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Abstract: In this study we develop a multi-factor extension of the family of Lee-Carter stochastic
mortality models. We build upon the time, period and cohort stochastic model structure to extend
it to include exogenous observable demographic features that can be used as additional factors to
improve model fit and forecasting accuracy. We develop a dimension reduction feature extraction
framework which (a) employs projection based techniques of dimensionality reduction; in doing this
we also develop (b) a robust feature extraction framework that is amenable to different structures
of demographic data; (c) we analyse demographic data sets from the patterns of missingness and
the impact of such missingness on the feature extraction, and (d) introduce a class of multi-factor
stochastic mortality models incorporating time, period, cohort and demographic features, which we
develop within a Bayesian state-space estimation framework; finally (e) we develop an efficient
combined Markov chain and filtering framework for sampling the posterior and forecasting.
We undertake a detailed case study on the Human Mortality Database demographic data from
European countries and we use the extracted features to better explain the term structure of mortality
in the UK over time for male and female populations when compared to a pure Lee-Carter stochastic
mortality model, demonstrating our feature extraction framework and consequent multi-factor
mortality model improves both in sample fit and importantly out-off sample mortality forecasts by
a non-trivial gain in performance.

Keywords: mortality modelling; cohort models; factor models; state-space models;
Bayesian inference; Markov chain Monte Carlo; features extraction; robust dimensionality reduction

1. Introduction

Modelling the “term-structure” of age specific mortality rates by gender and country has enjoyed
a growing resurgence in the actuarial and statistics literature. This is primarily driven by the importance
of better understanding and forecasting age specific mortality rates for purposes of understanding
longevity risk, pension design, annuities pricing and population studies.

The most widely utilised class of stochastic mortality models in actuarial science and statistics
arise from the class of regression or state-space models that incorporate explanatory factors which
correspond to stylised latent stochastic factors representing structural features in the evolution of the
age specific mortality rates. Typically these latent stochastic features are interpreted as either temporal
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effects, period effects and cohort effects. The most famous class of such models is the Lee-Carter type
models, see a summary recently in Fung et al. (2017) and references therein.

In this paper we aim to combine these classes of stochastic mortality model with other observable
exogenous features obtained from a range of demographic data sets. The purpose being that they
offer two advantages to standard Lee-Carter models, firstly they may improve predictive power
of the models, secondly they may improve the interpretation of behaviour of the dynamic of the
“term-structure” of age specific mortality rates.

We expect the mortality experience and demographic data to be characterised by a strong causal
and time-varying interaction. There is an existing literature on incorporation of demographic data in
stochastic mortality models. However, unlike the state space mortality age-term structure dynamic
factor model approach we develop in this manuscript, the existing works have been primarily focused
on regression type structures that consider single age group models. Furthermore, there is limited
work on feature extraction methods in this space. We highlight a few related approaches that have
considered demographic data to study single age group mortality. We comment on some of the widely
used exogenous factors in such studies, which include for instance macroeconomic variables, as well as
demographic variables. In (Hanewald 2011) and (Niu and Melenberg 2014), the authors investigate the
links between the economic growth and morality trends through a class of single age group regression
models which are estimated in a frequentist estimation framework. In addition to the period effect in
the standard Lee-Carter mode, the authors incorporate gross domestic product (GDP) as an observable
factor what improves the in-sample and out-of-sample performance of the model.

Other classes of factors that have been explored in such settings also include cause-of-death
categorical variables, what has been also partly investigated in (Hanewald 2011). The relation between
causes of death and their influence on mortality has started to be more detailed explore since the
accessibility of the data improved. In Murray and Lopez (1997), the authors develop the scenarios
of future mortality based on a multi factor linear regression model where the logarithm of the rate
of mortality per age group, sex and clustered cause of death is regressed against the socio-economic,
educational, technological and cause-of-death related predictors. The Bayesian inference has been
adopted in (Girosi and King 2008) to build a regression framework for forecasting mortality rates which
are age, sex, country and case of death specific. The work is mostly focused on the methodological
side of the forecasting but uses as examples the applications of demography and macro-epidemiology
data as explanatory variables for the regression-type model of mortality. Moreover, the dependency
structures between cause-specific death rates are studied in (Gaille and Sherris 2015). The authors use
Vector Error Correction Models to examine such causal relations within the countries.

The usage of principal components of the mortality curves as linear regressors has been examined
in (Hyndman and Yasmeen 2012). The authors explored the common features of the data applying
the functional version of Principal Component Analysis. The concept is further developed in
(Erbas et al. 2010), where the cause-of-death-specific smoothed mortality curves are treated as
functional data. The obtained principal components serve as basis functions in functional data
analysis.

In the following study, we aim to broaden these concepts and investigate the impact of global
mortality trends given by various sets of international demographic data, and their potential influence
on the mortality experience in one country, in our case study the United Kingdom. To achieve this
in a manner suitable for incorporation in multi-age stochastic mortality models we need to perform
a parsimonious feature extraction method in order to reduce the large dimensional sets of data to
a form suitable for inclusion in such a mortality model. Therefore, we introduce a methodology which
is not exclusive to one type of demographic data and is capable of handling the analysis jointly over
many different exogenous variables.

To achieve this we must undertake several tasks: the first is to explain a canonical and principled
approach to combining of such demographic time series data into the stochastic mortality models,
for which there is a number of structural approaches we develop and present.



Risks 2017, 5, 42 30f77

The second aspect is that large demographic data sets are now available, but a naive incorporation
of such features into a stochastic mortality model would result in far too many parameters to perform
estimation, the models would be overfit and would not provide good generalisation properties for
out-off-sample forecast performance. Therefore, we introduce a class of probabilistic, statistically
robust feature extraction approaches to reduce dimensionality and capture core information present in
the demographic data that can be more parsimoniously included in the stochastic mortality models.
The standard concept of robust Principal Component Analysis by means of M- and S-estimators cannot
be easily utilized since the demographic data is not equal length and contains missing values across
different age groups. Hence, we adopt a probabilistic formulation of Principal Component Analysis
which additionally allows to model the hidden process of missing values.

Another challenge is the issue of parameters uncertainty in mortality modelling which we address
by adopting the Bayesian Inference framework based on efficient Markov Chain Monte Carlo as in
Fung et al. (2017). The estimation of the model is achieved via a Rao-Blackwellised Gibbs sampler.
We sample the static parameters via conjugate Gibbs sampling steps which are followed by Forward
Backward filtering sampler for state variables to inference from the resulting posteriors.

The contributions of each part of the paper are as follows. Firstly, we briefly overview the concept
of the mortality modelling and discuss the state-space formulation of the Lee-Carter model with cohort
effects and impose identification contains. Section 3 provides with several illustrations of how to
incorporate observable factors into Lee- Carter models. The discussion is followed by an introduction
to features extraction by means of Principal Component Analysis. Section 5 extends the standard
Principal Component Analysis terminology to the probabilistic setting and derives the steps of its
estimation via Expectation-Maximisation Algorithm in order to combine Principal Component with
missingness. An overview of the data is given in Section 7 whereas numerical illustrations of empirical
studies are presented in Section 8. Finally, Section 11 concludes.

2. Period and Cohort Effect Stochastic Mortality Models: State-Space Formulation

We begin this section by briefly recalling the classical two factor period effect and cohort effect
models that have been proposed in Renshaw and Haberman (2006); Pedroza (2006) and Kogure and
Kurachi (2010). This includes in particular the state-space formulation of such models which was
developed in Fung et al. (2016) and Fung et al. (2017).

Extension of Lee-Carter model to cohort features proposed in (Renshaw and Haberman 2006)
introduces the concept of the stochastic cohort factor, denoted by 7;—_y, is incorporated into the one
factor stochastic Lee-Carter (Lee and Carter 1992) stochastic period effect, denoted «; to produce
a two factor stochastic model. This second cohort factor, like the period effect factor, can also have
an age-modulating coefficient, denoted by B7. In this work we adopt the recommendations discussed
in (Cairns et al. 2009); (Haberman and Renshaw 2011) and (Hunt and Villegas 2015), where it is
proposed to simplify this feature to be a constant age-modulating coefficient accross all age groups,
given by:

log myt = &y + Baki + Yi—x, @

where x € {x1,...,xp} and t € {1,...,T} represent age and year respectively. m,; denotes the
mortality rate in age group x and time . ay and B are the age specific static parameters of the model.
This simplifying assumption that 8 = 1 (or generally any constant other than one) is supposed to
improve estimation performance when fitting the model in practice. Furthermore, there is discussion
in the literature to argue that it may also be justified based on empirical findings. By studying the
mortality experience of England and Wales males, the study of (Willets 2004) finds that the cohort
effect is not “wearing off” with increasing ages and the mortality improvement rates, defined as
1 —my/my 1, of different cohorts seem to be rather stable. Together with the consideration of the
convergence problem, one may argue that it is indeed reasonable to assume that 87 = 1 to ensure
estimation can be successfully performed for a range of mortality data while the explanatory power of
the simplified model is comparable to the full model.
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Next we recall the two-factor state-space formulation of the Lee-Carter type period-cohort models
for stochastic mortality, see derivations and properties in Fung et al. (2016) and Fung et al. (2017).
Note, we adopt the same standard notation as proposed in these papers to present the models in
this manuscript.

The formulation of stochastic period-cohort models in state-space form is given by specification
of both an observation equation and a state equation. Let yy; = log i, where x = xy,...,x, and
t =1,...,T. The general form of the observation equation (when B7 is flexible) of the cohort model
Equation (1) is given in matrix form by (recall that v := y;—y):

Yxq b Kx, ,Bx1 ,82;1 0 T 0 ,)/xl Exqt

o+ o 0 v e 0 t Exyt
Sl I Rl I L W+ T @
Yyt Xy, ,Bxp 0 0 Tt Zp ,)/;cp Exp,t

where iid noise terms ¢y ; are included as we aim to model the crude death rates. In a given year ¢,
we identify in this model the state vector as (k;, 'yfl, ey, 'yfp )—r which represents the p + 1 dimensional
latent unobserved stochastic factor driving the observed log-mortality rates. The dynamic of this
stochastic state vector is then specified in the state equation. In this work, we consider the state-space
model given in matrix form as follows:

Kt 1 0 0 00 Ki—1 0 (U;,(

7 0 A0 0074, 7 w/

| |0 1o 0 of |22 0 0

=10 0 1 00 N + &)
Xy Xy

'yti ! Do .o ,thfll 0 0

7 000 -+ 10/ \97, 0 0

In this particular instance, we assume «; is a random walk with drift process (ARIMA(0,1,0)
with a constant) and the dynamics of ;! are described by a stationary AR(1) process with drift
(ARIMA(1,0,0) with a constant) where |A| < 1. One may consider other dynamics for ;' by specifying
the second row of the p + 1 by p + 1 matrix in Equation (3). For example, an ARIMA(2,0,0) process for
;! can be assumed if one fixes

Kt 1 0 0 00 Ki—1 0 wf

7 0 A A 0 0|7k A

475 0 1 0 0 0| 712 0 0
= o 1 00 S Bl I el I )

Xy . Xy
”Z ! : : 'ytxfll 0 0
v’ 0 0 O 10 7 0 0
The matrix form of Equations (2) and (3) can be expressed succinctly as

Vi =+ B +¢&, & e N (0, ng]lp), (5a)
Pr=Api1+O@+w, w L NOY), (5b)

where @; = (xt,7;',.. .,’yf”)—r, I, the p-dimensional identity matrix and Yisa p+1by p+1
diagonal matrix with diagonal ((T,%, (T%, 0,...,0). The matrices «, B, A and © can be easily identified
in Equations (2) and (3). For simplicity we assume homoscedasticity in the observation equation;
heteroscedasticity can be incorporated straightforwardly as developed in Fung et al. (2016).
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We adopt the identification constraints which are based on Hunt and Villegas (2015) and are
broadly discussed and examined in Fung et al. (2017). These are given by

EN—X

Z.Bx:ll Z,B,J)C/:l/ ;Ktzo, Z (YCZO (6)

c=t1—Xp

3. Demographic Factor Model Extension to the Period-Cohort Stochastic Mortality
State-Space Models

In this section we demonstrate several approaches one may adopt to extend the state-space model
formulations presented previously for the Period-Cohort stochastic mortality models to allow for
incorporation of additional observable covariate factors. The form of factor model we develop here is
generic and in future sections we will develop a framework for factor extraction from demographic
data that can be used in the models developed in this section.

We note that there are two fundamental ways to develop a factor time series based regression
structure for incorporation of demographic data to a stochastic mortality model. We advocate in this
paper an approach which is specifically developed to work with data which may be high dimensional
in nature, structured but be represented by short time series lengths. This type of data is particularly
prevalent in demographic studies. The main concept here is that the feature extraction is performed
over the entire available time series of observable demographic data. The resultant features extracted
are then added to the stochastic mortality model in a static form but with dynamic latent state processes
for the factor loadings over time. That is the effect of the factor incorporated will be allowed to time
vary through the factor loading. This approach has the advantage of not having to model explicitly the
demographic data which may have a complex structure and furthermore, only requires forecasting
components of the latent factor loading process. This is often significantly easier to perform since one
may use for instance a standard parametric time series model such as a VAR model for their temporal
evolution. Note, such approaches as this are also utilised in other financial term-structure state-space
models for instance in the context of yield curve modelling, such as the dynamic Nelson-Siegel model
of Diebold and Li (2006). However, we believe to the best of our knowledge we are the first to
propose this type of factor model framework for incorporating demographic factors into stochastic
mortality models.

We assume that we have an available set of factors that can be country, population,
gender or age specific features. We wish to incorporate these age-specific and country-specific
demographic/population information into the cohort state-space model described by Equations (5a)
and (5b).

We will denote by F; the p x k factors matrix where p may represent number of age groups and
k may represent number of age specific factors. As in any feature based regression factor analysis
such as PCA Regression (Jolliffe (2002)), we treat F; as extracted via feature extraction methods from
an exogenous observable input that is believed to have potential influence on the age specific mortality
rates under study in the responses, over time. Then for each feature vector regressor, extracted from
the exogenous demographic data, we will add this feature to the state-space model.

There are numerous structural ways to achieve this in a state-space model. For instance, the factor
may either influence all age groups equally by entering the factor into the state equation, or it may
influence each age specific mortality rate differently by adding it in the observation equation. Of course,
there may also be a combination of such approaches, dependent on which demographic data the
feature was extracted from the context of the model construction.

The influence of the feature on the log mortality is reasonable to assume it varies over time, so to
achieve this we will specify a time dynamic for the regression factor loading. This requires that we
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specify an additional latent variable, a pk dimensional vector ¢; which denotes the vector of factor
loading for year ¢t. We assume g; to be modelled by VAR(1) process given by
iid
0r=Q0 1+ Y+ 0w, w TN(O, UQZHpk) (7)

with homogeneous variant for covariance matrix of error term wy}. g; is a dynamic regression parameter
for the factors matrix F; which specifies the impact of x; € {x1,...,x,} age groupand m € {1,...,k}
component corresponding to [F¢]; ,, by 0} element.

As noted, depending on the interpretability of the desired model, one may incorporate F; into
observation Equation (5a) (Case 1) or into the latent dynamic of either calendar year factor period
effect x; (Case 2) or cohort factors vector v; (Case 3) from the state Equation (5b).

