X̃i’s and X∗i ’s respectively from X̃ := X|{X ≥ 1} ∼ F̃
and X∗ := max(X, x0) ∼ F∗ where Xi’s is a random sample from X ∼ F. Set below
[y]uv = min(max(y, v), u), }, v < u and = is a set of distributions with support in (0, ∞).

Definition 1. Let FW(x; α) and h̃, h∗ be given by (3) and (4), respectively. Define the psi-function ψ̃ as

ψ̃v,u(y; α) = [h̃(yα)]uv −
∫ ∞

1
[h̃(zα)]uv dF̃W(z; α)

= [h̃(yα)]uv −
[

v +
∫ u

v
exp{−c0[h̃←(z)− 1]} dz

]
, −1 ≤ v < u < ∞. (5)

Then the functional T̃(F) as the solution of the equation

λ̃F(t) =
∫ ∞

1
ψ̃v,u(y; t)dF̃(y) = 0, F ∈ =,
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is called huberized Weibull tail M-functional corresponding to ψ̃. The corresponding M-estimator
T̃n = T̃(v,u)

n (Fn), the solution of the equation

λ̃Fn(t) =
m

∑
j=1

ψ̃v,u(X̃j; t) = 0, m = #{1 ≤ i ≤ n : Xi ≥ 1},

is the huberized Weibull tail M-estimator of α. If further 0 < d0 ≤ α ≤ d1, then define the psi-function ψ∗ with
x0 =

(
arg mint≥1 h(t)

)1/d0 and v0 = h(xd1
0 )

ψ∗v,u(y; α) = [h∗(yα)]uv −
∫ ∞

x0

[h∗(zα)]uv dF∗W(z; α)

= [h∗(yα)]uv −
[

v +
∫ u

v
exp{−c0(h∗)←(z)} dz

]
, v0 ≤ v < u < ∞. (6)

Then the functional T∗(F), F ∈ = as the solution of the equation

λ∗F(t) =
∫ ∞

x0

ψ∗v,u(y; t)dF∗(y) = 0,

is called huberized Weibull tail M-functional corresponding to ψ∗. The corresponding M-estimator
T∗n = T∗(v,u)

n (Fn), the solution of the equation

λ∗Fn
(t) =

n

∑
i=1

ψv,u(X∗i ; t) = 0,

is the huberized M-estimator of the Weibull tail coefficient α.

We remark that (5) and (6) hold since

F̃W(x; α) = 1− exp{−c0[xα − 1]}, x ≥ 1; F∗W(x; α) =

{
1− exp{−c0xα}, x > x0,
0, x ≤ x0.

Figure 1 illustrates the lower huberization by comparing the score function ψ̃−1,∞(y; α) of F̃W
(recall Lemma 1) with ψ̃v,∞(y; α). We see that the contaminated Weibull density by Gamma (see (10)
below for its definition) has almost the same shape as the pre-supposed Weibull one in the right tail,
and therefore lower-huberized psi-function ψ̃v,∞(y; α) can restrict the influence of all observations
below y0 = (h̃←(v))1/α instead of removing them completely. On the other hand, for all y > y0,
the ψ̃v,∞(y; α) is shifted downwards for the consistency purpose. One may similarly analyze the
ψ∗ function.

The paper principally investigates the asymptotic behavior of the proposed new classes of
M-estimations of Weibull tail coefficient. Details are as follows.

In Section 2, we consider Weibull distributions in Theorems 1 and 2 and establish its asymptotic
normality of the M-estimations T̃n and T∗n with

√
n-rate of convergence, which is rather faster than

that of most classical Weibull tail estimations such as the Hill-type estimation, see Theorem 2 in
Girard (2004). Generally, we study related asymptotic properties in Theorems 3 and 4 when the
underlying risk follows Weibull-type distributions specified in (1). Some bounded asymptotic bias
may appear due to its deviations from the Weibull distributions.

In Section 3, using asymptotically relative efficiency (AEFF) and influence function (IF),
we investigate the robustness (Theorem 5) and the bias, which are further related to the choices
of flexible parameters v and u. These results are useful, especially when the practical regulators in risk
management consider the trade-off between the robustness and consistency.
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In Section 4, a small scale of Monte Carlo simulations and an empirical study concerning the
CRIX proposed by Trimborn and Härdle (2016) are carried out. We see that both M-estimations are
robust and perform very well even for small samples, in comparisons with the classical maximum
likelihood estimations and Hill-type estimations of the Weibull tail coefficient. We expect the results
would be beneficial to both financial practitioners and theoretical experts in risk management and
extreme value statistics.

The rest of the paper is organized as follows. Main results are given in Section 2 followed with
a section dedicated to the robust analysis. Sections 4 and 5 are devoted to a small scale of Monte Carlo
simulations and an empirical studies on CRIX. All proofs of the results are postulated to Section 6.

Figure 1. Psi-functions ψ̃ for the huberized M-estimators T̃(v,∞)
n . Here the truncated densify functions

are generated from the Weibull FW(x; α) and contaminated Weibull Fε(x) = (1 − ε)FW(x; α) +

εΓ(x; λ, β) with α = 2, c0 = 0.5, ε = 0.3, λ = 1, β = 1.

