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Abstract: Background, or systematic, risks are integral parts of many systems and models in insurance
and finance. These risks can, for example, be economic in nature, or they can carry more technical
connotations, such as errors or intrusions, which could be intentional or unintentional. A most
natural question arises from the practical point of view: is the given system really affected by these
risks? In this paper we offer an algorithm for answering this question, given input-output data and
appropriately constructed statistics, which rely on the order statistics of inputs and the concomitants
of outputs. Even though the idea is rooted in complex statistical and probabilistic considerations, the
algorithm is easy to implement and use in practice, as illustrated using simulated data.
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1. Introduction

Actuarial, financial, and economic literature is abundant with models and analyses of background,
or systematic, risks that affect decision making (cf., e.g., Finkelshtain et al. 1999; Franke et al. 2006, 2011;
Nachman 1982; Pratt 1998; Guo et al. 2018; Furman et al. 2018; and references therein). Various models
have been proposed, including additive, multiplicative, and more intricate ones that couple underlying
losses (or, generally speaking, inputs) with background risks. For recent far-reaching contributions to this
area, we refer to Perote et al. (2015), Su (2016), Su and Furman (2017a, 2017b) Semenikhine et al. (2018),
Guo et al. (2018), as well as to the extensive lists of references therein.

Systems and thus their models are prone to a myriad of intentional or unintentional disruptions,
which could affect inputs and/or outputs. The literature on the topic is vast, and some of
the recent contributions include those tackling deliberate intrusions (e.g., Cárdenas et al. 2011;
Premathilaka et al. 2013), and false data injections (e.g., Liang et al. 2017). A number of sophisticated
methods have been developed for tackling the problems (e.g., Huang et al. 2016; Onoda 2016;
He et al. 2017; Potluri et al. 2017), to name a few.

Whether or not these risks affect the underlying input variables and thus decision making is a
problem of immense interest. From the conceptual point of view, broadly speaking, two scenarios
arise. First, if it is suspected that the outputs are affected, then testing whether or not this is indeed the
case falls, in a sense, within the context of regression analysis, though additional statistical challenges
arise (e.g., Perote and Perote-Peña 2004; Perote et al. 2015.; Chen et al. 2018; Gribkova and Zitikis 2018).
The second scenario, which is the main topic of the present paper, deals with the case when it is the
inputs that are possibly affected by risks.
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Statistically speaking, given the input and output random variables X and Y, respectively, which
in the risk-free scenario are connected by a “transfer” function h via the equation

Y = h(X), (1)

we wish to have an algorithm that would tell us whether risk-free model (1) is true or the
risk-contaminated one

Y = h(X + δ), (2)

where δ is an exogenous risk, sometimes called input-reading error, that directly affects the input X
and thus, indirectly, the output variable as well. We note that Chen et al. (2018) consider model (1) with
deterministic inputs, like those to be defined in Equation (3) below. Gribkova and Zitikis (2018) explore
risk-free model (1), which can be viewed as the “null hypothesis” in the context of the present paper.
Hence, model (2) can be viewed as the “alternative hypothesis,” and the algorithm to be constructed
and illustrated in this paper will distinguish between the two hypotheses.

The rest of the paper is organized as follows. In Section 2, we lay out the foundations for
assessing the presence, or absence, of input-affecting risks. In Section 3, we describe the algorithm
itself. It relies on two statistics whose roles, interrelationship, and asymptotic properties are presented
in Sections 4 and 5. Section 6 concludes the paper with a brief overview of main findings.

2. The Model

Systems are usually associated with finite-length transfer windows, say [a, b] ⊂ R, and also with
transfer functions h : [a, b] → R. Let X1, . . . , Xn be input random variables, which we assume to be
pre-whitened (e.g., Box et al. 2015), that is, independent and identically distributed (iid). Denote their
marginal cumulative distribution functions (cdf) by F(x), whose support is the transfer window [a, b].
Hence, the input values are always in [a, b]. We assume that the cdf F(x) is strictly increasing on the
interval [a, b], with F(a) = 0 and F(b) = 1. In fact, to simplify mathematics and still cover a wide
variety of applications, we assume that the cdf is continuously differentiable and its probability density
function (pdf) is bounded away from 0 on the transfer window [a, b].