Next we develop the extended model of Equations (5a) and (5b), which incorporates information
F;. The general notation of the model is as follows

yr = “—"_Et@t_'—stl &t %N(O,U}_:Z]Ip)/ (8&1)
Pr=Api1+O+ar, & 2LNOY) (8b)

where ¢; = (¢4, 0¢) isa (p + pk + 1) x 1 latent process vector and

6 = < O (pr1)x1

& ) ©)
pkx1 (p+pk+1)x1

is a vector of drift parameters for state equations, where ¥ corresponds to the model Equation (7)
of g¢. We assume independence of error terms in latent variables what gives the following structure of
a covariance matrix for the state equation error term @;

g_ ( Y1) x(p) | 10)

)
2
0 ‘ Ugﬂpk (p+pk+1)x (p+pk-+1)
Let us specify the following two objects, F; = EB;‘:l [Ft];., for @ being a direct sum operator,
and f; = vec (F]), that is

[Filh 0 0 0 (Ft]1,
N 0 [F, O - 0 § (Ft]1
Ft = . . . and ff = . (11)
0 [Eelp pxpk [Ft]lﬂ/k pkx1
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where [F;];. and [F¢];, represent the vector of the jth row of the matrix F; and the element
corresponding to jth row and mth column, respectively. The structures of the other matrices and
vectors for extended model Equations (8a) and (8b) depend on the introduced cases, that is

( B, (p+1) | Fr ) for Case 1,

( By x(p+1) ‘ 0y pk ) otherwise,

Bt px(p+pk+1)

< A1) x (p+1) | Op+1)xpk ) for Case 1,

Opiox (p+1) Qpiox pk
- 12
i B (pH1)x(p+D) 0, pk for Case 2,
(p+pk+1)x (p+pk+1) — 0 X (p41) kaxpk
prex{p
01><pk
A0 (p+1) F; for Case 3.

Opkx(p—H) kaxpk

Given the formulated demographic factor model of the period-cohort stochastic mortality
state-space models, we will denote this class of model by notation (DFM-PC). The estimation of
this model will be achieved through a Bayesian model formulation and a specialised Markov chain
Monte Carlo sampling framework based on Forward-Backward sampler for the latent state components
and block-Gibbs conjugate sampling for the static model parameters. This follows closely the detailed
framework developed extensively in Fung et al. (2016) and Fung et al. (2017), therefore, we repeat this
only in relevant details in the Appendix A.

Remark 1. The matrix F; contains the observed (feature extracted) with exogenous factors and is a component
of the model which is conditioned. Therefore it does not require to be estimated and, at this point, represents
a known deterministic constant. As such ¥y is fixed and held constant for the time period which the factor
model is run. Hence, it is not a parameter but a covariate which is observed and deterministic. Therefore,
the identifications constraints given by Equation (6) are valid for the new model.

Remark 2. Time series in the study undertaken are typically of the length less than 100. Compared to the
number of available samples, the classical Lee-Carter model with cohort effect requires large number of parameters
and has been already reported to be prone to overfitting as noted in (Cairns et al. 2009); (Haberman and Renshaw
2011) and (Hunt and Villegas 2015). The new model with the latent process introduced in Equation (7) provides
with additional number of parameters. Therefore to decrease the risk of overfitting we choose to stay with
the assumption of VAR(1) process for ;. We believe that the parsimony argument to keep the autoregressive
structure without too many additional parameters was more important that adding more lags in this study.

4. Approaches to Demographic Feature Extraction via Robust Probabilistic Principal Components

As we will demonstrate in the application in this paper there is a variety of issues to consider
when undertaking feature extraction in demographic population data of relevance to modelling in
stochastic mortality models such as those presented previously. In addition, we would like to make
sure we achieve a parsimonious model presentation, where we extract features from the demographic
data that are the most informative.

For instance, if we have d countries demographic data to consider where p denotes the number
of different demographic attributes observed that can be considered, then the p x d matrix of this



Risks 2017, 5, 42 8 of 77

data in year ¢t will be denoted by Y;. We assume that Y; is observed (or partially observed) over
periods t € {1,...,T}. We do not wish to utilise the raw demographic data Y; as in general it will
produce a model with too many parameters, therefore we resort to feature extraction methods based
on minimizing some pre-specified projection pursuit index.

Our attention is placed to linear methods of dimensionality reduction, more precisely,
those expressible as linear projections as defined in (Friedman and Tukey 1974) which includes
Principal Component Analysis (PCA) and its extensions and robust alternatives. In this paper, we have
focussed on the use of Principal Component Analysis, hence, we incorporate the basis vectors of the
projected lower rank space as the most meaningful factors in terms of variation.

In this regard we consider obtaining the column wise pre-whitened Y; which we can then estimate
the sample mean and sample covariance matrix for demographic time series data Yy, ..., Y1, which will
be achieved robustly in this paper. This approach then produces a lower rank matrix which is obtained
by projection according to

X: = Y;F

for F being the first k selected eigenvectors of the covariance matrix robustly estimated from
sample demographic date Y,...,Yr. These factors are then entered into the state-space model
as presented previously.

In the following subsections we introduce progressively the feature extraction methods that
should be considered for demographic data, which have been developed to deal with real data issues
such as missing data and outliers which may effect the feature extraction process.

4.1. Non-Stochastic Principal Component Analysis

Let us denote N x d matrix Y as original data set, where a row of the matrix is a single
d-dimensional observation in a given moment of time. The goal of Principal Component Analysis is to
identify the most meaningful unit length basis to re-express a data set Y. The purpose of a new basis is
to better filter out the noise and reveal hidden structure. Therefore, PCA looks for the given projection
of the observation data

YNxdexd = xNxd (13)

where Wis a d x d matrix denotes a linear projection. The columns of W are the new basis vectors,
that is WT'W = I;, and express rows of X.

The goal of re-expressing Y in meaningful way means that PCA aims to lower a redundancy in
data set, i.e., leads to removing the linear dependencies which provide measurements with additional
noise. In mathematical terms, the goal can be written for i, j columns of X

X% X = wT ey W], (14)

and

= WIS Cy W], =0, (15

where Cy = Y'Y. We seek a linear combination given by Equation (13) that maximizes the overall
variance of X, Cx = XTX. The solution to the problem is found by a maximiser of the following
Lagrangian expression.

Q(W) = WICyW — A (wTw - Hd) . (16)

for A, 4 being a diagonal d x d matrix with Lagrangian coefficients. The roots of a quadratic form are
found by setting partial derivatives to zero
9Q

S = 2CYW —2AW = 0= CYW = AW (17)
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We see that W is a matrix which columns are eigenvectors of Cy whereas A is a matrix of
corresponding eigenvalues with the number of non-zero elements equal to the rank of Cy. The columns
of X indeed are orthogonal since

XL X = WL Cy (W]

Il
=
3
=

=AW Wl =0 (18)

and correspond to unequal eigenvalues. It is easily proven that X, defined by W - the eigenvectors of
Cy, maximizes the total trace of Cy, its determinant and maximizes the Euclidean distance between
the columns of X, see (Basilevsky 1994). Also, the representation minimizes the mean square error
between the observation and its projection as it is equivalent problem to maximizing the variance of X.

We wish to find estimates of W and X which minimizes sum of squares, e =Y — XWT  both of
e’e and ee”. Assuming that the residuals have homogeneous covariance matrix, that is e”e = o2l
we have

T
_ T, _ 21 _ . T . T
QW,X) = e e—(T]Id—<Y xw) (Y xw) 1)
=YY + WXTXWT — wxTy — YTXWT,

Since both W and X are treated as parameters to be estimated, we minimize Equation (19) by
computing partial derivatives of function Q with respect to them and setting them to zero

0Q

= = 2¥"x +2wxTx =
W + 0 (20)

and since YW = X

YYTX = YWXTX

21
YY'X = XX"X D

As we are looking for uncorrelated explanatory variables, for A = XTX we get
YYTX = XA (22)

which shows that X and A are eigenvectors and eigenvalues of the N x N matrix YY”. What is more,
differentiating Q with respect to X gives

?Tg = —2YW +2XWIW =0, (23)

what using similar arguments as above provides with
YIYW = WA, (24)
showing that W and A are eigenvectors and eigenvalues of the d x d covariance matrix of Y, Cy = YTY.

4.2. Stochastic Principal Component Analysis

In the following part we consider PCA from the population distribution point of view, i.e.,
instead of the matrix Y, we have a d-dimensional random variable y; which is linearly transformed
into uncorrelated d-dimensional random variable x;. At this stage the Principal Component Analysis
does not require any assumption about the distribution of a random vector y;. The only assumption
we make refers to the projection matrix W and demands its orthonormality. If the random vector y;
has a known mean equal to zero and covariance matrix Cy, the model transforms to

VW = x¢ (25)
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and implies x; is a d-dimensional multivariate random variable with a diagonal covariance matrix A.
If in addition we assume y; to be normally distributed, the lack of correlation imposes independence.

If we consider N realisations of the random variable y; which are placed in rows of the N x d
matrix Y, we have an algebraic problem as introduced in Section 4.1. The conceptual difference is that
in the case of stochastic PCA we work with an estimator of covariance matrix, e.g., a sample estimator
Sy = $YTY.

4.2.1. Extending Stochastic Principal Component Analysis to Factor Analysis

In this section we no longer assume the underlying process to be perfectly observed as would be
the assumption typically made in the stochastic version of PCA above. The implication of this can be
interpreted as follows: we no longer assume that the underlying time series of demographic data is
perfectly observed with no observation error. Instead there is an observation error present and the
covariance matrix used in the PCA (deterministic or stochastic-population estimator based analysis)
no longer explains all variation in the response or the time series demographic data. This is practically
important to consider in feature extraction in practice. In this section we briefly introduce this relaxation
and show its relationship to stochastic PCA above.

To discuss the PCA by means of Factor Analysis we need to introduce an additional notation and
variable to our model, that is, an d-dimensional error term, €, and rewrite Equation (25) as

yi = xW! + e, (26)

where y;, x; and €; are d-dimensional random vectors. Given N realisations of the random vector,
which are placed in the rows of the matrices Y, X, € respectively, the above problem has the following
matrix form

Yoxa = XuxaWixg + €nxa- (27)

Factor analysis assumes the diagonal covariance structure of €;. It differs from the PCA model
discussion from the previous subsections as the components given by x; and W accounts for correlation
between elements of y; and only part of the variation (in standard PCA x; and W account for the entire
variance) since

Eyly: =E [(xth + et) ' (xth + et)} — WAWT +¥. (28)

If we assume multivariate distribution of x; ~ N (0,1;) and e; ~ N (0,'¥) we obtain conditional
independence of y; given latent variable x;, i.e.,

vilxe, W, ¥ ~ N (xtWT,‘I’) . (29)

as ¥ is diagonal. Recall that the variable x; reproduces all correlations between components of y;.
Imposing normality assumptions on y; and x; enables performing ML estimation of x;, W and ¥ with
optimality properties.

The marginal distribution of y; is then calculated by the integration of the joint distribution of y;
and x; (which is given via chain rule)

n(yt,xt|W,‘I’) = n(yt|xt,W,‘I’)7r(xt\W,‘I’)
T (30)
= (27(\‘Y|)_% exp {—% [yt - xtWT} y-! [yt - xtWT} } (27r)7% exp{—%xtxtT}

with respect to the random variable x;, that is

: 4 (.
7y W, ¥) = /Rd 7(ye, x| W, ¥)dx = (271) 2 |C| " exp {— Sy Cyi } (31)
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for C = WW! + ¥ where |C| denotes the determinant of the matrix. Hence, y;|W,¥ ~
N (0, WWT + ‘I’). Notice that since ¥ is diagonal, the correlation structure between components
y: is specified by the matrix W.

Link to Principal Component Analysis

If we assume that the error term €; is homogeneous, thatis ¥ = 2], for 0 > 0, then the problem
of finding W by means of PCA given C = WW/ + ¢2]; is identifiable (see further discussions in
(Tipping and Bishop 1999))

Having the eigendecomposition of the covariance matrix, C = U, sLy,4U”, for diagonal matrix
L and orthonormal matrix U, we have

0=(C—L)U= (wTW 4o, — L) U= (wa - (L - (fz]ld>) U. 32)

Thus, the matrix A = (L —¢?l;) and U are matrices of eigenvalues and corresponding
eigenvectors of WW'. Since A; = [; — ¢ > 0, the scalar ¢ can be chosen as the smallest diagonal
element of A. Then the factors loadings are given by P = UAZ.

PCA as a Limiting Case of Factor Analysis

The assumption of the isotropic error term is crucial in order to establish the link between Factor
Analysis and PCA. Standard derivation of PCA does not account for any error term. However, we can
perceive PCA as a limiting case for 02 — 0. Then, as noted in (Roweis 1998), PCA is a limiting case
of the linear Gaussian model as the covariance matrix becomes infinitesimally small and equal in all
directions. This has an effect that the likelihood of a point y; is dominated by the squared residuals
between the observation and its projection xyW. As the ¢ tends to zero, the posteriori over states x;
collapses to a single point and its covariance becomes zero since

-1
x|y, W, 0% ~ N (ytw (WTW 21, ,UZM—l)
2—0 T -1 (33)
—>(5(xt—th(W w) )

The form of conditional probability x;|y:, W, 02 is justified in Section 5.1.

4.2.2. Missing Values

Until now, we assumed the data did not contain any missing observations. However, in many
demographic time series there are numerous types of missing data. This is therefore an important
aspect to address in the feature extraction.

When considering missing values we need to incorporate additional variables which describe
a distribution of missing observations. Let us denote y; = (y?,y}") to be a real valued d-dimensional
random vector, where y?{ is a sub-vector of observed entries of y; and y}" is a sub-vector of unobserved
entries, i.e., missing. The indicator random variable r; decides which entries of y; are missing denoting
them by 1, otherwise 0. Recall, that a single observation consists of the pair (y{, r;) with distribution
parameters (®, ©") respectively. We assume the parameters to be distinct. The likelihood of parameters
is proportional to the conditional probability y{, r;|®, ®" that is

(v, 110,07) = [ (v, v, 1l0,0) dyl = [ 7 (nly, ©,0) 7 (710,00 dyy" (34
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In our study, we assume the pattern of missing data to be MAR-missing at random as defined in
(Little and Rubin 2002). The assumptions imposes the indicator variable r; to be independent of of the
value of missing data. Then the vector y; which is MAR satisfies

ne(xelys, ©) = mt(n]yf, ©). (35)
what results in
7 (yf,1|®,0") = 7 (r:|yf, ©) / 7 (y1|®) dyt" = 7 (re|y, ©") 7 (v{]©) (36)

Under the MAR assumption, the estimation of ® via maximum likelihood of the joint distribution
y?, 1:|©, @ is equivalent to the maximisation of the likelihood of the marginal distribution y{|©. Hence,
we do not worry about the distribution of the indicator random variable r; and the joint distribution
of y? and r;. If the assumption about MAR does not hold, one needs to solve the integral from
Equation (34) in order to maximize the joint likelihood.

5. Efficient Probabilisitic PCA Feature Extraction in the Presence of Missingness via
EM Algorithm

The combination of PCA with missingness and the Factor Analysis leads us to the
“Probabilistic PCA” which can be estimated via Expectation Maximisation framework as described
below. This is an exceptionally efficient and numerically stable approach to apply in practice.