2. Asymptotic Results

Throughout this section, we keep the same notation as in Introduction and write further
p→ and d→

for the convergence in probability and in distribution, respectively. All the limits are taken as n→ ∞
unless otherwise stated.

Theorem 1. Let X1, . . . , Xn be a random sample from X ∼ FW(x; α0) = 1− exp{−c0xα0}, x > 0, c0, α0 > 0.
Denote by X̃j ∼ X̃ = X|{X ≥ 1}, 1 ≤ j ≤ m = #{1 ≤ i ≤ n : Xi ≥ 1}, and by T̃n = T̃(v,u)

n ,−1 ≤ v < u <

∞ the solution of

λ̃(FW )n(t) =
m

∑
i=1

ψ̃v,u(X̃i; t) = 0.

Then T̃n
p→ α0 and

√
n(T̃n − α0)

d→ N(0, σ̃2
v,u,α0;FW

), (7)

where, with µ̃ = v +
∫ u

v exp{−c0[h̃←(z)− 1]}dz

σ̃2
v,u,α0;FW

= ec0
α2

0
c2

0

(v− µ̃)2 + 2
∫ h̃←(u)

h̃←(v)
[h̃(s)− µ̃] exp{−c0(s− 1)}dh̃(s)[∫ h̃←(u)

h̃←(v)
s ln s exp{−c0(s− 1)}dh̃(s)

]2 .
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Remark 1. As stated in Lemma 1, −α−1h̃(xα), x ≥ 1 is the score function of F̃W(x; α). Therefore, T̃n = T̃(v,u)
n

with v = −1, u = ∞ reduces to the maximum likelihood estimation of α. This fact will be used in Theorem 5
for the asymptotic relative efficiency analysis. Additionally, we have by laws of large numbers that m = m(n)
satisfies m/n

p→ P{X ≥ 1} = e−c0 .

Theorem 2. Let X1, . . . , Xn be a random sample from X ∼ FW(x; α0) = 1− exp{−c0xα0}, x > 0 and
0 < d0 ≤ α0 ≤ d1. Denote by X∗i = max(Xi, x0), 1 ≤ i ≤ n with x0 = (arg mint≥1 h(t))1/d0 , and by

T∗n = T∗(v,u)
n , n ∈ N, u > v ≥ v0 = h(xd1

0 ) the solution of

λ∗(FW )n
(t) =

n

∑
i=1

ψ∗v,u(X∗i ; t) = 0.

Then T∗n
p→ α0 and

√
n(T∗n − α0)

d→ N(0, σ∗2v,u,α0;FW
),

where, with µ∗ = v +
∫ u

v exp{−c0(h∗)←(z)} dz

σ∗2v,u,α0;FW
=

α2
0

c2
0

(v− µ∗)2 + 2
∫ (h∗)←(u)
(h∗)←(v) [h

∗(s)− µ∗] exp{−c0s}dh∗(s)[∫ (h∗)←(u)
(h∗)←(v) s ln s exp{−c0s}dh∗(s)

]2 .

Remark 2. (i) The difference between ψ̃ and ψ∗ is that h∗ is not the score function of F∗W , the distribution of the
censored risk at point x0, where 0 < d0 ≤ α0 ≤ d1 is needed to ensure the monotonicity of h∗ and ψ∗, see details
in (19) with α = α0.

(ii) The proposed M-estimations are principally based on suitable left-truncated and censored data, which are
commonly used in survival analysis, see e.g., Kudu et al. (2017). Moreover, both consistency and robustness
are obtained since we bound the psi-functions to weaken the influence of the extreme outliers for the exact
Weibull models.

In what follows, we consider generally the Weibull-type risks and investigate asymptotic
properties of the proposed M-estimations.

Theorem 3. Let X1, . . . , Xn be a random sample from F(x) = 1− exp{−c0xα0`(x)}, x > 0. Suppose that
there is a unique solution t0 of λ̃F(t) = 0. Then T̃n = T̃(v,u)

n ,−1 ≤ v < u < ∞, the solution of

λ̃Fn(t) =
m

∑
i=1

ψ̃v,u(X̃i; t) = 0, m = #{1 ≤ i ≤ n : Xi ≥ 1},

converges in probability to t0. If further
∫ ∞

1 ψ̃2
v,u(x; t0) dF̃(x) < ∞ and λ̃′F(t) 6= 0 hold in a neighbourhood of

t0, then

√
n(T̃n − t0)

d→ N(0, σ̃2
v,u,t0;F), (8)

where

σ̃2
v,u,t0;F = ec0`(1)

∫ ∞
1 ψ̃2

v,u(x; t0)dF̃(x)
[λ̃′F(t0)]2

.
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Theorem 4. Let X1, . . . , Xn be a random sample from F(x) = 1 − exp{−c0xα0`(x)}, x > 0 and 0 <

d0 ≤ α0 ≤ d1, x0 = (argmint≥1h(t))1/d0 . Suppose that there is a unique solution t0 of λ∗F(t) = 0. Then

T∗n = T∗(v,u)
n , u > v ≥ v0 = h(xd1

0 ), the solution of

λ∗Fn
(t) =

n

∑
i=1

ψ∗v,u(X∗i ; t) = 0, n ∈ N,

converges in probability to t0. If further
∫ ∞

x0
ψ∗2v,u(x; t0) dF∗(x) < ∞ and (λ∗F)

′(t) 6= 0 hold in a neighbourhood
of t0, then

√
n(T∗n − t0)

d→ N(0, σ∗2v,u,t0;F), (9)

where

σ∗2v,u,t0;F =

∫ ∞
x0

ψ∗2v,u(x; t0)dF∗(x)

[(λ∗F)
′(t0)]2

.