Denote the input-affecting risks by δ1, . . . , δn ∼ Fδ, which act upon the inputs X1, . . . , Xn as
visualized in Figure 1.

h(x)

Input-affecting risks δ1, . . . , δn ∼ Fδ

Inputs X1, . . . , Xn ∼ F X1 + δ1, . . . , Xn + δn Outputs Y1, . . . , Yn

Figure 1. Are the input-affecting risks absent (i.e., degenerate at 0) or not?

We assume that the input-affecting risks are pre-whitened, that is, iid random variables, and we
also assume that they are independent of the input variables X1, . . . , Xn and are affecting their values
in the additive way. The inputs Xi take values in the interval [a, b], but the risks δi, being exogenous
variables, are not restricted to any domain and can therefore take any real values. Our goal in this paper
is to offer a practical way for detecting whether or not the risks are absent, or present. Two following
notes relate our research to the topics in statistical literature.

First, the problem that we tackle is different from that dealing with errors-in-variables, where
observations already contain errors, whereas in our case, the inputs Xi are uncontaminated but possibly
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become such while being transferred into the filter, also known as the transmission channel in the
engineering literature. That is, in the errors-in-variables scenario, we would observe Xi + δi, whereas
in the present context we observe the original inputs Xi and want to know whether or not they are
affected by δi.

Second, there is a connection between our research and classical regression, and we have already
noted contributions by Perote and Perote-Peña (2004), Perote et al. (2015), where we also find extensive
lists of related references. Namely, given the outputs Yi = h(Xi + δi) and assuming for the sake of
argument that the risks δi are small, the Taylor formula gives the approximation Yi ≈ h(Xi) + h′(Xi)δi,
which places the input-based scenario into the output-based scenario Yi = h(Xi) + εi, but the risks
εi ≈ h′(Xi)δi depend on the inputs Xi via the term h′(Xi). This dependence feature presents a major
hurdle, which we circumvent in our following considerations and produce a user-friendly algorithm
for detecting δi’s when they are present.

Throughout the paper we assume that the transfer function h(x) has a bounded and continuous
first derivative, and we also assume that the derivative is not identically equal to 0, thus ruling out
the trivial case of constant transfer functions. Actually, throughout the paper we also exclude the case
h(a) = h(b), which causes some technical complications but is hardly of practical relevance, as we
shall explain in the next section. If, however, due to some considerations we would need to depart
from these conditions, then there is room for relaxing the conditions, though naturally at the expense
of more complex considerations.

3. The Algorithm

We first elaborate on the definition of outputs. Indeed, even though Xi’s are in the transfer
window [a, b], the affected inputs Xi + δi may or may not be in [a, b], which is the domain of definition
of the transfer function h(x). Hence, the actual outputs are

Yi = h
(

max{a, min{Xi + δi, b}}
)

= g(Xi + δi), i = 1, . . . , n,

where
g(x) = h

(
max{a, min{x, b}}

)
.

Since the cdf of X is continuous, we can uniquely order the random variables X1, . . . , Xn.
The resulting order statistics X1:n < · · · < Xn:n give rise to the concomitants Y1,n, . . . , Yn,n (e.g., David
and Nagaraja 2003). Based on them and using the notation x+ = max{x, 0}, we define the statistics

An :=
1√
n

n

∑
i=2

(
Yi,n −Yi−1,n

)
+

and

Bn :=
1√
n

n

∑
i=2

∣∣Yi,n −Yi−1,n
∣∣,

and then, in turn, their ratio

In :=
An

Bn
.

The algorithm, to be introduced in a moment, for detecting input-affecting risks is based on
asymptotics, when n gets large, of In and Bn, which we call the pivot and its supporter, thus hinting at
their main and supporting roles, respectively. Before formulating the algorithm, we make the natural
assumption that the risks, when they exist, should not be so large that the performance of the system
would be derailed to such an extent that it becomes unnecessary to run any algorithm. For the purpose
of rigour, in the following definition we summarize the circumstances under which there is ambiguity
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as to the absence, or presence, of input reading risks, and thus employing the algorithm becomes
warranted.