Let us consider d x 1 vector of observable demographic data that we wish to extract features from,
where it is denoted at time t by vector y;. We seek k-dimensional uncorrelated latent vector x; which
provides the most meaningful model of y;,

vyt = xtngk + €t (37)

We aim for W/'W = T (i.e., orthonormality of the projection matrix), however it is not
assumed in the estimation process. We assume the multivariate normal priori distributions of the k
dimensional latent variable x; ~ A (0, I;) and the error term €; ~ N (0,0%1;). Given N realisations of
observable variable y;, the sample model has a form

Ynd = XnskWis + ENxd (38)

where single realisations are placed in rows of Y, X and €, respectively.

Our goal is to estimate coefficient matrix W, scalar o2 and filter realisations of latent variable x;
employing Expectation-Maximisation (EM) algorithm. The steps and derivation of the algorithm have
been described in (Rubin and Thayer 1982) where no missigness in assumed. The authors use the
results introduced by (Dempster et al. 1977) for factors treated as missing data. The EM algorithm uses
the complete data logliklehood, i.e., the logarithm of the likelihood of y;, x;|W, 0> Equation (30) given

by
2 - 2
Eyt,xtlw,g-z (U 7 W, Yl:N/ xl:N) = 1_[ us (er/ xi’l ‘W/ o ) (39)
n=1
for y, = [Y]n,., and maximizes the expression Equation (39) which is integrated with respect to the

unobserved values of x;. The algorithm is summarized by the following two steps

1. Expectation step: Expectation of the loglikelihood function of the join distribution of y;, x; given by
Equation (30) with respect to the conditional distribution x|y, W, o2

Q (W/ 0'2|W*r‘7*2> = Ext\th,«ﬂ log [[’ynxﬂW,az (U*Z/W*/’Yhnrxlzn)} (40)
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2. Maximisation step: Finding W* and ¢*? that maximize Q (W, 0?|W*,0*?)

(W*,0*2> = argmax Q (W, 02|W*,(7*2) (41)
W*GRka,O’*2>O

The Expectation step (E-step) provides with the expectation Equation (40) of complete data
likelihood Equation (39) based on y;.y and assumes W and 02 to be known. It uses the observed data,
current estimates of parameters and the distribution of missing values conditioned on these elements.
The Maximisation step (M-step) maximizes the expectation Equation (40) with respect to W* and ¢*2
as if it was based on complete data information. In the paper (Dempster et al. 1977), the author proofs
that the loglikelihood Equation (39) is non-decreasing on each iteration of the algorithm and provides
with conditions that ensure its convergence (Theorem 1 and Theorem 2 in paper (Dempster et al. 1977),
respectively).

We derive the steps of the algorithm using the assumptions of the normality of y; and x; given
at the beginning of the section. As mentioned in (Dempster et al. 1977), the convexity of regular
exponential families (wWhere normal distribution belongs to) ensures the uniqueness of the maximizers
computed in the M-step. Also, the normal distribution provides us with the closed forms of the
moments used in subsequent steps of the algorithm. Hence, it simplifies the computations.

5.1. Expectation Step and Its Maximum

Finding the expectation Equation (40) requires specifying the conditional distribution of x; given
observations y; and parameters. It is given via Bayes’ rule as

7T (ye|xt, W, 02) 7t (x¢|W, 02)
(y:[W,0?)

7r(xt|yt,W,(72) = (42)

and results in x;|y;, W, 02 ~ N (yyWM ™1, 0?M™1) for M = WIW + ¢2;. Given N realisations of y;,
the expectation of the logliklihood with respect to the conditional distribution of x; is equal to

Theorem 1. The expectation of the E-step, E |y w 2 l0g {Cyh,(t‘wlgz (072, W¥; y1.N, X1. N)} , is given by

N
0 (W, 0'2|W*,0'*2> = /Rk 7T(x¢|ye, W, 0'2) log |ﬁlj[1 T <Yn,Xn|W*, 0'*2>‘| ax;

N
d 1 1
== 3 {S1os07+ g1r (5 [l w7 + ey @)
n=
1 2l wiToT 4 L T T 2
- ﬁE [xn|yt,W,<f } Wy, + ﬁtr (W* W*E {xnxn\yt,w,a D
for the corresponding moments of the conditional distribution x,|y;, W, o’
E {xn|yt,w, 02]1 L= vaWM!
: (44)

E {x,{xﬂyt,w, Uz]kxk =M '+ E [xn\yt,W, 02} TE {xn|yt,W, (72}

Proof. Please refer to the results of (Rubin and Thayer 1982). O

The M-step of EM algorithm uses the computed expectation and maximizes it with respect to the
static parameters W* and ¢*2. The maximizes are given by
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Theorem 2. The maximizers of Q (W, 02 |W*,0*2) are the solution to the set of the problems aa% = 0and

a?f% = and are given by
* S 2 - 2T 2 B
Wig= )Y y.E [xn|yt,W,a } Y E [xn|yt,W,a } E {xn|yt,W,U }
n=1 n=1
=g L - 5

Ftr (E {xn|yt,W, az} "E [xn|yt, W, az} W*TW*> } .

The iteration over E-step and M-step provided by Theorem 1 and 2 can be replaced by iterations
over one combined step, as noted in (Tipping and Bishop 1999), which for iterations i and 7 + 1 is
given by

(46)
2: oi+1)2 — %tr (S _ Sw(i)M—lw(H-l)T)

until the convergence of Q (W(i),a(i)2|w(i+l), a(”l)z) when M = WOTW() 4 (2] and § = %YTY.

5.2. The Maximum Likelihood Estimation—The Convergence of EM Algorithm

The work of (Dempster et al. 1977) proves that EM algorithm for the normal distribution always
converges to local maximum. Recall that the solution provided by EM algorithm converges to the
solution obtained by maximizing the likelihood of marginal distribution y;|W, 02, given by

Ly 1w, (W, Uz;yl:n> = —g [d log(2m) + log |C| + tr (Cfls)} (47)

where S;,; = % YN yly, and C = WWT 4 ¢2I;. The MLE estimator of W given by the likelihood
Equation (47) is a solution to the following fix point equation

a‘CYt|W/¢72

_ ~“lge-lw _ c—lw) — _ g1
e _N(c sc'w-C w) 0= W =SC'w (48)

We may distinguish tree possible cases to the above solution:
Casel: W=0

The solution to this case is treated as a minimum of the log-likelihood.
Case2: S=C

The equality implies that d — k smallest eigenvalues of S be equal to ¢ and the problem is
indefinable since WWT = § — ¢I;. Given the eigendecomposition of S, that is

S = UyxaAixaUlya (49)

for orthonormal matrix U such that UTU = I; and diagonal matrix A with non-negative entries,

1
the matrix W is equal to W = U (A — O'ZHd) 2 RT where Ry, is an arbitrary rotation matrix.

The case is proven in Section 4.2.1.
Case3: W#0and S # C

In order to compute the solution to Equation (48) we use the singular value decomposition of W,
that is
W = VLR (50)
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where V and R are real valued orthogonal matrix by columns, and L is non-negative diagonal matrix.
Using C = WWT + ¢2I; we apply the above facts to the problem defined by the fix point equation
W, = SC™'W
-1
VLR! = S (VLRTRLVT n Uz]ld) VLR

-1
VLRT = S (VL2VT + azlld) VLR

(51)
vL2vT £ 0%, =S
UL’L + ¢?I;VL = SVL
\% (L2 + Uz]lk) L=SVL
Notice that
Svj = (07 +17)v; (52)

where v; = [V] ; and [; = [L];;. Hence, the vectors v; are eigenvectors of the estimated covariance
matrix S. Using the eigendecomposition of S given by Equation (49), we see that v; corresponds to
the eigenvectors of S, u; with eigenvalues A; = l]«2 + ¢2. Since L has a different dimension than A,
we express it as

L= (K- o2I})2 (53)

where [K];; = A; is an j eigenvalue of S and corresponds to the j eigenvector of S, u;. In a case when
l; = 0, the eigenvector v; is arbitrary and [K];; = 0?2. The scalar 02 is estimated as average of i > k
eigenvalues of S.

The remaining question is if the EM algorithm converges to the global maximum. If the stationary
points of the likelihood with respect to W which are spanned by minor eigenvectors (the eigenvectors
with corresponding negligible eigenvalues), are stable, then the convergence is not guaranteed.
However, we can show that any eigenvectors which does not correspond the highest eigenvalues of S
is a saddle point of the logliklihood and does not provide stable solutions. For the detailed discussion
please refer to (Tipping and Bishop 1999). The authors highlight the case when all d — k discarded
eigenvalues are equal to the smallest major principal eigenvalue(s). They show that such a situation
provides with maximum spanned by principal eigenvectors and noise distribution (corresponding to
the smallest principal eigenvalue(s), which become(s) zero).

5.3. The EM Algorithm for Incomplete Data

Until now, we developed the EM algorithm for Probabilistic PCA under the assumption that
the data does not contain any missing values. In Section 4.2.2 we introduced the background of how
we are going to treat missing entries of the observation. We assume them to be Missing-At-Random
what allows us to ignore the existence of indicator variable r; while estimating W and ¢2. Given the
vector of an observation with missing entries y; = (y{,y}"), EM algorithms treats y}" as an additional
latent variable to x; in the model Equation (37). The expectation of the joint logliklihod Equation (30)
is computed with respect to the conditional distribution of x;, y}' |y}, W, o2 and provides with the two
following steps:

1. Expectation step: Expectation of loglikelihood function of join distribution of y;, x;|W, ¢? given by
Equation (30) with respect to conditional distribution x;, y|y?, W, 2

Q" (WP W02 ) =By ooz {108 | £y, w02 Wy | (59
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2. Maximisation step: Finding W* and ¢*? that maximize Q" (W, o?|W*, 0*2)

(W*, 0.*2) _ argmax Qm (W, UZ‘W*,U*2> (55)
W*ERka,O*2>0

We need to specify the moments of a conditional distribution of latent variables given the
observation vector, when we include the latent variable y/". The conditional distribution x;, y|y?, W, 0’2
is obtained via Bayes’ rule as

7 (xe 1 lyt, W,0?) = (salye W,0?) 7 (s lye, W, 0?) (56)

Given N realisation of y; with arbitrary missing entries, the expectation step has a form

Q" (W, P IW*,07) = By, o w2 1108 | Ly, w2 (077 WYy xion) | |

N
= T(xs, 2 W,02)1 77 (v, X |W*, 072 ) | dxid
i g T OXE VLY )log L[[l (ol )] xdy

(57)

- nil {glogmz + %tr (E {xen|y?,W, UZD + 2;*2 tr (E {Yrlenly‘t’,W, UzD

1 1
- ﬁtr (W*E [x,{yn|y‘t’,w, (TZD + 5572 tr (W*TW*E {x,{xﬂy?,W, (72} ) }
where E [xx,|y?, W, 2] are derived in Equation (44) and need adjustment for missing data. The other

moments of the conditional distribution x;, y¢|y{, W, o2 need to calculated.

5.3.1. The Moments of Joint Distribution x;, y}'|y{, W, a2,

The first component of the conditional probability Equation (56) is given by Equation (42).
For simplicity assume for a moment y; = (y?,y") ~ N (04, C4.4) for a covariance matrix

COO Com

58
Cmo Cmm ( )

Cixa =

where indexes 0 and m correspond to the locations of observed and missing entries of the random
vector y;. As shown in (Little and Rubin 2002), the joint distribution y;|y} under MAR assumption is
multivariate normal, that is

4 ¥ 0 0 (59)
Yt|y: y?Co_olCom "10 Cypm — Cmoco_olcﬁm .
since (v, y9)
m|,0 T\Yi /Yt
_ vy 60
7 (yi'ly?) 7 (y?) (©0

As derived in (Jamshidian 1997), the covariance matrix of the marginal distribution y;|W, o2 is
equal to

C= (61)

W, Wl W, Wl + 021,

WoWT + 021, W,WT ]

where d, and d,;, such that d, + d,;, = d are numbers of elements observed and missing (which can be
zero) respectively, m and o are the indexes of matrices denote sets of rows which correspond to missing
and observed values of y;, respectively (recall that columns of matrix W correspond to values of x;).
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Having above in mind, we can compute the following moments of the conditional distribution
xt, yt|y?, W, o2 are given by an alternative theorem to the Theorem 1 which accounts for the incomplete
data case.

Theorem 3. The expectation of the E-step, By ly:, W02 log |:£ytfxf|wr(72(O*Z’W*;yl;n,x1:n):|, where
yt = (y{,y}"), is given by

N
Q" (W, 02|W*,U*2) = /IkaRd n(xt,yt|y‘t’,W,02)log [H T (yn,xn|W*,a*2)] dxidy;

n=1

=- é {;ilog o+ %tr (E {x%xﬂy?,w, (TZD + 2;*2 tr <E {y,{yﬂy?, W, UZD (62)

- %“’ (W*E [XZynly?,W, (TZD + tr (W*TW*E {x,{xn|yf,w, (72} )}

202

for the corresponding moments of the conditional distribution x,|y?, W, o>

E _Yn|Y?/W102LXd =

Yo
E [yrly?, W, 0%

0 0

T
E 0/ W, 2 E 0’ W, 2
0 Co— WoWICTIW,WE | +E (YT W] E [yulys, W2

E [yiyalyt, W,o?| =

(63)

E :any?,W, Uz} =E [yn|y?,W, 02} \% (WTW + U'ZHd) !

1xk
- -1 T
E _xen|y§',W, UZ}kxk =0? (WTW + az}ld) +E {xn|y?,W, 02} E {xn|y§’,W, (72}

) 0
T 0 2 =
W, } W
_xnynlyt T exd [wm—wmwgcoo1 0

+E [xalyt, W,o?] "E [yaly?, W,o?]

Proof. We can find the corresponding steps of calculation in (Jamshidian 1997). O

5.3.2. The Maximizers of Q" (W, 02|W*,0*2)

The M-step of EM algorithm uses the computed expectation defined in Theorem 3 and maximizes
it with respect to the static parameters W* and ¢*2. The corresponding values of the maximizes are
given by

Theorem 4. The maximizers of Q™ (W, 02|W*,0*2) are the solution to the set of the problems % = 0and
aQT’”

2

and are given by
y T 2 T y 2 T 2 -
wzm—(z Xhyaly? W, o?] )(2 [xaly, W, ?] E[xﬂy?,w,a)]
n=1 n=1

o2 = ﬁ ;Xj:l tr (IE [yZyn\y?,W, (72] —2W*E [x,len|y?,W, (72} (64)
+E [xn|y§’,W, 0’2} TE [xn|y§’,W, 02} W*TW*>

Proof. We need to replace the moments of conditional distribution x|y, W, 02 in the proof of the
Theorem 2 with the corresponding moments of x¢|y?, W, o2 derived in Theorem 3. Also, we need
to replace terms of y; by its moments related to the joint distribution x, y|y?, W, o2 also given in
Theorem 3. [
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5.4. The Algorithm

The steps of computing eigenvectors and corresponding loadings are summarized in the following
algorithm. Firstly, we standardized data using information from observed values stored in Yy, 4.
The estimator of location and variance, ®y = (f1,62) is a function of the non missing values of
observation vector y among its N realisations. We execute PPCA on standardized data following two
steps: the expectation and maximisation step.