Please note that here the t0, the unique solution of λ̃F and λ∗F specified in Theorems 3 and 4,
might not be equal to α0. In other words, to maintain the robustness of the M-estimations is at cost of
consistency. In the next section, we shall discuss the balance via the flexible parameters v and u.

3. Robustness

A simple criterion for choosing v and u in the M-estimations is the trade-off between the efficiency
loss (that one is willing to put up with when data are generated by a Weibull distribution), and its
asymptotic bias (when the underlying distribution deviates from the ideal Weibull distribution).
We study below the relative asymptotic efficiency (AEFF) in Theorem 5, and then analyze its influence
function. Both quantities are some functions of the flexible parameters v and u, which enable the risk
regulators to balance the robustness and consistency.

As stated in Remark 1, the M-estimation T̃(v,u)
n with v = −1, u = ∞ reduces to the maximum

likelihood estimation of α. Therefore, a straightforward application of Theorems 1 and 2 leads to the
following theorem.

Theorem 5. Under the same assumptions of Theorems 1 and 2, we have the relative asymptotic efficiency
functions of T̃(v,u)

n and T∗(v,u)
n (compared to T̃(−1,∞)

n , the maximum likelihood estimation) are given by

AEFF(T̃(v,u)
n ) =

σ̃2
−1,∞,α0;FW

σ̃2
v,u,α0;FW

=

[∫ ∞
−1 exp{−c0[h̃←(z)− 1]} dz

]2
+ 2

∫ ∞
1 [h̃(s)− µ̃] exp{−c0(s− 1)}dh̃(s)[∫ ∞

1 s ln s exp{−c0(s− 1)}dh̃(s)
]2

×

[∫ h̃←(u)
h̃←(v)

s ln s exp{−c0(s− 1)}dh̃(s)
]2

(v− µ̃)2 + 2
∫ h̃←(u)

h̃←(v)
[h̃(s)− µ̃] exp{−c0(s− 1)}dh̃(s)
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and

AEFF(T∗(v,u)
n ) =

σ̃2
−1,∞,α0;FW

σ∗2v,u,α0;FW

= ec0

[∫ ∞
−1 exp{−c0[h̃←(z)− 1]} dz

]2
+ 2

∫ ∞
1 [h̃(s)− µ̃] exp{−c0(s− 1)}dh̃(s)[∫ ∞

1 s ln s exp{−c0(s− 1)}dh̃(s)
]2

×

[∫ (h∗)←(u)
(h∗)←(v) s ln s exp{−c0s}dh∗(s)

]2

(v− µ∗)2 + 2
∫ (h∗)←(u)
(h∗)←(v) [h

∗(s)− µ∗] exp{−c0s}dh∗(s)
.

Here µ̃ and µ∗ are given by Theorems 1 and 2, respectively.

Figure 2 illustrates the effect of v on the relative asymptotic efficiency of T̃(v,∞)
n and T∗(v,∞)

n

(compared to the MLE T̃(−1,∞)
n ). For smaller v, the relative asymptotic effective loss of T̃n is rather

smaller than that of T∗n . While for larger v, both are asymptotically the same.

Figure 2. Relative asymptotic efficiency (AEFF) of T̃(v,∞)
n and T∗(v,∞)

n compared to the MLE T̃(−1,∞)
n .

Here FW(x; α0) is given by (1) with c0 = 1, α0 = 1.

The influence function approach, known also as the “infinitesimal approach”, is generally employed
to quantify robustness. Recall that the influence function describes the effect of some functional T(F) for
F in an infinitesimal ε-contamination neighbourhood {Fε|Fε(x) = (1− ε)F(x) + εG(x)}, is defined by

IF(T; F, G) = lim
ε→0

T((1− ε)F + εG)− T(F)
ε

=
∂

∂ε
T(Fε)

∣∣
ε=0.

We have

IF(T̃; F, G) = −
∫ ∞

1 ψ̃v,u(y; T̃(F))dG̃(y)
λ̃′F(T̃(F))

; IF(T∗; F, G) = −
∫ ∞

x0
ψ∗v,u(y; T∗(F))dG∗(y)

(λ∗F)
′(T∗(F))

.
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In Figure 3, we take G(x) = Γ(x; λ, β) with scale parameter λ = 0.5 and shape parameter
β ∈ (0, 5), which is a Weibull-type distribution with α = 1. Its density function g(x; λ, β) is given by

g(x; λ, β) =
λβ

Γ(β)
xβ−1 exp{−λx}, x > 0. (10)

We see that, the absolute values of the influence functions of both M-estimations T̃n and T∗n are
increasing in β, and decreasing with v. In other words, with increasing huberization and light-tail
contamination, one gets the reduction of sensitivity to deviations from the Weibull model.