Definition 1. The presence of input-affecting risk is suspected, and thus becomes a subject for testing, when it
is believed that there is a set T ⊂ [a, b] such that the event X ∈ T has a (strictly) positive probability and, for all
x ∈ T, the random variable g(x + δ) is non-degenerate, due to the random δ.

We note at the outset that Definition 1 is a user-friendly reformulation of technically-looking
condition (10) to be presented in Section 5 below, where it plays a pivotal role in setting rigorous
mathematical foundations for our algorithm. In this regard, we note that the condition is tightly tied to
the indefinite growth of Bn when the sample size n grows, as we shall see in Theorem 3 below. Hence,
if the subject-matter knowledge is not sufficiently convincing for the decision maker to see whether
or not the circumstances delineated by Definition 1 hold, then data-based checking of the asymptotic
behaviour of Bn for large n should clarify the situation.

Definition 1 implies that the system’s output Y = g(X + δ) varies not just because of X but
also because of δ, assuming of course that the latter is present, that is, is not degenerate at 0.
This, for example, excludes situations (as unquestionably obvious) when g(x + δ) = g(a) for every x
(i.e., when −δ > 0 is very large), or when g(x + δ) = g(b) for every x (i.e., when δ > 0 is very large).
In either of these extreme cases, the decision maker would immediately see the system’s malfunction
because of the outputs constantly lingering on, or near, the boundaries g(a) and g(b), and thus no
special testing would be warranted.

We are now ready to formulate the algorithm for detecting the input-affecting risk when its
presence is suspected.

Case 1: The pivot In is not approaching 1/2.

(i) If In decisively tends to a limit other than 1/2, then we advise the decision maker
about the absence of the risk.

(ii) If In seems to tend to a limit other than 1/2 but there is some doubt as to whether
this is true, then we check if the supporter Bn is asymptotically bounded, and if yes,
then we advise the decision maker about the absence of the risk.

Case 2: The pivot In is approaching 1/2.

(i) If the supporter Bn tends to infinity, then we advise the decision maker about the
presence of the risk.

(ii) If the supporter Bn is asymptotically bounded, then h(a) and h(b) are likely to be
insufficiently different to have already triggered Case 1 above, and we thus advise
the decision maker about the absence of the risk.

In the next two sections, we present rigorous results upon which the above algorithm relies.
We note in passing that irrespective of whether the algorithm detects risks or not, in either case we
can still wish to double-check the findings. It can also be necessary to check the system’s vulnerability
(e.g., Hug and Giampapa 2012; and references therein). In such cases, we can use artificially constructed
inputs, such as

xi,n = a + (b− a)
i− 1
n− 1

, i = 1, . . . , n. (3)

We conclude this section with an example that shows how the algorithm works in practice.
For this, let the transfer function be h(x) = 1− (x− 0.25)2 for x ∈ [0, 1]. Furthermore, upon recalling
that the (unconditional) Lomax cdf is 1− (1 + x/β))−α for x ≥ 0, with shape and scale parameters
α > 0 and β > 0, we assume that the input X follows the Lomax(α, β) distribution conditioned on the
transfer interval [0, 1]. Throughout the illustration, we set α = 1.5 and β = 1.
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Let δ follow the normal distributions with the mean 0 and standard deviation σ. In the risk-free
case (i.e., σ = 0), the asymptotics of In and Bn is depicted in panels (a) and (b) of Figure 2, and when
σ = 0.1, their asymptotics is depicted in panels (c) and (d). We also check the performance of the
algorithm when the risk δ is discrete, specifically, when it is equal to −2 with probability 0.7 and to 2
with probability 0.3. The asymptotics of In and Bn is depicted in panels (e) and (f) of Figure 2.
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(a) In in the risk-free case.
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(b) Bn in the risk-free case.
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(c) In for normal(0, 0.1) risk.
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(d) Bn for normal(0, 0.1) risk.
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(e) In for discrete ±2 risk.
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(f) Bn for discrete ±2 risk.

Figure 2. The risk-detection algorithm via the asymptotics of the pivot In and its supporter Bn, with the
horizontal line in the three left-hand panels at the height of Ih to be defined by Equation (4) below.