Algorithm 1 Probabilistic Principal Component Analysis with missing values

1: forj=1,...,ddo

2: Compute Oy ([Y"],J) = (f;, 62)

3 Standardize data [Y] J= [Yo]aijj_ﬂj

4: end for

5 Y"=0and Y = (Y°,Y")

6: Initialise: ¢,i = 0, w0 — Wy, 0200) = O'g,

7: repeat

8: E-step: Compute corresponding moments from Equation (62) for
Qm (w(i), 20 |wid), (72(i)>

9: M-step: Compute maxima of Q" <W(i), 2w, (72) from Equation (64):
wiith) g20+1) — argmaxy cpdsxk 52 Q" (W(i), 20 |w, Uz)

10: i=i+1

11: until a convergence criterion is satisfied

6. Statistically Robust Feature Extraction for Stochastic Principal Component Analysis

Until this point, we have assumed that any stochastic noise or observation errors in the
demographic data is in some sense “well behaved”, for instance: additive, light tailed, symmetric and
zero mean. In this section we relax this inherent assumption by developing a class of robust estimators
that can withstand violations of such assumptions which routinely arise in real data observations,
especially as we will demonstrate in demographic data. Furthermore, we have assumed that the data
is generally temporally stationary over the time period of study. If any of these assumptions does
not hold then this has an influence from a statistical perspective for the real data analysis. In such
cases we recommend to resort to implementation of feature extraction methods which are more robust
(in a statistical sense) to violations of such features.

When non-robust feature extraction methods are naively utilised in the presence of violations
of these implicit statistical assumptions it can lead to misleading feature extraction and falsify the
information content of these features, leading to bias or variance enhancements in the forecast from
stochastic mortality models incorporating such features.

Therefore, it is critical to ensure that the feature extraction is appropriately performed. To avoid
or to robustify the feature extraction techniques presented previously against violations of such
statistical features such as non-stationarity, heavy tails, hetroskedascity, non-Gaussianity one can turn
to robust statistical methods. This can strongly influence the findings based on such demographic
feature extractions. Therefore, in this section we demonstrate a statistically rigorous approach to
perform feature extractions as detailed previously in a robust estimation and feature extraction
extended framework.
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To achieve this, we first recall some basics of robust statistical inference, primarily targeting the
robust estimation of location and scale or mean and covariance, as will be directly relevant in the
stochastic PCA based methods proposed above.

Regardless if we work with standard or probabilistic PCA, the most straightforward method
to improve its statistical robustness, is to employ estimators of the covariance matrix which are less
sensitive to outlying data points.

6.1. Robust Estimators of Mean and Covariance Matrix

To introduce the concept of statistically robust estimation for feature extraction in demographic
data, we first introduce what exactly we mean by statistical robustness of feature extraction.
This requires a short set of formal definitions.

Let us define an estimator ® as a functional on the domain of distribution functions.
We exchangeable use the definition of an estimator as a function of the d-dimensional sampleyy, ..., yn,
denoted by ®y. In the following part we drop the time related index of the random variable and
denote it by the y. The empirical distribution defined by sample is denoted by Fy. The true population
distribution and density functions of y are denoted by capital letter F and f.

6.1.1. Concept of Robustness

We consider robustness according to two measures: a measure of local robustness and secondly
a measure of global robustness. The two measures are defined by a e-contamination set of a distribution
functions, that is

Definition 1. F. is a contamination neighbourhood of distribution F defined as
Fe ={G:G = (1—¢€)F+e€H, for H any distribution } (65)
given fraction of contamination 0 < e < 1.

One can then define the local robustness of an estimator © as measured by influence function
given in Definition 2.

Definition 2 (Influence function). The influence function of an estimator ® on the domain of distribution
function is defined as
1—¢€)F +eby,) —O(F
IF(x0,©, F) = lim 21 =€) + €)= O(F)

e—0 €

(66)

where b, is a probability measure which puts mass 1 at the point x if (1 — €)F + €dx, is included into the
domain of ©.

The influence function is a crucial information to calculate asymptotic variance and efficiency of
an estimator as
Vit (O(Ey) ~O(F) = VN [ IF(y,0,F)dEy(y) +- - (67)

where we used Tylor expansion of the empirical distribution function Fy around true population
distribution function F.

The influence function provides us with the knowledge how e contamination on a point X
changes the information about the true distribution of the random variable y which is given by ©®.
Thus, it is perceived as a local measure of robustness. To measure global robustness, one can examine
a breakdown point €* of estimator @y at the true population distribution F, given in Definition 3.
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Definition 3 (Breakdown point). The finite-sample breakdown point €* of an estimator Oy at the true
population distribution F is defined as

€*:=sup{e <1: sup |OyN(G)| < o0} (68)
GeFe

Intuitively, it is understood as the maximal contamination which does not cause the estimator to
loose valid information about the true distribution F. We may define a finite sample definitions of the
breakdown point as

Definition 4. The breakdown point €} of estimator © at the empirical population distribution Fy is defined as

en(®,y1,...,yN) :=max{n; € Z, max sup |©(Fy)| < oo} (69)

ll/---/lnl VA ,‘..,an
where points y;,, ..., yn, were replaced with arbitrary points z, . .., Zy,.

Having introduced these formal definitions of what exactly is meant by robust estimators, we
overview the most frequently used estimators of a covariance matrix with respect to their robust
characteristics according to introduced measures. Let us denote y, C as a mean and covariance matrix
of y.

6.1.2. M-Estimators

In the study of (Maronna 1976) and (Huber and Ronchetti 2009) on the robust estimation of
covariance matrix, the authors define one of the first classes of robust estimators, called M-estimators,
which are a generalized version of Maximum Log-liklihood Estimators (MLE) where

N N
On = argr@ngégf(yn) & 0N = argg}eigg —log f(yn)- (70)

The idea behind M-estimators, is to replace the density function in Equation (70), f, with function
o : Ry — R which down weights outliers, that is

Definition 5 (M-estimators). The M-estimator of a parameter © is defined as a solution to the problem

N
O = argmin ) _ p(d,). (71)
0cQ) n=1

for a function p : Ry — R where d2 = (y, — p) C L (y, — p)" is a Mahalanobias distance of y,,.

Remark 3. If p is a continuous function, denoting its derivative o' = 1, the estimator Oy satisfies

n=1 n
S P(dn) 1 7
Y ) yamm €T =0

which are the robust analogue of the typical normal type equations one would solve in MLE estimations in
regression for instance.
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Remark 4. If we additionally assume that y is a random vector from elliptical family with density of the form

f(yim ©) = ct|c g (2 (v,0)) . 73)

with g : Ry — R being a density generator of random variable y, the solution to the problem Equation (71) is
equivalent to

1=
=
=®
q
N|—
<
=
|
=
Il
(@]

3
Il
—_

(74)

=z
<
=

2
Il
—_

More generalized notation is used in (Maronna 1976) and (Huber and Ronchetti 2009) who
introduce functions uy, uy : R — R to rewrite Equation (74) as follows in Definition 6.

Definition 6. The M-estimator @y of the parameter ® of a location and scatter of random variable y from
elliptical family, is defined as a solution to

1=
AS
=

) (yn —m) =

3
Il
—_

(75)

1 1
(yn _P‘)T(Yn - C =1

M=

o

for functions uq,up : Ry — R, given its N realisations.
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The authors provide conditions for 11 and u; to ensure existence and uniqueness of Equation (75)
and its normal asymptotic distribution with —% convergence. (Maronna 1976) proves the breakdown
point of Equation (75) to be very sensitive to dimensionality of the data as €* = dlﬁ.

Recall that in this study, we want to compute a variance of every variable rather than a covariance
matrix (Algorithm 1) what makes a M-estimator a very suitable tool. What is more, the robustness of
M-estimators does not depend on the sample size. It is another advantage of an M-estimator when

working with population data as has a very limited number of observation available.

Remark 5. As an example of function uy and up, (Huber 1964) gives the following
s,k s, k2 12 s| < k
w(s) = R () = PR ) - {2 : 76

s s sl —1k2 |s| >k
for Y (s, k) = p'y (s, k) and the tuning constant k.

Defining estimator with ppg is proven to have the minimal maximal asymptotic variance of all
affine invariant estimators under the assumption that the sample yy, ..., yy is normally distributed
with zero mean and identity covariance matrix.

For the problem of only scatter estimation, (Tyler 1987) introduced a function u(s) = %, which is
investigated in details by (Frahm and Jaekel 2010).

Definition 7. Tyler’s estimator of an covariance matrix for unbounded function uy(s) = g is obtained
by solving
d Y )" (yn —
<y (yn =) 1(Yn ) _—c 77
n=1 (Yn —p) €1 (yn — 1)
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Lemma 1. Under the assumption of generalized elliptical distribution of y, the solution Equation (77) exists
and is unique up to the scalar parameter.

Recall that 5 is not bounded and hence does not satisfy the conditions described in (Maronna 1976)
or (Huber and Ronchetti 2009). Therefore the uniqueness can be obtain up to the scaling parameter.

Lemma 2. if y belongs to generalized elliptical distribution, Tyler’s estimator from Definition 7 is strongly
consistent with true covariance matrix, if it exists, up to the scaling factor and has normal asymptotic distribution
with convergence rate — 3.

The asymptotic variance of Tyler’s M-estimator, which was analysed i.e., by the author of
(Tyler 1987), is proven to have the lowest maximum bias among all normally distributed estimators for
symmetric elliptical family random variables.

For a point contamination, the maximal breakdown point of the estimator is equal to €* = %
as proved in (Tyler 1987). The later study shows that for any other contamination, the maximal

breakdown point is between
L <ef < 1
d+1— —d

Furthermore, Tyler’s M-estimator is an MLE estimator of angular Gaussian distribution. To show

(78)

this property we use the following Lemma

Lemma 3. If'y has generalized elliptical distribution then y =; p + RC2u for u being uniformly distributed
random variable on the unit d dimensional sphere and R being a scalar variable.

Recall that R is a component which is responsible for generating tails of y distribution.

Remark 6. If R is absolutely continuous and independent from u, the generator of probability density function

of centred y, y, is given by f (§) := Z(—%)y*%ﬁz(ﬁ) for v = rank(C) and fr being probability density

r
2

function of R. Then y is symmetrically distributed.

Remark 7. If the variable R is allowed to be negative and has a dependence structure with uniformly distributed
u, the distribution of y is called generalized elliptical distribution. The generalised elliptical family allows to
model asymmetric and tail dependent distribution of y.

Theorem 5 (Distribution-free Tyler estimator). The estimator introduced by Definition 7 is distribution-free,
i.e., it does not depend on values of R.

Proof. Following Lemma 3 we can notice that

1 1
_ R 2 2
2= Y P _ uClz isign(R)&. (79)
ly —nllr ||RuCz||f |[uC3 ||

and is robust against extreme realisations of R as does not depend on the values of R. || - || denotes
the Frobenius norm. Rewriting Equation (77) using N realisations of z, z1, . .. zy, we obtain

cod s _mzm__d g Cluuc 0)
N = z,C'z] N = ulu,

O

Tyler’s estimator is invariant under any change of distribution of R i.e., it is distribution - free.
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Theorem 6. The estimator introduced by Definition 7 is MLE estimator of Angular Gaussian Distribution.

1

Proof. Since the probability density function of v = —4€2— is given by
[JuC2 ||
r(3) |c1s
fo(v) = (d) % (81)
2 [[ve 2|
Having N realisations of v, vy, ..., vy, the logliklihood function is given by
log L(vy,...,vN;C) = 3 log fy(vy) = const + N +1log|C7Y| — d 3 log (v,Ctv]
— 2 2=
n=1 n=1 (82)

N Ly 4 ~1,T
:const+5+log|C |—§n;10g(znc zn>

Since P? is an open set, the maximizer of log £ with respect to C is the stationary point. By setting

dlogL

E

N d & 2sTs, — diag(y1§n)

(2C — diagC) — = 2 =0

2 § 2,1;1 y.C 1y 53
N T

NC—d) #) 1( #) ==0
n=1 (Yn - P‘) C (yn—n)

what is precisely equal to Equation (77). [

The solution to the estimation problem of Tyler’s estimator is in a form x = f(x) what allows us
to use the fix - point iteration scheme with 7 4 1 step

: d¥ (v (yn—p)
clit) — 4 Yn —H#) Yn . 84
N ;(yn*u) COED (y, —p)" e

Lemma 4. The fix-point algorithm Equation (84) converges to aC for a scalar a > 0.

T
Proof. Since f(C) = £ Y % being continuous on P4, the algorithm converges to C
forascalara > 0. O

Following (Tyler 1987), let us define the following function M : P4 — P9 such that

\»—I
Nl—

d T2 (yo =) (yu—m)T
- (85)
N; Yn_ﬂ)r(yn_ﬂ)T

The fixed point iteration step Equation (84) can be rewritten as
cli+1) — @)z (C(i)(—l)) ci)z (86)
Denoting T') = C()(=1) and M¥) = M (F(i)) we get

i+ — r@O3pO D103 (87)
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In order to deal with the lack of uniqueness of the solution to Equation (84), (Tyler 1987) restricts
the search space to the positive definite symmetric matrices with trace equal to 1 by

r(i)%M(o(—l)r(z‘)% _ r<i>%M<i><jl)r(i)% . @)

I“(i—i—l) —
tr (r(ﬁ%M(z‘)(fl)r(z)%) tr (TOMO1)

That way, it is ensured that t7(T'"*1)) = 1. In his study, Tyler proves that the convergence of the
sequence I''t1) to a non singular matrix I implies M (T') = I;

Theorem 7. (Tyler 1987) If the following conditions hold:

1. the sampleyy, ..., yn does not contains values equal to
2. the empirical distribution measure Fy of the sample satisfies F (S) < %, for S being a any proper

subspace of R? '
3. for some the mth smallest eigenvalue of T'%), it is holds that Apd > randWFN (S) where S is any proper
subspace of R?

then T — T and M (T) = 1.

Remark 8. Generally, to deal with lack of uniqueness of Equation (84), a common practice is to impose additional
constraints such as |C| = 1 as in (Frahm and Jaekel 2010) or trC = 1 as in (Tyler 1987) or (Sun et al. 2016).

6.1.3. S-Estimators

As the robustness of the class of M-estimators is highly influenced by dimensionality of the data,
we introduce an extension to the problem Equation (71) and define class of S-estimator. The class
was firstly introduced by (Rousseeuw and Yohai 1984) and extended to multivariate setting by
(Davies 1987)

Definition 8 (S-estimator). S-estimator of a parameter © is defined as a solution to
Oy = min |C| subject to
N = Dun |C| subj

(89)
[ 0 (@(y,©)dEx (v) = by

where the constant by is a mean of p(dy), where dy, is a Mahalanobias distance of the random vector y under
an assumption of the distribution of y, that is

NI

%=Ehw@ﬂ=Em0y—mnﬂ:r?

® -1
dr. 90
d>A p(n) f (r) " ar (%0)
2
Function p is defined as in Definition 5.

Remark 9. If p is continuous then the problem Equation (89) is an equality.

In the study of (Davies 1987), the author investigates the properties of S-estimators under the
assumption of elliptically distributed y. (Davies 1987) gives the general assumptions on function
p: Ry — [0,1], e.g., being continuous on its domain and zero ¢ such that 0 < ¢ < co. The author
proves that under these assumptions and if nby > d 4 1, Equation (89) has at least one solution for non
singular estimate ® = (y, C).