Figure 3. Influence functions IF(T; F, G) for T = T̃(v,∞)
n (left) and T∗(v,∞)

n (right). Here G(x) =

Γ(x; λ, β), λ = 0.5, β ∈ (0, 5), v = ±1,±0.5, 0 and F(x) = FW(x; α0) is given by (1) with c0 = 1, α0 = 1.

4. Simulations

In this section, we carry out a simulation study to illustrate the small sample behavior of
M-estimations T̃(v,∞)

n and T∗(v,∞)
n compared to the maximum likelihood estimation α̂mle = T̃(−1,∞)

n and
the classical Hill-type estimation α̂

(kn)
Hill of the Weibull tail coefficient given by (cf. Girard (2004))

α̂
(kn)
Hill =

1
k Σk

j=1 log(log n+1
j )− log(log n+1

k+1 )

1
k Σk

j=1 log(Xn−j+1,n)− log(Xn−k,n)
, k = 1, . . . , n− 1. (11)

To analyze the robustness of the M-estimations, we generate m = 1000 samples of size n =

30, 50, 80 and 100 from Weibull distribution FW(x; α) = 1 − exp{−c0xα}, x > 0 contaminated by
Gamma distribution Γ(x; λ, β) with contamination level ε ∈ (0, 1), i.e., the underlying risk follows

Fε(x) = (1− ε)FW(x; α) + εΓ(x; λ, β).

In the simulations, we take c0 = 0.5, 1, 2, d0 = 1, d1 = 2, α = 1, 2 and λ = β = 0.5, ε = 0.1, 0.3.
Table 1 lists the average estimations α, the sample variance s2 and the ratio of mean squared error (MSE)
of MLE, Hill-type estimation to that of T̃n and T∗n with v = 0, i.e., (r̂, r̃, r∗) = (r̂0, r̃0, r∗0) is given by

r̂v =
MSE(α̂

(kopt)

Hill )

MSE(T̃(v,∞)
n )

, r̃v =
MSE(α̂mle)

MSE(T̃(v,∞)
n )

, r∗v =
MSE(α̂mle)

MSE(T∗(v,∞)
n )

. (12)

Here, we use alternatively kn = kopt given by (since the traditional optimal choice of kn in
Girard (2004) is not available for small samples)

kopt = arg min
kn≥1

MSE(α̂(kn)
Hill).
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The last column of Table 1 is the relative proportion of kn for which MSE(α̂(kn)
Hill) ≤ MSE(T̃(v,∞)

n ),
denoted by pHill , is given by

pHill =
#{1 ≤ kn ≤ n− 1 : MSE(α̂(kn)

Hill) ≤ MSE(T̃(v,∞)
n )}

n− 1
× 100%.

The pHill describes the percent that the Hill-type estimation outperforms the estimation T̃(v,∞)
n .

Table 1. Comparisons of T̃n, T∗n with α̂mle, α̂
(kn)
Hill . Here we take m = 1000 samples of size n = 30, 50, 80,

100 from Fε(x) = (1− ε)FW(x; α) + εΓ(x; 0.5, 0.5).

(ε, c0, α) n αmle αHill T̃n T∗
n s2

mle s2
Hill s2

T̃ s2
T∗ r̂ r̃ r* pHill

(0.3, 1, 1)

30 0.9217 0.8255 1.0006 1.0005 0.0072 0.0451 0.0018 0.0015 68.6811 8.7774 8.3678 0.00
50 0.8609 0.8435 1.0022 1.0061 0.0068 0.0289 0.0014 0.0015 23.1288 14.3407 13.4344 0.00
80 0.8274 0.8326 1.0083 1.0075 0.0041 0.0176 0.0013 0.0016 9.7485 19.5972 19.2393 0.00

100 0.8161 0.8368 1.0147 1.0119 0.0030 0.0148 0.0018 0.0015 6.2607 20.8143 20.0842 0.00

(0.1, 1, 1)

30 0.9885 0.9343 0.9942 0.9940 0.0007 0.0469 0.0007 0.0006 5.7287 1.2283 1.0561 0.00
50 0.9834 0.9252 0.9949 0.9952 0.0009 0.0269 0.0007 0.0006 3.6407 1.8194 1.8000 0.00
80 0.9776 0.9407 0.9962 0.9953 0.0009 0.0189 0.0005 0.0006 1.0006 2.5849 2.3829 0.00

100 0.9735 0.9302 0.9964 0.9961 0.0010 0.0130 0.0005 0.0005 0.7138 3.2549 2.9623 0.15

(0.3, 1, 2)

30 1.2382 1.6039 1.9960 1.9919 0.0687 0.2408 0.0056 0.0050 74.7362 147.2932 126.8653 0.00
50 1.1347 1.6443 2.0015 1.9963 0.0268 0.1576 0.0045 0.0042 22.7834 158.1670 165.1127 0.00
80 1.0851 1.6853 2.0050 2.0039 0.0127 0.1219 0.0039 0.0038 7.8035 197.7217 180.3746 0.00

100 1.0731 1.6709 2.0081 2.0073 0.0085 0.0883 0.0042 0.0038 5.1102 223.2889 186.3996 0.00

(0.1, 1, 2)