We see from the left-hand panels that the pivot In converges to the limit other than 1/2 (i.e., to the
value of Ih to be defined by Equation (4) in the next section) only in the risk-free case. The increasing
pattern of Bn in panels (d) and (f) confirms the presence of input risk in both scenarios, which have
initially been detected by the pivot In (due to its convergence to 1/2) in panels (c) and (e). Note that
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the convergence to 1/2 in panel (e) is decisive, whereas the convergence in panel (c) may not be so
well pronounced, and thus the increasing pattern of Bn in panel (d) provides reassurance.

4. Asymptotics of the Pivot In

We begin with the case when the input-affecting risk is absent, and thus the system is functioning
properly. This is the starting point of many works (e.g., Cárdenas et al. 2011, p. 360) dealing with intrusion
detection (e.g., Debar et al. 1999; Premathilaka et al. 2013), false data injections (e.g., Liang et al. 2017),
and other disruptions. Recall the notation x+ = max{x, 0} for any x ∈ R.

Theorem 1 (Gribkova and Zitikis, 2018). If δ is absent, then, when n→ ∞, the pivot In converges to

Ih :=

∫ b
a (h
′(u))+du∫ b

a |h′(u)|du
. (4)

For another perspective on the meaning of Ih, we refer to Davydov and Zitikis (2017) where Ih
arises as the solution to an optimization problem. The importance of Theorem 1 in the present paper
follows from the fact that when the cdf Fδ is non-degenerate, then (details in Section 5 below) the pivot
In converges to 1/2 when n→ ∞. Of course, the limit 1/2 can also manifest when δ is absent, that is,
in the context of Theorem 1, but this can happen only when h(a) = h(b). Indeed, as it is easy to check
using the equations |x| = x+ + x− and x = x+ − x− with x− = max{−x, 0}, we have Ih = 1/2 if and
only if h(a) = h(b). The latter property is, however, an exception rather than the rule: it manifests in
such cases when, for example, the system is down and thus h(x) takes the same value irrespective of
x ∈ [a, b]. Hence, unless explicitly noted otherwise, throughout the paper we assume

h(a) 6= h(b), (5)

as we have already mentioned earlier.
We next discuss how to check whether or not the risk δ is degenerate. Naturally, in order

to detect anomalies, the original state of the system has to be in reasonable working order
(cf., e.g., Cárdenas et al. 2011, p. 360). Gribkova and Zitikis (2018) have put forward an argument in
favour of the following definition.

Definition 2. A system is in reasonable working order whenever in the absence of input-affecting risk (i.e., when
δ = 0 almost surely), the sequence Bn is asymptotically bounded in probability. In mathematical terms, we write
this as Bn = OP(1) when n→ ∞.

Given that in the absence of input-affecting risk we are exploring the asymptotic behaviour of
the pivot In, which is the ratio of An and Bn, both of which are asymptotically bounded in probability,
the requirement Bn = OP(1) is natural. This can be seen from the following argument involving the
mean-value theorem:

1√
n

n

∑
i=2

∣∣h(Xi:n)− h(Xi−1:n)
∣∣ = 1√

n

n

∑
i=2

∣∣h′(ξi)
(
Xi:n − Xi−1:n

)∣∣
≤ ‖h

′‖(b− a)√
n

(6)

for some ξi between Xi−1:n and Xi:n, where

‖h′‖ := sup
a≤x≤b

|h′(x)| < ∞.
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As a side-note, the right-hand side of bound (6) implies that, if needed, the boundedness of the
first derivative of the transfer function can be relaxed and the system can still remain in reasonable
working order, as per Definition 2.

We next present an example that shows what happens with the system when the input-affecting
risk is present, that is, when the cdf Fδ is non-degenerate. Before starting the example, we recall (David
and Nagaraja 2003) that the concomitants Y1,n, . . . , Yn,n can be written as follows

Yi,n = g
(
Xi:n + δ[i]

)
,

where δ[i] is the random variable among δ1, . . . , δn that corresponds to Xi:n. As noted by David and
Nagaraja (2003, p. 145), the random variables δ[1], . . . , δ[n] are iid and follow the cdf Fδ of the original
risk δ.