The work of (Davies 1987) proves consistency of the estimator @y and its uniqueness under these
assumptions. When additionally p has a continuous third derivative, the solution to Equation (89),
is asymptotically normal with —% convergence.
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Let us denote € = 1 — by. Following (Davies 1987), if N (1 —2¢) > N + 1, and the sample is in
general position, that is no more that d points of the sample lies on (d — 1)-dimensional hyperplane,
then the finite-sample breakdown point is equal to
[Ne] +1

= lim € =€ =€*. (91)

*
€ =
N n—o0

In the paper (Lopuhaa 1989), there is introduced an alternative definition of S-estimators,
considering function p : Ry — [0,00) and investigates the relation between S-estimators and

M-estimators. He imposes stronger assumptions on the function p than are required to make his

14
supp*’
Under the assumption of elliptical distribution of y, the author shows that any solution to the

problem Equation (89) satisfies Equation (71). He rewrites the problem Equation (89) as the similar to
Equation (74) using Lagrangian

definition of S-estimators equivalent to Davis’s definition (Davies 1987) by transforming p — 1 —

1 N
log Ly (©,A) =1og|C| — A lN Z p(dy) — bol (92)
to obtain the equivalent set of equations

LN u(dn) (yn—p) =0

% ZN u(dy)

(ON,A) = argmin log Ly (O, A) =
2ot 5y v —m) " (yu—m) =C,

0cO,AeR

(93)

foru(s) = @ and v(s) = P(s)s — p(s) + bp. The term —p(s) + by substitutes Lagrangian multiplier A.
Hence, every solution to Equation (89) is a solution to Equation (93) what is M-estimator problem
defined by Equation (75).

The author of (Lopuhaa 1989) argues that S-estimators achieve the same asymptotic variance as
corresponding M-estimators but as dimensionality of data increases, they have higher breakdown
point than M-estimators.

Remark 10. The example of functions which satisfies the conditions of uniqueness and existence of Equation (89)
are Tuckey’s biweight functions, that is

56

s2 s 2
S5+ 2 |s| <k s\2
—J 2 22T 6Kt — _ (2
ps (s) {"62 sl > k = Pp(s) =s (1 <k) ) 1 gp(s) (94)
The breakdown point of the S-estimator for p =1 — Su’;BpB is equal to
N
s INA=bo)]+1 _ {SUPPBE{pB(yiy)}}+1 (95)
€~ N - N

7. Data

The examined data consists of male and female mortality and demographic data obtained
from Human Mortality Database (http://www.mortality.org) for European countries. The Table 1
summarizes the availability of the data for all the countries included into the study.

We use four different sets of mortality data, raw data: Birth counts and Death counts, and life
tables: Life Expectancy at Birth and Death Rates. We conduct separate analysis for female and
male populations.
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The time series vary in terms of the number of available observations. The longest time series is
provided by Swedish and French mortality data, starting from 1751 and 1816, respectively. The shortest
time series are given for Greece and Slovenia, 1983-2014 and 1981-2013, respectively.

With regards to Birth counts and Life expectancy at Birth, the information per country in time
point is one dimensional, i.e., annual counts of live births by sex in year ¢ (Birth counts) or the expected
life span of a person born in year t (Life Expectancy at Birth). Hence, a single observation in these
cases consists of the number of entries equal to the number of countries included into the study, that is
31 listed in Table 1, per gender.

Table 1. The availability of the demographic data per country (Human Mortality Database).

Country Life Expectancy (E0) No. Births Death Rate (m,) No. Deaths
Austria 1947-2014 1871-2014 1947-2014 1947-2014
Belarus 1959-2014 1959-2014 1959-2014 1959-2014
Belgium 1841-2015 1840-2015 1841-2015 1841-2015
Czech Republic 1950-2010 1947-2014 1950-2014 1950-2014
Denmark 1835-2014 1835-2014 1835-2014 1835-2014
Estonia 1959-2013 1959-2013 1959-2013 1959-2013
Finland 1878-2012 1865-2012 1878-2012 1878-2012
France 1816-2014 1806-2014 1816-2014 1816-2014
East Germany 1956-2013 1946-2013 1956-2013 1956-2013
West Germany 1956-2013 1946-2013 1956-2013 1956-2013
Greece 1981-2013 1981-2013 1981-2013 1981-2013
Estonia 1959-2013 1959-2013 1959-2013 1959-2013
Hungary 1950-2014 1950-2014 1950-2014 1950-2014
Iceland 1838-2013 1838-2013 1838-2013 1838-2013
Ireland 1950-2014 1950-2014 1950-2014 1950-2014
Italy 1872-2012 1862-2012 1872-2012 1872-2012
Latvia 1959-2013 1959-2013 1959-2013 1959-2013
Lithuania 1959-2013 1959-2013 1959-2013 1959-2013
Luxembourg 1960-2014 1950-2014 19602014 1960-2014
Netherlands 1850-2012 1850-2012 1850-2012 1850-2012
Norway 1846-2014 1846-2014 18462014 1846-2014
Poland 1958-2014 1958-2014 1958-2014 1958-2014
Portugal 1940-2012 1886-2012 1940-2012 1940-2012
Russia 1959-2014 1959-2014 1959-2014 1959-2014
Slovakia 1950-2014 1950-2014 1950-2014 1950-2014
Slovenia 1983-2014 1983-2014 1983-2014 1983-2014
Spain 1908-2014 1908-2014 1908-2014 1908-2014
Sweden 1751-2014 1747-2014 1751-2014 1751-2014
Switzerland 1876-2014 1871-2014 1876-2014 18762014
United Kingdom 1922-2013 1922-2013 1922-2013 1922-2013
Ukraine 1959-2013 1946-2013 1959-2013 1959-2013

The age specific information is provided for Death counts and Death Rates. A single observation
per country in time ¢ describes a number of deaths of people with ages from 0 to 110+ (Death counts)
or number of deaths for ages from 0 to 110+ scaled to the size of that population, per unit of time
(Death Rates). The availability of time series is different among age groups. Usually, the shortest time
series are collected for age groups above 100 years.
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Since the Lee-Carter model with the cohort effect has been already reported to be prone to
over-fitting when fitted to short time series (the currently available mortality data is classified as a short
time series), we decide to work with a data aggregated in the format “5 x 17, i.e., by 5-year age group
per calendar year. The ages are grouped into following stratifications: 0, 1-4, 10-14, 15-19, 20-24,
25-29, 30-34, 35-39, 40-44, 45-49, 5-9, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89,
90-94, 9599, 100-104, 105-110, 110+ as additing additional latent processes increases the number of
parameters to estimate.

A single observation in Deaths or Death Rates consist of the number of entries equal to the number
of countries included into the study (i.e., 31) times the number of age groups, that is 24. It accounts for
the information in time t available for all 31 countries among all 24 age groups.

7.1. Preprocessing of Data

Human Mortality Database (HMD) team applies several preprocessing procedures that aim to
“clean” Death counts and population sizes before using them in order to calculate and distribute
death rates and life tables. The subsequent steps are discussed in the technical report (Wilmoth et al.
2007). The adjustments are applied in order to distribute people of unknown age across age groups
and splitting data into age categories, i.e., from age stratification “5 x 1” to “1 x 1” and from “1 x 1”
to Lexis triangles. The common practice is to use a regression model for splitting deaths counts in
format “1 x 1" to Lexis triangles and apply cubic splines to split “5 x 1” to “1 x 1”. Additionally to
the adjustments applied to Deaths counts, the age specific population size is estimated using four
methods: linear interpolation, intercensal survival, extinct cohorts and survivor ratios.

The life tables are calculated using Lexis triangles and population sizes. Before death rates are
converted into the probabilities of death, the rates at older ages (80 and above) are smoothed using
logistic regression. The “abridged” life tables are calculated based on the Lexis triangles tables rather
than the raw data. It ensures the both sets of tables to contain identical values of life expectancy and
other quantities.

Recall that the smoothing applied to the mortality data can influence the feature extraction and
the diminish the effect of robust versus non-robust versions of feature extraction methodology which
we study in this paper. The topic is further discussed in Section 8.

Additionally to the briefly discussed procedures which have been already applied to the data in
HMD, we needed to adjust the data to provide reliable information about missing values. We notice
the ambiguity in labelling unavailable data which is either denoted by “NA” value or “0”. Death Rates,
Birth counts and Life Expectancy at Birth are unlikely to produce values equal to “0”. Hence we
replace all “0” which appeared in these data sets by “NA”. The zeros which appear in Deaths counts
in older age groups are more difficult to handle as there is no certainty whether there was no person in
particular age group who died or the record has missing values. Due to this fact we decided to limit
our analysis to age groups up to 90 and again replace any “0” by “NA”.

7.2. Missing Data

The following subsection is a summary of different types of missingness across countries,
age groups and sexes which occurs in the demographic data set analysed in our study. The findings
of the subsection are the following: among the Birth related data where a total observation is of
vector-type (one dimensional information per country), the incompleteness of data is due to a general
unavailability of the information per country. However, for Death related data where a total observation
is of matrix-type (a age specific vector of information per country), we notice a patter of single missing
values in time point which fits definition of MAR. In the subsequent section with the empirical
analysis of the data set under the derived framework of Probabilistic Principal Component Analysis,
we assumed MAR type of missingness. Extending this assumption requires calculating the integral
from Equation (34) and incorporating it to PPCA framework.
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7.2.1. Observed Patterns of Missingness

Missing data appear when no value is available for a component of the observation vector.
The Probabilistic Principal Component Analysis with missing data discussed in Section 5.3 handles
missing data by filling them with projection using principal components that are calculated from
available information. Thus, the more missing data is present for a given variable, the less impact this
variable has on the specification of the projection over the assumptions. The results for variables with
missing data are more influenced by our assumption of the distributions from Section 5, as will be
discussed in detail below.

In order to handle missing values we need to understand and study how their pattern. In the
following part we demonstrate the three patterns of missingness which are present in the analysed
data sets:

Type 1: no information about a variable in a few observations for a given country;

Type 2: no information about a variable in all observations for a given country;

Type 3: general unavailability of information about all variables for a country except for a limited set
of observations.

The analysis is conducted separately for four data sets and sexes. We show the results for four
cases where we segment the data among four proportions of missing entries per total observation
with maximal percentage of missing entries equal to: 0%, 25%, 50% and 75%. For instance, a single
observation of Birth counts is 31 dimensional. When we analyse the data set with respect to the case
50%, we exclude all observation, when the number of missing entries per observation is greater than
0.5 x 31 =~ 15.

In the case of no missing data, that is 0% for Death counts and Death Rates in Females, the number
of rows without missing entries is too small for any significant analysis. Due to this fact we drop the
minimal number of columns which have the highest number of missing entries in order to collect
significant sample for our analysis.

The results of the analysis are similar among Birth counts and Life Expectancy at Birth and Death
counts and Death Rates. Hence we discuss the patterns of missingness in Number of Births and
Number of Deaths.

7.2.2. Births

The left plot of Figure 1 shows the percentage of missing entries per observation vector of total
births over all countries considered versus calendar years for Births counts disaggregated for Females
and Males. The sample starts in 1751 (Swedish data) and spans to 2014. Until 1946, the sample has
a percentage of missing entries above 50% (the middle vertical red line on the plot). The sample
of case 25% starts in 1950. We observe the same missing values pattern between female and male
population (the corresponding lines for populations overlap and only the black line, corresponding to
male population, is visible).

Figure 2 indicates the availability of data per country (y axis) versus the calendar year (x axis).
The black colour denotes points in time when the data is not available for a given country. The Swedish
data is not labelled by any black entry except in 2014 as it is the longest time series. Recall that the
missing data pattern which is characteristics for this data set is a limited availability of data for a
given country. From the empirical analysis of the data we learn that the missing entries do not appear
randomly. However, it does not violate the assumed behaviour of missingness and we can still proceed
with the methodology of feature extraction described in the previous parts of the paper.

The red vertical lines correspond to the starting points of the subsamples when the maximum
number of missing entries per row (an observation in time) is equal to (from the left side on
corresponding plots) 75%, 50% and 25%. The subsamples for the cases 25% and 0% provide with
principal components which are determined by almost equal sizes of information from every country
included into the analysis for the examined period of time. However, the calculation of the components
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for the subsample in the case 75% is dominated by the time series of countries which are not available
before 1950. Therefore, the calculated features are more prone to be impacted by the distribution
assumptions and convey less information about dynamics present in the examined period of time that
the components obtained from longer time series.

Births Deaths
100%
75%
50%
25% L\

0% —J
(=] (=] (=) [=] (=] o (=] [=] (=) (o) (=] (=)
w0 (=] w0 [=] [Ye) (=) 0 [=] 0 (=) w0 (=)
= 2 £ 2 2 I = 2 £ =2 2 Q

Figure 1. The percentage of missing entries (y axis) per observation vector over time (x axis) for the
Births counts (left plot) and Deaths counts (right plot) for female (blue line) and male (blacke line)
population. Red vertical lines correspond to the starting points in time of samples when maximum of
missing entries is equal to (from the left side on corresponding plots) 75%, 50% and 25%.

1740
1760
1780
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1820
1840
1860
1880
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Figure 2. The indicator of a missing value (black colour) per country (y axis) over time (x axis) for the
Births counts for female population. Red vertical lines correspond to the starting points in time when
samples with maximum of missing entries is equal to (from the left side on corresponding plots) 75%,
50% and 25%.
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7.2.3. Deaths

The single observation of Death counts is a 504 dimensional vector which reflect the numbers of
death per country and age group in time. The proportion of non missing entries per calendar year,
again disaggregated by gender for Death counts is shown on the right plot in Figure 1. The percentage
of missing entries decreases slower than for Births counts (the slope of the curve is flattener) which
indicates the longer distance between the cases 50% and 25%. We notice the discrepancies in the
patterns of missing values between female and male population. Interestingly, the female population
data has no observations without missing values.

It is also informative to demonstrate the pattern of missing values per age group, as displayed
in Figures 3 and 4 below. Red vertical lines correspond to the starting points in calendar time for
the total proportions of missing data corresponding to the cases 50% and 25%. We observe a new
pattern of missing values: particular variables have a few missing observations within the subsample.
The pattern occurs mainly after 1950 in age groups between 1 and 25 (darker shade of blue for single
observations) or in age group 95-100. The other interesting analysis can be done when we display the
patterns of missigness which are present by age and per country, which is shown in Figures 5 and 6,
again disaggregated by gender. The pattern is present only for the subset of countries. For instance,
data related to the Irish population has higher percentage of missing values among only four age
groups. Still, the dominant pattern of missingness is the availability of the information for a country
which is limited to some period of time.
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Figure 3. Percentages of missing values (denoted by diffrent colours) per observation for Number of
Deaths for Females per age groups (y axis) over time (x axis). The titles of the subplots indicate the case
of missing values (50%, 75%). The percentage for a given country and given age group is computed
dividing number of missing values by number of countries. Red vertical lines correspond to the starting
points in time when the cases 50% and 25% start (from the left to right side on corresponding plots).
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Figure 4. Percentages of missing values (denoted by diffrent colours) per observation for Number of
Deaths for Males per age groups (y axis) over time (x axis). The titles of the subplots indicate the case
of missing values (50%, 75%). The percentage for a given country and given age group is computed
dividing number of missing values by number of countries. Red vertical lines correspond to the starting
points in time when the cases 50% and 25% starts (from the left to right side on corresponding plots).
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Figure 5. Percentages of missing values (denoted by diffrent colours) for Number of Deaths for Females
per country (x axis) and age group (y axis). The titles of the subplots indicate the case of missing values
(25%, 50%, 75%). The percentage of missing values for a given country and an age group is calculated
dividing number of missing values by length of subsample which is different for different cases.
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Figure 6. Percentages of missing values (denoted by diffrent colours) for Number of Deaths for Males
per country (x axis) and age group (y axis). The titles of the subplots indicate the case of missing values
(25%, 50%, 75%). The percentage of missing values for a given country and an age group is calculated
dividing number of missing values by length of subsample which is different for different cases.