30 1.9245 1.8399 1.9903 1.9859 0.0169 0.2025 0.0026 0.0024 4.8833 9.3566 8.4148 0.00
50 1.8459 1.8506 1.9900 1.9888 0.0239 0.1223 0.0022 0.0021 3.1233 21.4576 18.4649 0.00
80 1.7654 1.8392 1.9873 1.9895 0.0228 0.0754 0.0017 0.0017 3.0758 39.6547 35.4584 0.00

100 1.7249 1.8681 1.9898 1.9906 0.0190 0.0660 0.0018 0.0018 1.9142 43.1656 45.1557 0.00

(0.3, 2, 1)

30 0.9466 0.8640 0.9974 0.9987 0.0047 0.0429 0.0016 0.0021 82.5558 4.6014 3.5335 0.00
50 0.9061 0.8881 0.9955 0.9965 0.0051 0.0298 0.0015 0.0013 22.7834 12.7013 10.1286 0.00
80 0.8729 0.8848 0.9944 0.9955 0.0036 0.0172 0.0012 0.0010 3.2990 16.1109 16.0286 0.00

100 0.8562 0.8938 0.9970 0.9978 0.0029 0.0152 0.0011 0.0011 1.7146 19.8407 18.1323 0.00

(0.1, 2, 1)

30 0.9880 0.9223 0.9953 0.9956 0.0005 0.2773 0.0483 0.0011 5.1904 0.8848 0.7232 0.00
50 0.9852 0.9557 0.9941 0.9952 0.0007 0.1438 0.0261 0.0006 3.4681 1.2380 1.1071 0.00
80 0.9808 0.9452 0.9940 0.9942 0.0008 0.1775 0.0165 0.0005 0.9524 2.0353 1.6522 0.10

100 0.9762 0.9560 0.9927 0.9939 0.0009 0.0444 0.0148 0.0006 0.8589 2.3773 2.2494 0.12

(0.3, 2, 2)

30 1.3019 1.6018 1.9855 1.9853 0.0583 0.2434 0.0030 0.0026 85.6893 153.3920 159.4866 0.00
50 1.2012 1.6589 1.9850 1.9850 0.0228 0.1209 0.0024 0.0021 14.7957 260.7202 270.0256 0.00
80 1.1570 1.6701 1.9844 1.9838 0.0099 1.1006 0.0018 0.0017 2.5650 348.1278 345.6587 0.00

100 1.1484 1.6771 1.9832 1.9830 0.0069 0.0712 0.0017 0.0017 1.4158 386.5744 370.8852 0.00

(0.1, 2, 2)

30 1.9238 1.8054 1.9885 1.9870 0.0161 0.1763 0.0027 0.0032 4.3161 5.8439 6.3442 0.00
50 1.8519 1.8637 1.9886 1.9850 0.0212 0.1201 0.0031 0.0023 3.9388 17.6548 16.9291 0.00
80 1.7646 1.8565 1.9869 1.9849 0.0200 0.0696 0.0017 0.0019 1.2588 37.7912 36.6744 0.00

100 1.7402 1.8839 1.9849 1.9843 0.0181 0.0756 0.0017 0.0017 0.9791 47.8601 44.6477 0.05

(0.3, 0.5, 1)

30 0.9320 0.7989 1.0056 1.0065 0.0048 0.0565 0.0012 0.0014 7.2497 7.7231 6.7977 0.00
50 0.8912 0.8250 1.0116 1.0096 0.0051 0.0468 0.0012 0.0013 8.8465 12.2309 10.2765 0.00
80 0.8565 0.8130 1.0185 1.0188 0.0034 0.0261 0.0013 0.0012 2.8355 15.4294 14.8902 0.00

100 0.8463 0.8368 1.0218 1.0232 0.0024 0.0252 0.0011 0.0012 1.3175 17.0045 16.5285 0.00

(0.1, 0.5, 1)

30 0.9874 0.8848 0.9968 0.9943 0.0005 0.0428 0.0006 0.0006 5.3788 1.2157 1.0236 0.00
50 0.9853 0.9136 0.9972 0.9952 0.0005 0.0295 0.0005 0.0005 3.8457 1.5111 1.4974 0.00
80 0.9799 0.9193 0.9977 0.9975 0.0006 0.0181 0.0004 0.0005 1.9436 2.3528 1.9708 0.00

100 0.9783 0.9165 0.9991 0.9989 0.0006 0.0143 0.0005 0.0004 0.9241 2.2865 2.1840 0.10

(0.3, 0.5, 2)

30 1.3277 1.5964 2.0065 1.8144 0.0713 0.2504 0.0052 0.0004 61.5168 111.5918 15.1011 0.00
50 1.2141 1.6243 2.0185 1.8083 0.0373 0.1607 0.0049 0.0003 31.3754 129.6489 17.7850 0.00
80 1.1618 1.6596 2.0357 1.8042 0.0147 0.1047 0.0046 0.0002 13.2211 128.0530 18.8915 0.00

100 1.1486 1.6707 2.0386 1.8035 0.0125 0.0974 0.0047 0.0002 4.5564 118.1708 19.1617 0.00

(0.1, 0.5, 2)

30 1.9443 1.8589 1.9900 1.8040 0.0093 0.2091 0.0020 0.0005 8.5329 6.7537 0.3454 0.00
50 1.8936 1.8745 1.9935 1.7963 0.1316 0.6520 0.0020 0.0003 4.9060 12.6372 0.5832 0.00
80 1.8329 1.8271 1.9958 1.7937 0.0720 0.6408 0.0018 0.0002 1.3524 22.1326 0.9232 0.00

100 1.8125 1.8538 2.0024 1.7930 0.0670 2.8163 0.0017 0.0002 0.9561 26.7188 1.0363 0.08
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We conclude from Table 1 that

(i) The bias of the proposed M-estimations is smaller than that of Hill-type estimation and MLE
estimation (see columns 2–5 for details).