Example 1. Let δ take value c > 0 with probability p ∈ (0, 1) and −c with probability 1 − p, and let
c ≥ b− a. The latter assumption implies that irrespective of the value of Xi:n, the value of Xi:n + δ[i] is above
b with probability p and below a with probability 1− p. Hence, the concomitant Yi,n is equal to h(b) with
probability p and to h(a) with probability 1− p. Since each concomitant can take only two values, |Yi,n−Yi−1,n|
is equal to |h(b)− h(a)| when δ[i] 6= δ[i−1] and 0 otherwise. Consequently,

|Yi,n −Yi−1,n| =
|h(b)− h(a)|

2c
∣∣δ[i] − δ[i−1]

∣∣,
which implies

Bn =
|h(b)− h(a)|

2c

{
1√
n

n

∑
i=2

(∣∣δ[i] − δ[i−1]
∣∣− E

[∣∣δ[i] − δ[i−1]
∣∣])+ n− 1√

n
E
[∣∣δ[i] − δ[i−1]

∣∣]}
=
|h(b)− h(a)|

2c
√

n E
[∣∣δ[i] − δ[i−1]

∣∣]+ OP(1). (7)

Since the variables δ[1], . . . , δ[n] are iid and follow the same cdf Fδ as the original δ, the mean E[|δ[i]− δ[i−1]|]
is equal to 4cp(1− p) and thus Equation (7) implies

Bn = 2
√

n p(1− p)|h(b)− h(a)|+ OP(1). (8)

From this we conclude that if p is neither 0 nor 1, which we assume, and if h(b) 6= h(a), which we also

assume, then Bn
P→ ∞ when n→ ∞. Analogous arguments lead to

An =
√

n p(1− p)|h(b)− h(a)|+ OP(1). (9)

Combining statements (8) and (9), we have In = An/Bn
P→ 1/2 when n → ∞, which in turn implies

that the system is affected by the risk. This concludes Example 1.

The above example has been constructed to show—in a somewhat dramatic way—what happens
when the input-affecting risk pushes the input outside the transfer window, but the same conclusion
can be reached under much weaker assumptions on δ, as we shall show in the next section.

5. Growth of the Supporter Bn

The following general result plays a major role in the justification of the earlier presented algorithm.

Theorem 2. Gribkova and Zitikis (2018) Let (X1, Y1), . . . , (Xn, Yn) be independent copies of a generic random

pair (X, Y), with X having continuous cdf and Y having finite second moment. If Bn
P→ ∞, then In

P→ 1/2
when n→ ∞.
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We know from statement (6) and the arguments around it that if δ is degenerate, then Bn
P→ ∞

cannot be true. In the next theorem, we give a necessary and sufficient condition for Bn
P→ ∞ to hold,

which, according to Theorem 2, implies In
P→ 1/2.

Theorem 3. The statement Bn
P→ ∞ holds if and only if

∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt > 0, (10)

where xs = F−1(s) is the sth percentile of X, and F−1
g(xs+δ)

(t) denotes the quantile function of the random
variable g(xs + δ).

Condition (10) arises naturally, but its formulation is not user friendly. Remarkably, its meaning
is very simple and has already been conveyed in Definition 1. Before proving Theorem 3, we next
illuminate the meaning of condition (10) by revisiting Example 1 through the lens of the condition.

Example 2. Let δ take value c > 0 with probability p ∈ (0, 1) and −c with probability 1 − p, and let
c ≥ b− a. Since for every s ∈ (0, 1) we have xs = F−1(s) ∈ [a, b], the random variable g(xs + δ) has the
probability distribution

g(xs + δ) =

{
h(a) with probability 1− p,
h(b) with probability p.

To obtain its quantile function, we start with the case h(a) ≤ h(b) and have the formula

F−1
g(xs+δ)

(t) =

{
h(a) when 0 < t ≤ 1− p,
h(b) when 1− p < t ≤ 1.

Consequently,

∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt = h(a)

∫ 1−p

0
(2t− 1)dt + h(b)

∫ 1

1−p
(2t− 1)dt

= p(1− p)
(
h(b)− h(a)

)
.