8. Feature Extraction from European Demographic Data via Probabilistic Principal
Component Analysis

The following section provides results for the feature extraction using the methodology introduced
in Section 5 and applied to different types of European demographic data sets. The attention is drawn
to the effect of simple and straightforward robustification overviewed in the previous sections which
application we demonstrate on overviewed data sets. The main observation from this study is the
difference in the consistency of the features over time and proportion of missigness for two frameworks,
robust and non-robust. The features calculated using the means of robust estimators are more consistent
over time and over different proportions of missigness that their non robust alternatives. It is especially
visible for the features extracted from data that has not been previously preprocessed, e.g., Birth counts.
The effect of robustification is smaller if a data set has been smoothed as Life Expectancy at Birth.

8.1. The Assessment of the Methodology

We conduct a comparison between robust and non-robust Probabilistic Principal Component
Analysis (PPCA) in a stochastic setting. We undertake this exercise in order to incorporate the most
meaningful eigenvectors as exogenous factors to the model in Equation (8). Each of the datasets
discussed in the section is treated separately, that is, we compute the eigenvectors for Births, Life
Expectancy at Birth, Deaths and Death Rates. Recall, an observation in time f, y;, conveys the
information about a given data set in calendar year t from the 31 countries listed in Table 1. Hence,
an observation of Births or Life Expectancy is 31 dimensional. Since Deaths and Death Rates carry the
information which is age group specific, a single observation in these data sets is equal to the number
of countries times the number of age groups.

The following section summarizes the results of PCA according to

e Population: Females and Males;
e Subsamples referring to maximum allowed proportion of missing values per an observation: 0%
(no missing), 25%, 50% and 75% as discussed in Section 7.2;
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o Type of the standardisation procedure: robust and non-robust, which are used for the estimators
of location and covariance in the PPCA framework.

We use M-estimators of the covariance and mean as a robust alternative to the sample estimators.
As discussed in Section 6.1.2, the class of M-estimator has a very good performance in small dimensions
as its robustness is a function of the dimensionality and not the sample size. Since the data we use
is not a long time series and we standardize every variable marginally (Algorithm 1), this simple
estimator should provide us with reliable outcomes. In particular, we consider the Huber type
M-estimators as discussed in Remark 5 which are characterized by normal asymptotic distribution
with convergence rate of % and several characteristics ensuring both uniqueness and optimality of the
estimation Additionally, it is the estimator of covariance which has the minimal asymptotic variance
among all estimators for Gaussian data. Thus, the choice is consistent with our assumption of normally
distributed data for the treatment of missingness in the PPCA framework which we outlined in
Section 5.

Among the objects which we analyse are eigenvectors, eigenvalues, scores and Mahalanobias
distances which use estimated covariance matrix C = WW7 + 2], calculated by iteratively evaluated
0 and the projection matrix W. The Mahalanobias distance is measured around vector 0 (the data has
been centred), and is therefore given by

d2 = d? (yn, €) = y.C 1yl (96)

The results show how distant from the assumed long term mean is a single observation.

The EM algorithm described in Section 5 provides the eigenvectors corresponding to the k largest
eigenvalues. Due to the specifics of the data (small number of observations), it would be difficult to
incorporate many factors into the model from Equation (8) and achieve reliable estimation results.
This is primarily a result of the curse of dimensionality in the parameter space that would lead in this
case to diffusivity in the resulting likelihood utilised in the estimation. The latent states and static
parameters will become difficult to filter and estimate. Thus, we limit our analysis to k = 3 main
eigenvectors which explain most of the variability as shows the standard PCA with non missing data
conducted separately for each country showed.

8.2. Births

The results of PPCA for Births counts among Females and Males are similar. It is the outcome
which follows general intuition as there is no external factor which influences differently the births of
woman and man in European countries. Also, recall that the Birth counts are the least pre-processed
data set in out analysis.

Figure 7 shows the Mahalanobias distances (x axis) of Number of Births over the time (y axis) for
female (a) and male (b) population. Each sub-panel consists of two plots, which present results for data
being standardized by robust (lower plots) and non-robust (upper plots) estimators of the mean and
covariance matrix. Different colours of lines depict distances for subsamples where maximum allowed
proportion of missigness per an observation is 0%, 25%, 50% and 75%. Recall, that the subsamples
starts in different times and therefore the corresponding results are the outcome of the estimation on
different data with different impacts of distribution assumptions.
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Figure 7. The Mahalanobias distances obtained using Probabilistic Principal Component Analysis
(PPCA) for Females (a) and Males (b) Births over time (x axis). Different colours of lines correspond to
the cases of different percentages of maximal missing values in a signle observation (light blue (75%),
dark brown (50%), dark blue (25%), light brown (0%)). Every subfigure is divided into two subplots
corresponding to robust estimation of standard divinations (upper plot) and sample one (bottom plot).

As expected, the effect of robust standardisation is substantial since the framework
produces features by down-weights outliers in data. The distances which correspond to the robust
standardisation, are more aligned historically, that is, are more 'robust’ when the missingness increases.
It indicates that robust standardisation of data captures more efficiently the characteristics of the
population distribution. Recall the earliest non-robust Mahalanobias distance of 50% case which is
very distant from the statistic in the same calendar year but for the 75% missingness case. For the
robust case, the corresponding distances are more aligned what demonstrates the effect of robustness.

Since the subsample of the 75% missingness case is substantially longer, we expect the PPCA
results to be different as the sample captures more regimes present in demographic data. Also,
the sample has higher number of missing values which are estimated using the projection based on
assumption of normal distribution. It also impacts the outcomes of PPCA.

The eigenvalues of estimated covariance matrices are shown in Figure 8. Different colours of
lines highlight eigenvalues which correspond to different cases of missingness. Upper panels show
the results for non-robust framework whereas bottom plots for the robust one. The magnitude of
eigenvalues as well as the spreads between them over different levels of accepted missigness are higher
for robust case.

The 75% case of missigness results in smaller discrepancies between eigenvalues for robust and
non-robust frameworks. The corresponding eigenvectors exhibit similar behaviour what is shown in
Figure 9. The discrepancies between the robust and non-robust eigenvectors are more significant for
the cases with smaller proportions of missing values per observation. This outcome can be justified by
the fact that the case of 75% is more affected by the priori assumptions of the normal distributions.
The discrepancies between two methods of standardisation got smaller as the projection of missing
values starts to dominate the estimation of the principal components. The robust and non-robust
estimators similarly capture the information about the normal distribution.

The blue dotted vertical lines on the plots of eigenvectors disaggregate the outcomes into
developed and developing countries listed in Table 1. Regardless of the case of missingness
(except 75% case) and type of the standardisation, we notice resembling features for countries from
each of the groups.
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We would expect the alignment of the robust scores as it has been observed for the corresponding
Mahalanobias distances. However, the described PPCA methodology does not re-estimate the mean.
The data is centred one during the initialisation. In the presence of missing values, their projection
changes the mean and the data is centred only at the start of the procedure. This, the mean is only
static when there is no missing data. This simplification of the framework results in different levels of
the scores in Figure 10.
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Figure 8. The eigenvalues obtained using PPCA for Females (a) and Males (b) population of Number
of Birthsfor different percentages of maximal missing entries in rows (x axis). Colours of lines
corresponds to different eigenvalues, first (light brown), second (dark blue) and third (dark brown)
highest. Every subfigure is divided into two subplots corresponding to robust estimation of standard
divinations (upper plot) and sample one (bottom plot).
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Figure 9. The eigenvectors (y axis) over the joint distribution of countries (x axis) obtained using PPCA
for Females in Births. Every row of subfigure corresponds to a different eigenvector. Every column
corresponds to different case of missing values (0%, 25%, 50% and 75%). The blue line corresponds to
robust standardisation whereas red line to non-robust standardisation of data.
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Figure 10. The scores (y axis) over time (x axis) obtained using PPCA for Females in Births. Colours of
lines correspond to the scores calculated on subsample different cases of missing values (0%, 25%, 50%
and 75%, refer to legend). The plots placed in the first row correspond to the results using non- robust
standardization of entry data, where the second row correspond to robust standardisation. The plots
scores, first, second and thirds are ordered by columns.

8.3. Life Expectancy at Birth

As mentioned in Section 7.1, Birth counts are the only data set in our analysis, which has been not
modified or preprocessed before being available in HMD. The stages of several adjustments which
are applied to the Death counts and population sizes result in a smaller number of outliers in Life
Expectancy at Birth. The outcomes of PPCA for the data which is standardized using robust and
non-robust estimators of mean and covariance matrix do not vary so significantly as in Birth counts
over different proportions of missigness.

The robust Mahalanobias distances in Figure 11 are slightly more distant than their non-robust
equivalents. However, the distances for different cases of missing values are similarly aligned in both
cases in contrast to Birth counts. We may observe the same pattern among the scores of three principal
components in Figures 15 and 16.

Figures 12, 13 and 14 show eigenvalues and eigenvectors for Females and Males respectively.
Only the results for the 75% case of missingness exhibit more variation among the standardisation
procedures. Since the subsample corresponding to 75% case is significantly longer, the discrepancies
can be again rationalized by the two reasons: effect of the priori assumption on distributions in
Section 5 and higher number of captured regimes in the data. Moreover, anakysing the outcomes from
the aggregation among the European countries, we notice that the second eigenvector has opposite
signs for the countries of the two countries groups. Recall that its values are more volatile for the male
population of developing countries (except for the case of 75% of missing values).

The obtained scores for Life Expectancy at Birth are shown in Figures 15 and 16. The levels of
scores are very close to zero. It is an expected outcome as we differenced the data since it exhibits
polynomial trend. The distribution of differences is expected to have zero mean. Hence, the scores are
aligned for all the cases of missingness and distributed around zero what is negligibly affected by the
simplification of the discussed framework. However, the two methodologies of the standardisation
result in different magnitudes of scores. Since the corresponding eigenvectors are very similar for two
standardisations, the magnitude is a reliable indicator whether an observation is outlying.
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Figure 11. The Mahalanobias distances obtained using PPCA for Females (a) and Males (b) of Life
Expectancy at Birth over time (x axis). Different colours of lines correspond to the cases of different
percentages of maximal missing entries in rows (light blue (75%), dark brown (50%), dark blue (25%),
light brown (0%)). Every subfigure is divided into two subplots corresponding to the robust estimation
of standard divinations (upper plot) and sample one (bottom plot).
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Figure 12. The eigenvalues obtained using PPCA for Females (a) and Males (b) of Life Expectancy
at Birth data for different percentages of maximal missing entries in rows (x axis). Colours of lines
corresponds to different eigenvalues, first (light brown), second (dark blue) and third (dark brown)
highest. Every subfigure is divided into two subplots corresponding to robust estimation of standard
divinations (upper plot) and sample one (bottom plot).
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Figure 13. The eigenvectors (y axis) over the joint distribution of countries (x axis) obtained using PPCA
for female population of Life Expectancy at Birth. Every row of subfigure corresponds to different
eigenvector. Every column corresponds to different level of maximum missing values per observation
(0%, 25%, 50% and 75%). The blue line corresponds to robust standardisation whereas red line to
non-robust standardisation of data.
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Figure 14. The eigenvectors (y axis) over the joint distribution of countries (x axis) obtained using
PPCA for male population of Life Expectancy at Birth. Every row of subfigure corresponds to different
eigenvector. Every column corresponds to different level of maximum missing values per observation
(0%, 25%, 50% and 75%). The blue line corresponds to robust standardisation whereas red line to
non-robust standardisation of data.
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Figure 15. The scores (y axis) over time (x axis) obtained using PPCA for female population of Life
Expectancy at Birth. Colours of lines correspond to the scores calculated on subsample where are
different levels of maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend).
The plots placed in the first row correspond to the results using non- robust standardization of entry
data, where the second row correspond to robust standardisation. The plots of scores are ordered

by columns.
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Figure 16. The scores (y axis) over the time (x axis) obtained using PPCA for Males of Life Expectancy
at Birth. Colours of lines correspond to the scores calculated on subsample where are different levels of
maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend). The plots placed
in the first row correspond to the results using non- robust standardization of entry data, where the
second row correspond to robust standardisation. The plots of scores are ordered by columns.

8.4. Deaths

The Mahalanobias distances for the Deaths counts exhibit resembling behaviour for Females
regardless of the standardisation procedure. The discrepancies between the statistics are more
substantial for the male population what is highlighted in Figure 17.
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The eigenvalues of the non-robust estimator of the covariance matrix does not vary between the
cases of missigness up to 50%. The plots are shown in Figure 18. For the case 75% the first eigenvalue
starts to dominate more significantly than for other missigness cases, especially for Females. On the
other hand, the robust eigenvalues are more volatile. Especially the results for Females provide
unexpected outcomes for the case 50% in comparison to the case 25% even though the subsamples for
these cases differ only by a few calendar years in mid 1940. With regards to the Males, we observe that
the dominance of first eigenvalue increases with the number of missing values.

The corresponding eigenvectors are shown in Figures 19 and 20 for Females and Males respectively.
The colours of the heatmaps correspond to the magnitude of components of eigenvector which are
country (x axis) and age group (y axis) specific. The non-robust estimation results in the eigenvectors
with smaller magnitude and smoother within the age groups and countries. Recall, that the distribution
of colours for the robust case has bigger spreads between values (so called “bumps”) what is
highlighted by more intense colours of blue and red. The exception is made for the case of 75%.

The vertical black dotted lines on the heatmaps divides the countries listed on x axis as developed
(left side) and developing (right side). Again, this order of results stresses the differences between the
eigenvectors within these two groups of countries. The first eigenvector for developing countries has
the break point around age group of 40 for all cases of missingness for the male population and all
cases except 50% for the female population. The eigenvector for developed countries has a break point
for age group in 80 for female population and 75 for male population with additional break in 35 for
0% and 25% cases.

The case of 75 is analysed separately. The first eigenvectors do not differ within two types of
standardisation but exhibit the structure which is country group specific. The developed countries
are characterized by the uniformed values around zero for all age groups. The vectors of developing
countries are more volatile with breaks around 20-30 for Males and even more volatile for Females.
The second eigenvector differs within both types of standardisation and among two groups of countries.
It is almost constant around zero for Males in developing countries and more volatile for Males in
developed countries with breaks in age groups between 50 and 60. Second eigenvector for Females
resembles third eigenvector of Males .

non-robust non-robust
60
“

2

robust robust
)

“
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Figure 17. The Mahalanobias distances obtained using PPCA for Females (a) and Males (b) of Number
of Death over time (x axis). Different colours of lines correspond to the cases of different percentages of
maximal missing entries in rows (light blue (75%), dark brown (50%), dark blue (25%), light brown
(0%)). Every subfigure is divided into two subplots corresponding to robust estimation of standard
divinations (upper plot) and sample one (bottom plot).
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Figure 18. The eigenvalues of Deaths counts obtained using PPCA for Females (a) and Males (b)
over diferent cases of missing entries (x axis). Colours of lines corresponds to different eigenvalues,
first (light brown), second (dark blue) and third (dark brown) highest. Every subfigure is divided into

two subplots corresponding to robust estimation of standard deviations (upper plot) and sample one
(bottom plot).