(ii) The sample variance s2 of our estimations is very close to zero. Note by passing that even with
the optimal choice of kn = kopt, the s2 of Hill-type estimations is still relatively larger than the
other (see columns 6–9 for details).

(iii) Since the ratios of MSE satisfy r̂ ≤ r∗ ≤ r̃, we see that the best rank estimation is T̃n,
which coincides with the analysis of the relative efficiency (see columns 10–12 and Figure 2).

(iv) For n = 30, 50, the pHill is almost zero indicating that for very small samples T̃(0,∞)
n outperforms

Hill-type estimators α̂
(kn)
Hill for almost all kn’s. For n = 80, pHill does not exceed 10% in most cases

which means that there is a set K with at most s = 8 of kn ∈ K such that the Hill-type estimators
would outperform T̃(0,∞)

n . Similar argument holds for n = 100. Hence, the M-estimations perform
better even for small samples.

5. Empirical Study

The CRIX, a market index (benchmark), is designed by Trimborn and Härdle (2016). It enables
each interested party to study the performance of the crypto market as a whole or single crypto market,
and therefore attracts increasing attention of risk managers and regulators. We select the daily CRIX
index during 31 July 2014–1 January 2018 (available on crix.berlin) and take all n = 713 positive log
returns of CRIX multiplied by 15 to obtain a moderate amount of sample of size m around 35–50 greater
than 1 for the M-estimation T̃n (recall scaled risks keep the same tail decay feature) as the original data
sequence X = (Xi, i = 1, . . . , n).

In Figure 4 we employ the empirical mean excess function from extreme value theory to analyze
its tail feature (set below I{·} as the indicator function)

m̂X(t) =
∑n

i=1 (Xi − t) I{Xi > t}
∑n

i=1 I{Xi > t} for t large ,

where Xi’s are the scaled daily log returns of CRIX. We see that the log mean excess function behaves
linearly for large threshold, indicating the Weibull tail feature of the data-set (cf. Dierckx et al. (2009)).

Figure 4. Graph of log mean excess function of scaled log returns of daily CRIX during 31 July 2014–1
January 2018.

Therefore, we illustrate the robustness of the proposed M-estimations T̃(v,∞)
n and T∗(v,∞)

n with
(d0, d1) = (0.8848, 0.9898) as the 95% confidence interval via MLE, and v = 0 using the real data-set X
and compare it with the Hill-type estimations α̂

(kn)
Hill given by (11). Specifically, we consider the same

contamination distribution G(x) = Γ(x; 0.5, 0.5) and contamination level ε = 0.05i, i = 0, 1, . . . , 10.

http://crix.hu-berlin.de.
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Besides, the sample fraction kn involved in the Hill-type estimations, is chosen via the bootstrap and
maximum likelihood method as follows.

k(1)opt = arg min
kn≥1
|α̂(kn)

Hill − α
(kn)
b−Hill |, k(2)opt = arg min

kn≥1
|α̂(kn)

Hill − α̂mle|, (13)

where α
(kn)
b−Hill is the average value of Hill-type estimations based on m = 100 bootstrap samples, and

α̂mle is the maximum likelihood estimation of the shape parameter α of Weibull distribution (see (1) for
its definition). Due to the unknown Weibull tail coefficient α, we use alternatively the relative deviation
of α̂ at contamination level ε to ε + δε, denoted by D(α̂) to study the relative robustness. Specifically,

D(α̂) = Deviation(α̂) = |α̂(ε + δε)− α̂(ε)|, (14)

where α̂ = T̃n, T∗n , α̂
(1)
Hill and α̂

(2)
Hill stand for the M-estimations and Hill-type estimations with optimal

choice of kn as in (13), accordingly.
From Table 2, we draw the following conclusions: (i) As expected, the proposed M-estimations

are not sensitive to the contaminations, since the relative deviations of M-estimations are almost
zero. Conversely, both Hill-type estimations with optimal choices of sample fraction have obvious
deviations from no contamination to small contamination (D(α̂

(1)
Hill) = 0.1277, D(α̂

(2)
Hill) = 0.2601 for

ε = 0). (ii) The Hill-type estimation α̂
(2)
Hill , with average value around 0.67, underestimates the α to

some extent since the averages of the other three estimations are closer to 0.80.

Table 2. Estimations of Weibull tail coefficient and its relative deviations via contamination level
ε = 0.05i, i = 0, . . . , 10. Data is the positive and scaled log returns of daily CRIX during 31 July 2014–1
January 2018.