Analogous calculations when h(a) ≥ h(b) give the answer p(1− p)(h(a)− h(b)), thus establishing
the equation ∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt = p(1− p)

∣∣h(b)− h(a)
∣∣

irrespective of the values of h(a) and h(b). We can therefore conclude that as long as h(b) 6= h(a) and p is

neither 0 nor 1, condition (10) is satisfied. Thus, we have Bn
P→ ∞ according to Theorem 3.

Proof of Theorem 3. We first show that if condition (10) is satisfied, then Bn
P→ ∞. We start with

the bound

Bn =
1√
n

n

∑
i=2

∣∣g(Xi:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣

≥ 1√
n

n

∑
i=2

∣∣g(Xi−1:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣− 1√

n

n

∑
i=2

∣∣g(Xi:n + δ[i])− g(Xi−1:n + δ[i])
∣∣. (11)
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Since the transfer function h(x) has a bounded derivative on the interval [a, b], the function g(x)
is Lipschitz continuous on the entire real line, that is, |g(x) − g(y)| ≤ ‖h′‖|x − y| for all x, y ∈ R.
Continuing with bound (11), we have

Bn ≥
1√
n

n

∑
i=2

∣∣g(Xi−1:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣− ‖h′‖(b− a)√

n

=
1√
n

n

∑
i=2

∣∣g(Xi−1 + δi)− g(Xi−1 + δi−1)
∣∣− ‖h′‖(b− a)√

n

=
n− 1√

n
E
[∣∣g(X + δ2)− g(X + δ1)

∣∣]− ‖h′‖(b− a)√
n

+ OP(1), (12)

because (i) the inputs Xi and the risks δi are independent, (ii) the inputs Xi have the same cdf F, and
(iii) the risks δi have the same cdf Fδ. Hence, if the expectation on the right-hand side of bound (12)

does not vanish, then we must have Bn
P→ ∞ when n→ ∞. The proof of the converse (i.e., if Bn

P→ ∞,
then condition (13) is satisfied) follows from the same arguments but now with “+” instead of “−”
and the reversed inequalities in bounds (11) and (12).

We are left to show that the statement

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] > 0 (13)

holds if and only if condition (10) is satisfied. We do so with the help of the equation

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] = 2
∫ 1

0
(2t− 1)

( ∫
R

F−1
g(x+δ)

(t)dF(x)
)

dt, (14)

which trivially follows from

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] = E
[
GMD(X)

]
=
∫ 1

0
GMD(xs)ds,

where GMD(x) is the Gini mean difference of the variable g(x + δ), defined by

GMD(x) :=E
[∣∣g(x + δ2)− g(x + δ1)

∣∣]
=2

∫ 1

0
(2t− 1)F−1

g(x+δ)
(t)dt.

The right-most equation holds due to the well-known representation of the Gini mean difference as
a Choquet integral (e.g., Giorgi 1993; Yitzhaki and Schechtman 2013; Furman et al. 2017; and references
therein). We conclude with the note that the Gini mean difference is known to be (strictly) positive
whenever the underlying random variable is non-degenerate, which in our case is g(x + δ). Hence, by
assuming non-degeneracy of g(x + δ) for every x ∈ T ⊆ [a, b] such that P[X ∈ T] > 0, we arrive at
condition (13) and thus, in turn, at (10). The proof of Theorem 3 is finished.

6. Concluding Notes

The need for an algorithm that distinguishes between the “null hypothesis” Y = g(X) and the
“alternative” Y = g(X + δ) for exogenous background risk δ arises in many problems of economics,
insurance, and finance. In the present paper, we have developed a user-friendly algorithm for
distinguishing between the aforementioned two hypotheses. The algorithm is based on the asymptotic
behaviour of two statistics: the pivot In and its supporter Bn, which are constructed using the order
statistics of inputs and the corresponding concomitants of outputs. We have supplemented our
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theoretical considerations with illustrative examples, graphs, and discussions, thus facilitating the use
of the algorithm in practice.

As we have noted in the Introduction, practical considerations give rise to alternatives which
couple X and δ not just in the additive way but possibly in a more intricate way, which we generally
formulate as Y = g(X, δ). In this regard we also note that X and δ might be dependent random
variables, and even multivariate ones, thus giving rise to a highly non-trivial follow-up problem.
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