The scores are presented in Figures 21 and 22. The second and third scores of Males are smoother

in contrary to results for Females. The exception is made for the case 75% which results vary both
among sexes and standardization procedures.
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Figure 19. The eigenvectors of Death counts (y axis) over age groups (y axis) and countries (x axis)
obtained using PPCA for Females. Every row of subfigure corresponds to different eigenvector.
Every column corresponds to different level of maximum missing values per observation (0%, 25%,
50% and 75%). The blue line corresponds to robust standardisation whereas red line to non-robust
standardisation of data.
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Figure 20. The eigenvectors of Death counts (y axis) over age groups (y axis) and countries (x axis)
obtained using PPCA for Males . Every row of subfigure corresponds to different eigenvector. Every
column corresponds to different level of maximum missing values per observation (0%, 25%, 50%
and 75%). The blue line corresponds to robust standardisation whereas red line to non-robust
standardisation of data.
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The scores (y axis) over time (x axis) obtained using PPCA for female population of Number

of Deaths. Colours of lines correspond to the scores calculated on subsample where are different levels

of maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend). The plots placed

in the first row correspond to the results using non- robust standardization of entry data, where the

second row correspond to robust standardisation. The plots of scores are ordered by columns.
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Figure 22. The scores (y axis) over time (x axis) obtained using PPCA for male population of Number

of Deaths. Colours of lines correspond to the scores calculated on subsample where are different levels

of maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend). The plots placed

in the first row correspond to the results using non- robust standardization of entry data, where the

second row correspond to robust standardisation. The plots of scores are ordered by columns.

8.5. Death Rates

The analysis for Death Rates provides with similar conclusions as for Death counts.
The corresponding Figures are 23, 24, 25 and 26 respectively. The only discrepancies are exhibited by
the eigenvalues for Males for the 75% case as they are more aligned and higher in terms of magnitude
from other cases than the corresponding eigenvalues in the Deaths counts analysis.
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As shown in Figures 27 and 28 the robustification does not influenced greatly the estimation of
eigenvectors. As the Deaths Rates are preprocessed and smoothed before being distributed by HMD,
we again conclude that the preprocessing decreased number of outlying data points. In this particular
case, the robust standardisation is similarly informative about the the true distribution as the non
robust one.

Also, recall the similarity of results among different cases of missingness, especially for first
eigenvector. The second and third ones are smoother for high levels of missigness. The colour map is
affected by the scaling parameter (1, —1) which may cause red to become blue, but except this fact,
we see resembling outcomes.

The three most meaningful eigenvectors differ among two groups of analysed countries:
developed and developing. The corresponding results are divided by the vertical black dotted lines.
The first eigenvectors of developed countries is very smooth among age groups. For developing
countries we observe U shape structure with peak in 45-60 age groups for Males and similarly for
Females in the cases with small proportion of missigness. When we allow more missing values,
the eigenvectors for Females in developed countries are closer to zero and flat among age groups
whereas for developing countries are more distant and volatile.
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Figure 23. The Mahalanobias distances obtained using PPCA for female (a) and male (b) population of
Death Rates over time (x axis). Different colours of lines correspond to the cases of different percentages
of maximal missing entries in rows (light blue (75%), dark brown (50%), dark blue (25%), light brown
(0%)). Every subfigure is divided into two subplots corresponding to robust estimation of standard
divinations (upper plot) and sample one (bottom plot).
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Figure 24. The eigenvalues obtained using PPCA for female (a) and male (b) population of Death Rates
for different percentages of maximal missing entries in rows (x axis). Colours of lines corresponds
to different eigenvalues, first (light brown), second (dark blue) and third (dark brown) highest.
Every subfigure is divided into two subplots corresponding to robust estimation of standard divinations
(upper plot) and sample one (bottom plot).
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Figure 25. The scores (y axis) over time (x axis) obtained using PPCA for female population of Death
Rates. Colours of lines correspond to the scores calculated on subsample where are different levels of
maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend). The plots placed
in the first row correspond to the results using non- robust standardization of entry data, where the
second row correspond to robust standardisation. The plots of scores are ordered by columns.
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Figure 26. The scores (y axis) over time (x axis) obtained using PPCA for male population of Death
Rates. Colours of lines correspond to the scores calculated on subsample where are different levels of
maximum missing values per observation (0%, 25%, 50% and 75%, refer to legend). The plots placed
in the first row correspond to the results using non- robust standardization of entry data, where the
second row correspond to robust standardisation. The plots of scores are ordered by columns.
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Figure 27. The eigenvectors (y axis) over the joint distribution of countries (x axis) obtained using PPCA
for female population of Death Rates. Every row of subfigure corresponds to different eigenvector.
Every column corresponds to different level of maximum missing values per observation (0%, 25%,
50% and 75%). The blue line corresponds to robust standardisation whereas red line to non-robust
standardisation of data.
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Figure 28. The eigenvectors (y axis) over the joint distribution of countries (x axis) obtained using
PPCA for male population of Death Rates. Every row of subfigure corresponds to different eigenvector.
Every column corresponds to different level of maximum missing values per observation (0%, 25%,
50% and 75%). The blue line corresponds to robust standardisation whereas red line to non-robust
standardisation of data.
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9. Stochastic Mortality Models for UK utilizing Factor Extraction from European
Demographic Data

In this section we demonstrate the results of incorporating features extracted from European
demographic data in the stochastic mortality model for British female mortality data over a study
period of 1922 to 2014 with 10 years ahead forecasting validation.

The key findings are that the utilisation of demographic features improves the in-sample and
out-of-sample predictive posterior mean Bayesian point estimation and forecasts for the log death
rates. Additionally, the employed robustification methodology reduces the variances of the error terms
in both observation and state equations and produces a better out-of-sample fit than its non-robust
alternative. It indicates that the features extracted in the robust manner are more consistent over time
and capture better the information about the true distribution of the demographic data.

The model which has the smallest mean square error of estimation and prediction adds the
age-specific components to the latent process. It is later referred as DFM-PC-B. However, the other
examined models, which also improve the predictability of the log death rates, are useful in terms
of the interpretation as they reveal the individual country specific impacts of each of the European
countries data on British female log death rates.

9.1. Description of the Models

Before presenting the real data example we note that all the Bayesian models developed and
Markov chain samplers constructed were first tested on synthetic case studies in which the true
parameters and state variables are known. The performance was found to be very good and this
provides confidence in the accuracy and performance behaviour of the methods and models developed.
The synthetic study results are provided in technical appendix and are not discussed in this paper.
The use of synthetic data enables us to validate the estimation by Forward-Backward Kalman Filter
with Gibbs Sampler. The models that we considered in our simulations and empirical studies are
labelled by

LCC: Lee-Carter model with the stochastic cohort effect given by Equations (2) and (3);
DFM-PC: Demographic factor model which incorporates ¢; into LCC given by Equation (8).
Please refer to Appendix B for illustration how the models from this class are created;

DFM-PC-B: The mean of first principal component of Birth counts as a static parameter,

age specific element of gy;
DFM-PC-D-r: The first principal component of Death counts ( which is age and country specific)

as an exogenous factor, one element of ¢ corresponds to a country specific subvector of the

component, robust standardisation;
DFM-PC-D-s: The first principal component of Death counts ( which is age and country specific)

as an exogenous factor, one element of ¢; corresponds to a country specific subvector of the

component, non-robust standardisation;
DFM-PC-Mx-r: The first principal component of Death Rates ( which is age and country specific)

as an exogenous factor, one element of ¢ corresponds to a country specific subvector of the

component, robust standardisation;
DFM-PC-Mx-s: The first principal component of Death Rates ( which is age and country specific)

as an exogenous factor, one element of ¢ corresponds to a country specific subvector of the
component, non-robust standardisation;

The models of the class DFM-PC address Case 1 from Section 3, where factors are incorporated
into the observation Equation (2). The factors are obtained by performing PPCA jointly on the set of
data for all countries listed in Table 1 excluding the following specific countries: United Kingdom (as it
is our response variable), Greece and Slovakia (due to short time series).

DFM-PC-B incorporates the mean of the first principal component of the Birth counts which is
a country specific vector. The matrix F is a 21 x 21 diagonal matrix with the mean on the diagonal.
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Hence, ¢; which correspond to the model DFM-PC-B, is a 21 dimensional, age specific state process
and attempts to capture an age-specific dynamic in addition to the cohort-period effects.

The models DEM-PC-D-r, DFM-PC-D-s and DEM-PC-Mx-r and DFM-PC-Mx-s incorporate the
first component of Death counts and Death Rates, respectively. Recall that the components for these
data sets can be presented as age specific and country specific matrices as shown in Section 8. Due to
the high dimensionality of the problem, we want the one element of ¢; to correspond to the subvector
of the first component which is specific only for one country. Such a subvector has 21 dimensions
which correspond to the age groups. Hence, ¢; is a 28 dimensional country specific state process.
The country specific subvectors of the first components are placed in the columns of the 21 x 28 matrix
F. The last letter of the name of the models DFM-PC-D and DFM-PC-Mx denotes the type of the
standardisation which is applied to the data before performing PPCA: robust (by M-estimator) or
non-robust (sample estimator).

In the following part we analyse the population mortality from United Kingdom based on the
models listed above and Bayesian methodology studied in this paper. We then examine the models in
terms of the forecasting properties of death rates.

9.2. Setup

For the Bayesian estimation of models, we assume the priors given in the Appendix A.3 and A.4
to be

ko ~ N(0,10%), 70 ~N(0,10%), ay ~N(0,10%), By~ N(0,10%),
o7 ~1G(2.01,0.01), 6~ N(0,10%),7 ~ N'(0,10%), A ~ N|_17)(0,10%),
0% ~1G(2.01,0.01), 02 ~1G(2.01,0.01), gf ~ N(0,10%,)

[Q];; ~ N(0,10%), ¥; ~N(0,10%), o5 ~1G(2.01,0.01).

The number of iterations of the Markov chain is 50,000 for LCC model and 200,000 for other
models with 90% burn-in. The chain is initialised at « = y1.7, Bx = 21—1, (762 = 0.0005, 6 = —0.005,
n = —0.02, 02 = 0.01, U?Y = 0.0005, U'QZ =1.0,[Q];; = % for m being either number of countries or
number of age groups (depending on the model). The convergence of the sampler has been tested on
synthetic data studies. The synthetic data study revealed that the estimation of the drift parameters
corresponding to the factor state process model ¢; converges very slowly for shorter time series such
as those found in mortality data. Thus, we decided to set these parameters to zero and do not sample
them in this study.

9.3. Estimation of Static Parameters

Estimated values of the static parameters (except «,  and Q) for the British female mortality data
(1922-2003) are shown in Table 2. The rest of the estimated static parameters is displayed in Figures
29, 30 and 31. The results are shown under different models listed in the first columns of the table or
indicated by the colour of lines on the plots.

The static parameters of the factor process under DFM-PC-B model are age specific. In addition to
the cohort and period effect, they provide supplementary information related to the corresponding age
groups. Figure 29 shows the estimated diagonal elements of the transition matrix ) under the model.
The parameters with values close to unity indicate that the factor state process corresponding to these
parameters have a slowly decreasing dynamic. The elements of the state processes which correspond to
the values of parameters closer to zero, are characterized by higher decrease. The parameters which are
negative and close to zero indicate that the corresponding latent state processes fluctuate around zero.

With regards to DEM-PC-B model which incorporates age specific latent processes (supplementary
to cohort effect), the elements of Q) which are positive and close to zero, describe the decreasing
dynamic of the corresponding age specific processes. These latent processes are shown to have more
significant impact on death rate modelling when the sample starts, however, this impact decreases over
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time and the cohort effect becomes sufficient to model log death rates in these age groups. For instance,
recall the age groups between 70-80 in Figure 29. Such process can be interpreted as a period effects
which are specific for particular age groups. The elements of Q) which are close to unity describe
the latent process which have consistent impact or its lack over the time. If they have an effect on
log death rates (i.e., their domain is not close to zero), they covey age-specific information which is
supplementary to cohort and period effect and consistently demanded by the model over the time.

With regards to ) estimated under models DFM-PC-D-r, DEM-PC-D-s and DFM-PC-Mx-r and
DFEM-PC-Mx-s, it refers to the country specific features. Here the parameters are related to the
influences of the specific countries on British female log death rates. The plots with the estimates and
their confidence intervals are displayed in Figure 31. For instance, estimates of () under all models
agrees on lack of effects of Austrian or Bulgarian demographic data on the log death rates over whole
sample span. On the other hand, the estimate of the parameter corresponding to Belarusian eigenvector
is close to unity under all models and therefore highlights the informative effect of the feature on
British log mortality rates which is consistent over the times.

It is worth to point out that the values of estimated variances of the observation and state equations
error terms are higher for DEM-PC-D-s and DEM-PC-Mx-s where the data has been non-robustly
standardized. These models are examined to have a greater mean square error of in-sample and
out-of-sample fit than their robust alternatives as shown in Table 4. Hence, the robustification procedure
employed in this study improved the overall goodness of fit of the considered models. The features
which have been extracted from European demographic data by means of robust estimators of mean
and covariance are shown to provide the information which is consistent over the times and conveys
the better knowledge about the true distribution of the demographic data sets.
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Model A 0 i o2 0% o2 0'3
6.4x1073 2x1073
LCC 0.998 (0.994; 1) —0.154 (—0.331;0.026)  —0.024 (—0.034; —0.014) (6103 69%10°%)  (14x10-3 2.8x10-9) 0.663 (0.449; 0.96)
DFM-PC-B 0.991 (0.968; 1) —0.332 (—0.53; —0.137) —0.005 (—0.01; 0.002) 810~ 5x10~4 0.753 (0.537; 1.055)  0.049 (0.042; 0.057)
: Y ’ R : R (6x107%;9x107%) (4x107%;7x107%) : e : R
1x1073 5x10~*
DEM-PC-D-r  0.949 (0.913;0.992)  —0.246 (—0.415; —0.101)  0.011 (—0.002; 0.021) ©Ox10-4 1.1x10-9) (4104 8x104) 0.39 (0.227;0.739)  0.092 (0.074; 0.113)
DEM-PC-D-s 0.998 (0.993; 1) —0.093 (—0.221;0.029)  —0.019 (—0.025; —0.013) 1.3x10~4 810~ 0.324 (0.152; 0.616)  0.144 (0.114; 0.178)
‘ o ‘ e ‘ Rt (1.1x107%;,1.4x107%)  (5x107%;1.1x1073) ’ R ’ T
8x1074 6x1074 ,
DEM-PC-Mx-r  0.985 (0.959; 0.999) —0.042 (—0.115; 0) —0.013 (—0.02; —0.007) (7104 1x10-%) (4x10-4 8x10-%) 0.044 (0.002; 0.116)  0.08 (0.066; 0.094)
DFM-PC-Mx-s 0.999 (0.995; 1) —0.024 (—0.111; 0.044) —0.02 (—0.03; —0.01) 1210~ L7x10"3 0.036 (0.001;0.137)  0.834 (0.594; 0.994)
) o : T : R (8x107%4,2.1x107%)  (1.2x1073;2.3x1073) R : o
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We did not choose to calculate the MLE estimates of the parameter’s in our models as it has been
documented that even for the standard period-cohort type Lee-Carter stochastic mortality models,
the classical MLE estimation frameworks can produce convergence and estimation challenges due to
gradient based and method of scoring recursive optimization methods getting stuck in local optima of
the marginal likelihood surface. We refer the interested reader to the paper Fung et al. (2017) where we
discuss such issues in more depth. Therefore, instead of resolving the known problems that may arise
with classical MLE estimations of such models, which may be further compounded in the extended
models we developed in the frequentist setting, we have chosen to stick with the Bayesian modelling
paradigm and to report an analogue result to the MLE that may be obtained from Bayesian inference,
in the case of uninformative priors. That is we have relative uninformative priors and so we can report
the Maximum a-postiori (MAP) posterior mode estimator for the parameters as the Bayesian analogue
of the MLE, defined as

¢MAP = argmax 7T(QO:T; 1I)\Y1:T) ©7)
4

for 7t (0o.1, P|y1.7) being a joint posterior density of the states .7 and the vector of static parameters
1 given the observation yy.7 as introduced in Appendix A.