ε T̃n T∗
n α̂

(1)
Hill α̂

(2)
Hill D(T̃n) D(T∗

n ) D(α̂
(1)
Hill) D(α̂

(2)
Hill)

0.00 0.7711 0.7932 0.9202 0.9359 0.0072 0.0055 0.1277 0.2601
0.05 0.7783 0.7987 0.7925 0.6758 0.0056 0.0060 0.0084 0.0246
0.10 0.7839 0.8047 0.8009 0.6512 0.0002 0.0005 0.0038 0.0028
0.15 0.7841 0.8052 0.8047 0.6484 0.0026 0.0144 0.0258 0.0172
0.20 0.7867 0.8196 0.8305 0.6312 0.0093 0.0117 0.0560 0.0094
0.25 0.7960 0.8313 0.7745 0.6406 0.0046 0.0186 0.0168 0.0075
0.30 0.8006 0.8499 0.7577 0.6331 0.0046 0.0092 0.0038 0.0089
0.35 0.7960 0.8407 0.7539 0.6420 0.0120 0.0084 0.0168 0.0049
0.40 0.8080 0.8491 0.7707 0.6371 0.0008 0.0096 0.0370 0.0029
0.45 0.8072 0.8587 0.7337 0.6400 0.0069 0.0052 0.0208 0.0096
0.50 0.8003 0.8639 0.7545 0.6304 - - - -

6. Proofs

Proof of Lemma 1. Firstly, we show that h∗(t), t ≥ t0 is strictly increasing. Indeed, h(t) = (c0t −
1) ln t− 1, t > 0 is twice differentiable and

h′(t) = c0(ln t + 1)− 1
t

, h′′(t) =
c0

t
+

1
t2 > 0, (15)

which imply that h(t), t > 0 is a convex function with a unique minimum h(t∗0) where h′(t∗0) = 0.
Therefore, we have t0 = arg mint≥1 h(t) exists and the unique solution t0 = max(t∗0 , 1) and thus
h∗(t), t ∈ [t0, ∞) is strictly increasing. Noting further for given t0 ≥ 1 that t1/α

0 is strictly decreasing in
α, we have h∗(xα) is strictly increasing in [x0, ∞) with x0 = t1/d0

0 ≥ t1/α
0 since α ≥ d0.

Secondly, note that 1− F̃W(x; α) = exp{−c0(xα − 1)}, x ≥ 1. It follows by some elementary
calculations that −α−1h̃(xα) is the score function of F̃W(x; α). Moreover, in view of (15), the minimizer
t∗0 of h is decreasing in c0. This together with the fact that h(1) = −1 implies that h̃←(y) = inf{t ≥ 1 :
h̃(t) ≥ y}, y ∈ [−1, ∞) is strictly increasing.
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Proof of Theorem 1. It follows by (5) that ψ̃v,u(y; α) is strictly increasing and continuous in α. Hence it
suffices to show that

λ̃(α) := λ̃FW (α) =
∫ ∞

1
ψ̃v,u(y; α)dF̃W(y; α0)

has an isolated root α = α0. We have

λ̃(α) =
∫ ∞

1
[h̃(yα)]uv dF̃W(y; α0)−

∫ ∞

1
[h̃(yα)]uv dF̃W(y; α)

=
∫ ∞

1
[h̃(yα)]uv dF̃W(y; α0)− µ̃, µ̃ := v +

∫ u

v
exp{−c0[h̃←(z)− 1]} dz. (16)

Next, it follows by a change of variable t = h̃(yα) and integration by parts that∫ ∞

1
[h̃(yα)]uv dF̃W(y; α0)

=
∫ v

−1
vdF̃W([h̃←(t)]1/α; α0) +

∫ u

v
tdF̃W([h̃←(t)]1/α; α0) +

∫ ∞

u
udF̃W([h̃←(t)]1/α; α0)

= v +
∫ u

v
exp{−c0[(h̃←(t))α0/α − 1]}dt.

Hence, λ̃(α0) = 0 and

λ̃′(α) =
c0α0

α2

∫ h̃←(u)

h̃←(v)
sα0/α ln s exp{−c0[sα0/α − 1]}dh̃(s) > 0 (17)

since h̃←(s) is strictly increasing over [1, ∞) and

s > h̃←(v) ≥ h̃←(−1) = 1.

Consequently, the consistency of T̃n is obtained.
Next, we show the asymptotic normality of T̃n. Set below (recall µ̃ given in (16))

σ̃2
v,u(α) :=

∫ ∞

1
ψ̃2

v,u(y; α)dF̃W(y; α0) =
∫ ∞

1
([h̃(yα)]uv − µ̃)2dF̃W(y; α0).

Since

σ̃2
v,u(α) =

∫ v

−1
(v− µ̃)2dF̃W([h̃←(t)]1/α; α0) +

∫ u

v
(t− µ̃)2dF̃W([h̃←(t)]1/α; α0)

+
∫ ∞

u
(u− µ̃)2dF̃W([h̃←(t)]1/α; α0)

= (v− µ̃)2 + 2
∫ u

v
(t− µ̃) exp{−c0[(h̃←(t))α0/α − 1]}dt

= (v− µ̃)2 + 2
∫ h̃←(u)

h̃←(v)
(h̃(s)− µ̃) exp{−c0[sα0/α − 1]}dh̃(s)

is finite in a neighbourhood of α0 and continuous at α = α0. It follows thus by Theorem A, p. 251 in
Serfling (1980) that T̃n is asymptotically normal distributed.

Furthermore, we have by (20)

λ̃′(α0) =
c0

α0

∫ h̃←(u)

h̃←(v)
s ln s exp{−c0(s− 1)}dh̃(s) > 0.
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Hence, the asymptotic variance of
√

m(T̃n − α0) is given by

σ̃2
v,u,α0;FW

=
σ̃2

v,u(α0)

[λ̃′(α0)]2
.

Please note that m/n
p→ P{X ≥ 1} = exp{−c0}. We complete the proof of Theorem 1.

Proof of Theorem 2. Similar arguments of Theorem 1 apply with ψ̃, F̃W and h̃ replaced by ψ∗, F∗ and
h∗, respectively. First we show the consistency of T∗n . It follows by (6) that ψ∗v,u(y; α) is strictly increasing
and continuous in α. Hence it suffices to show that

λ∗(α) := λ∗FW
(α) =

∫ ∞

x0

ψ∗v,u(y; α)dF∗W(y; α0)

has an isolated root α = α0. We have

λ∗(α) =
∫ ∞

x0

ψ∗v,u(y; α)dF∗W(y; α0)

=
∫ ∞

x0

[h∗(yα)]uv dF∗W(y; α0)−
∫ ∞

x0

[h∗(yα)]uv dF∗W(y; α)

=
∫ ∞

x0

[h∗(yα)]uv dF∗W(y; α0)− µ∗, µ∗ := v +
∫ u

v
exp{−c0(h∗)←(z)} dz. (18)

Next, it follows by a change of variable t = h∗(yα) and integration by parts that∫ ∞

x0

[h∗(yα)]uv dF∗W(y; α0) =
∫ v

h∗(xα
0 )

vdFW([(h∗)←(t)]1/α; α0) +
∫ u

v
tdFW([(h∗)←(t)]1/α; α0)

+
∫ ∞

u
udFW([(h∗)←(t)]1/α; α0) + FW(x0; α0)[h∗(xα

0)]|uv

= v[1− FW(x0; α0)] +
∫ u

v
[1− FW([(h∗)←(t)]1/α; α0)]dt + vFW(x0; α0)

= v +
∫ u

v
exp{−c0((h∗)←(t))α0/α}dt, (19)

where in the second equality we use h∗(xα
0) ≤ h∗(xd1

0 ) = v0 ≤ v. Hence, λ∗(α0) = 0 and

(λ∗)′(α) =
c0α0

α2

∫ (h∗)←(u)

(h∗)←(v)
sα0/α ln s exp{−c0sα0/α}dh∗(s) > 0 (20)

since h∗(s) is strictly increasing over (xd0
0 , ∞) and

s > (h∗)←(v) ≥ (h∗)←(v0) = xd1
0 = td1/d0

0 ≥ 1.

Consequently, the consistency of T∗n is obtained.
Next, we show the asymptotic normality of T∗n . Set below (recall µ∗ given by (18))

(σ∗v,u)
2(α) :=

∫ ∞

x0

(ψ∗v,u)
2(y; α)dF∗W(y; α0) =

∫ ∞

x0

([h∗(yα)]uv − µ∗)2dF∗W(y; α0).
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Since

(σ∗v,u)
2(α) =

∫ v

h∗(xα
0 )
(v− µ∗)2dFW([(h∗)←(t)]1/α; α0) +

∫ u

v
(t− µ∗)2dFW([(h∗)←(t)]1/α; α0)

+
∫ ∞

u
(u− µ∗)2dFW([(h∗)←(t)]1/α; α0) + FW(x0; α0)(v− µ∗)2

= (v− µ∗)2 + 2
∫ u

v
(t− µ∗) exp{−c0((h∗)←(t))α0/α}dt

= (v− µ∗)2 + 2
∫ (h∗)←(u)

(h∗)←(v)
(h∗(s)− µ∗) exp{−c0sα0/α}dh∗(s)

is finite in a neighbourhood of α0 and continuous at α = α0, it follows by Theorem A, p. 251 in
Serfling (1980) that T∗n is asymptotically normal distributed.

Furthermore, we have by (20)

(λ∗)′(α0) =
c0

α0

∫ (h∗)←(u)

(h∗)←(v)
s ln s exp{−c0s}dh∗(s) > 0.

Hence, the asymptotic variance is given by

σ2
v,u,α0;F =

(σ∗v,u(α0))
2

[(λ∗)′(α0)]2
.

We complete the proof of Theorem 2.

Proof of Theorem 3. The result follows by analogous arguments as in the proof of Theorem 1.
Since ψ̃v,u(x; α) is strictly increasing and contionuous in α, the assumptions of Theorem 3 are sufficient
for the consistency and asymptotic normality of T̃n. Using further Lemma 7.2.1A and Theorem A
(see p. 249 and 251 therein) by Serfling (1980), we complete the proof of Theorem 3.

Proof of Theorem 4. The result follows by analogous arguments as in the proof of Theorem 2.
Since ψ∗v,u(x; α) is strictly increasing and continuous in α, the assumptions of Theorem 4 are sufficient
for the consistency and asymptotic normality of T∗n . Using further Lemma 7.2.1A and Theorem A
(see p. 249 and 251 therein) by Serfling (1980), we complete the proof of Theorem 4.
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