The MAP estimates and MLE should be similar in the case of uninformative priors, with the
advantage that the MAP estimation is obtained via an MCMC sampler output, which is less prone to
the types of estimation challenges experienced in gradient descent methods working directly with the
Instead, as we used fairly uninformative priors, note that the MAP estimate of the posterior is a case of
uninformative priors will correspond to MLE estimates. Please refer to Table 3 for the analogous of
point estimates to the outcomes of Table 2.

Table 3. The MAP estimates of the static parameters (A, 0,1, ag, 0’%, (T,%, 03) of log 1y t.

Model A 0 7 o? o o2 o’

LCC 0999 —0.155 —0.024 0.0064 0.0019 0.6172 -
DFM-PC-B 0998 —0.331 —0.005 8.00x10~% 5.00x107%* 0.7279 0.0487
DFEM-PC-D-r 0948 —0.253 0.012 0.001 500x10~% 0.3234 0.0895

DFM-PC-D-s 0999 —-0.095 —0.02 0.0013 7.00x107% 03005 0.1416
DEM-PC-Mx-r 0.995 —0.023 —0.012 7.00x10~* 6.00x10~* 0.029 0.0818
DFM-PC-Mx-s 1 —0.023 —0.021 9.00x10~* 0.0016 0.0088 0.8583

9.4. Filtering of Latent Variables

The Bayesian posterior mean estimates of the latent stochastic mortality factors in the models
for x; in the top panel and for 7? in the bottom panel of Figure 32. The colours of lines denote the
filtered processes under different models. As expected, adding new state variables related to the
factors significantly changes the dynamics of the period and cohort effect state processes. The blue line
correspond to the cohort=period only LCC model. The increase of «; and decrease of 7? at the end of
the sample is greater for this model in contrast to the the other examined models.
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Figure 29. Bayesian posterior mean estimators with 95% posterior credible intervals for the estimation
of the age-specific diagonal elements of the transition matrix € (x axis ) under DFM-PC-B.

80 85 90 95

Figure 30. Bayesian posterior estimators with 95% posterior credible intervals for the estimation of «
and B under different models (colours of lines) for British female mortality data (1922-2002).
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Figure 31. Bayesian posterior mean estimators with 95% posterior credible intervals for the estimation
of the diagonal elements of the transition matrix Q (x axis ) under DFM-PC-D-r, DFM-PC-D-s,
DFEM-PC-Mx-r and DFM-PC-Mx-s models (colours of lines). The dashed blue line divides the set
of countries into developed (on the left side) and developing (on the right hand side) European
countries, respectively.

The dynamic of the cohort effect latent process vector -y; over time, which is age group specific,
is shown in Figure 34. The panels correspond to the Bayesian posterior mean estimates of the process
under different models. The age group specific features, which has been utilised in DFM-PC-B model,
clearly provide LCC model with supplementary information to the cohort effect state processes.
The corresponding ¢; reduces the variability of the cohort effect process with comparison to the
cohort effect estimated under LCC model (the colours of the surface on DFM-PC-B panel are plain
and variance of the error term is smaller). The state processes corresponding to the factors under
DEM-PC-B model are shown in Figure 33. Recall that in the contrast to the cohort and period effects
processes, the latent process vector ¢; under the model DFM-PC-B has age group specific stochastic
components (x; is calendar year specific and 7 is ‘0" age group and calendar year specific). As x; latent
process estimated under DFM-PC-B is not distant from the corresponding estimated under LCC model
for majority of the sample, we can conclude that the additional state processes given by this model
provide supplementary, age-specific information to the cohort effect process 7.

1920
1940

Figure 32. The Bayesian posterior mean estimates with 95% posterior credible intervals for x;
(upper panel) and cohort effect state process ’y? (lower panel) under different models (colours of lines)
for British female log death rates during 1922-2002.
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Figure 33. The Bayesian posterior mean estimates for ¢ across age groups (y axis) over time (x axis)
under DFM-PC-B model for British female log death rates during 1922-2002.
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Figure 34. The Bayesian posterior mean estimates for the cohort effect latent processes vector v; across
age groups (y axis) over time (x axis) under different models for British female log death rates during
1922-2002.

The models DFM-PC-D-r, DEM-PC-D-s, DEM-PC-Mx-r and DFM-PC-Mx-s are characterized by
the processes which correspond to the country specific vectors with elements related to age groups.
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The models attempt to address the question whether the structure of demographic data from European
countries can be an efficient explanatory variable for British mortality. Figures 32 and 34 show that
dynamics of period and cohort effect state processes are sensitive to different sets of features extracted
from demographic data as well as a standardisation methodology. Figures 33 and 35 provide insight
into how these variables change the information extracted from the models. The information highlight
the impact of the first components of the considered countries on British mortality rates. As the
components are orthonormal, Qfountry indicates the magnitude of this effect. To be consistent with the
country set specific notation from Section 8, the blue vertical line divides the results into two categories:
results for the developed countries (below the blue line) and developing countries (above the blue line).
The processes which moves closely to zero give information that the data of country they correspond
to has small influence on the mortality rates from United Kingdom. The developed models when
incorporating the demographic features from the European countries, indicate the significance of the
factor loading from a given country on the mortality of UK. Hence, we can specify the countries which
has a positive effect on the mortality of United Kingdom (factor state processes are negative), neutral
(factor state processes are fluctuate around zero) or negative (factor state processes are positive and
enlarge log death rates).

For a given model it is not true that all factors which correspond to the age specific vectors of
features from European countries, have an influence in the causal fashion on the UK morality data in
the same way. As such, what we are showing in the plots Figure 31 (or Figure 29 for DFM-PC-B models)
that some countries have very wide posterior credible intervals (the flat posterior) for €3 which is in an
alignment with the findings in Figure 36 (Figure 33 for DFM-PC-B model) where we see that indeed
for those countries the ¢; upon a model indicate insignificant effect on UK log mortality rate. Let us
consider the example of DFM-PC-Mx-s (the red colours of lines on both of the plots) for Belgium (BEL)
and Austria (AUT). We see in Figure 36, that the effect of Austrian factor to the British mortality data,
expressed by the dynamic of ¢9yt, is non-zero over the time. On the other has, the element of g;
corresponding to Belgium, labelled by opg; does not load significantly in any way on the UK mortality
experience. As a consequence we see that the posterior for this country on Q is also very flat when
the credit intervals of () 4y on Austria are significantly narrower. This simply means that the factor
loading of Belgium does not influence the UK mortality experience.

Hence, to conclude this discussion, we note that when we look at the results in Figure 36,
they show the effect of each individual countries influence on the UK mortality experience. In fact,
what we learn is that some countries have a mean of 0 with large uncertainty, these countries maybe
interpreted as not having an influence on the mortality experience of the UK.

The four models are more consistent about the set of countries which does not have any effect
on the log death rates of United Kingdom Females. The models corresponding to the non-robust
standardisation indicate bigger impact of western Europe countries whereas their robust alternatives
indicate the significance of the patterns from Easter and Central Europe countries as Lithua, Poland
or Russia.
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Figure 35. The Bayesian posterior mean estimates for ¢; across countries (y axis) over time (x axis)
under the models from the classes DFM-PC-D and DFM-PC-Mx for British female log death rates
during 1922-2002. The vertical blue line divides sets into developed (on the left side) and developing
(on the right sie) European countries.
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Figure 36. The Bayesian posterior mean estimates with 95% posterior credible intervals for ¢; across
countries (different panels) overtime (x axis) under the models from the classes DFM-PC-D and
DFEM-PC-Mx (colours of lines) for British female log death rates during 1922-2002.

9.5. In-Sample and Out-of-Sample Performance

In this section, we investigate the in-sample and out-of-sample performance of the mortality
models summarized in the introduction to this section. The model selection is based on two
in-sample performance measures, MSE (Mean Square Error) and DIC (Deviance Information Criterion),
whereas the forecasting performance examined based on MSEP (Mean Square Error of Prediction)
using two forecasting distributions of log death rates, the one obtained by Gibbs sampler and the one
provided by Kalman Filter.

9.5.1. Model Selection

The device information criterion is a popular measure in Bayesian setting which trades off model
fit against its complexity (the effective of parameters) as introduced in (Spiegelhalter et al. 2002).
Among the various versions of DIC we decided to use so-called conditional DIC which treats the
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latent states as parameters when calculating the conditional loglikelihood, for details please refer to
(Celeux et al. 2006). The conditional loglikelihood if given by

e o)y

1 % N
10g Ly, ip,,p (¥, 91N YLN) = ~3 Z Z (10g27w€2+ -
€

xX=x1 t=1

By denoting ¢ = (¢:, ) we define the deviance of the model as follows

D(l[)) = _ZIOg‘Cyt\tp (P;y1.n) - (99)

The function / as it is independent of the model specifications, is usually considered to be equal
to 1. Hence, the effective number of parameters is defined as

pp :=D(¢) — D() (100)

where D(¢) is a mean of deviance over different samples of the vector  and D(%) is a deviance of
the posteriori mean of the vector of parameters
bmi. The DIC then is defined as

DIC = D(4) + pp = 2D(¢)) — D() (101)

which can be calculated using the MCMC samples.

In addition to DIC, we calculate the mean square errors (MSE) for considered models, defined as
the mean of the difference between the observed data, y;, and the mean of the in-sample one-step
ahead model forecast given by Kalman Filter, f; = E[y:|¢, y;.;_1)] given in Equation (A3b). Therefore,
we define e; := y; — f; and

MSE(§) := E [eteﬂ (102)

where for the point estimator of the vector of static parameters i we use the vector of posterior means.

9.5.2. Forcasting Distribution

The Bayesian state-space framework allows us to obtain the forecasting distributions using MCMC
samples given by

(YT 4mlyrT) = /7T(YT+M|(PT+mf¢>7T<¢T+m|§0T+m—1/‘/7) 70 (@T, YlyrT) dpdoTTIm  (103)

where 1 is the static parameter vector and ¢; is a state process vector. Following [104 lcstatespace],
by sampling recursively, we obtain the following forecasting distributions, when (i) denotes a sample

N (Al +00,50)

. o o . (104)
Y#lk ~N ("‘(l) + BEZ)G"(TI)Jrk—l + 9(')/03(1)%) :
Alternatively, we can use the forecasting distribution given by the Kalman Filter, that is
@1k ~ N (Aprir1+6,¥)
(105)

YT+k ~ N (OL + th’T+k71 + @, Uezﬂd> .
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for the static parameters which has been estimated by averages within sampled realisation provided
by the Gibbs sampler. Let us define mean square error of prediction function as follow

T
MSEP(yp) := E {(Yﬂk — Eyriklyrr, 9] ) <YT+k —Elyrklyrr, ¢] ) ] (106)

Therefore the mean square error of prediction using MCMC distribution is calculated as a mean
of MSEP(#) over different samples of the vector 3 and denoted by MSEP y;cpic. The mean square
error of prediction using the distribution provided by Kalman Filter is calculated the posterior mean
of the vector of parameters .

9.5.3. Comparison of the Models

We choose for out-of-sample study last 10 years of the available sample for British Female death
rates. The calibration period is 1922-2002. The Table 4 summarizes the calculated mean squared errors
of the estimated observations using Kalman Filter (MSE), deviance information criterion (DIC) and
mean square errors of predictions using the MCMC distribution (MSEP p1cpc) and the Kalman Filter
distribution (MSEPg,;,4,)- The results confirm that adding the features, which has been extracted from
demographic data, as an additional explanatory variable to the LCC model improves both in-sample fit
out-of-sample fit and therefore the predictability of log death rates. The plots with age group specific
prediction results can be found in Figure 37.

Table 4. Mean square error of the fit of the models to the data (MSE), deviance information criterion
(DIC) and mean square errors of predictions using forecasting distributions given by MCMC samples
(MSEP1cpmc) and Kalman Filter (MSEPk 1,01

Model MSE  DIC  MSEPycmc  MSEPxuiman
LCC 0.0097 —3627 0.1778 0.1774
DFM-PC-B 0.0072 —6500 0.0057 0.0062
DFM-PC-Dr  0.0182 —6380 0.0177 0.0251
DFM-PC-D-s  0.0065 —5996 0.0185 0.0156
DFM-PC-Mx-r 0.0081 —8225 0.0111 0.0129
DFM-PC-Mx-s 0.0174 —3951 0.0692 0.0285

For the in-sample performance, the MSE and DIC agree to the group of two best performing
models, DFM-PC-B and DFM-PC-Mx-1, however are conflicted with regards to the group of two worse
performing models. Due to assessing the performance of the model considering its complexity,
DIC more successfully captures the models which result in poorest out-of-sample performance,
LCC and DFM-PC-Ms respectively. Especially it is worth to notice significant over-fitting of the
LCC model which is further investigated in Section 10. Recall, that using MSE as model selection
criterion would not be sufficient to choose the model with good performance. In terms of MSE,
the in-sample performance of LCC model is comparable to DEM-PC-B model, while DIC labels the
model as one with the worse explanatory power.

10. Additional Remarks on Modelling and Forecasting Results

While conducting the study we encountered two issues which are worth separate discussion,
the influence of the stratification on the class of Lee-Carter models and the intuition behind the vector
« in the model Equation (8) when we incorporate the demographic features.

10.1. The Affect of the Stratification and Identification Constraints on Estimation of Stochastic Lee-Carter
Type Models

We draw the readers attention at this point to the substantially lower predictive accuracy of the
Lee-Carter cohort (LCC) model in comparison to the models which employ demographic factors,
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as shown in Table 4. This is especially important since such LCC models, without factors have
been previously documented to have better out-of-sample performance for UK data when no age
stratification is applied.

We explain the steps we have taken to explore this feature that the reviewer has pointed out.
Firstly, we clarify this is not a problem with the sampler or the prior specification, rather it is related
to the particular suitability of different model structures under particular assumptions in the model.
We explore this, specifically with respect to age group stratification and its influence on the model fit
and performance.

Please note that the stratification was adopted, where we looked at 20 sets of age groups in 5 year
buckets to reduce the dimensionality of the model, of course this can influence the model fit and the
assumptions made regarding model simplification and cohort interpretation. Therefore, we decided to
include additional studies to investigate these effects more carefully and in the process we believe we
may also address the question raised by the reviewer on this point. Our attention has been drawn to
two points: rapid increase of x; in 2000 and the substantially lower predictive accuracy of Lee-Carter
cohort (LCC) model in comparison to the models which employ demographic factors as shown in
Table 3. Since the LCC model has been documented to has better out-of-sample explanatory power for
the UK data when there is no stratification, we decided to undertake an additional investigation. In
particular, in this new class of studies, we explore in more detail the effect of age stratification and the
appropriate choice of adjustment of model assumptions and identification constraints to be performed
in order to compare models in a meaningful manner. The details are described below and in the
manuscript in Section 10. The notation of the models which we decided to analyse are the following

LC: Lee-Carter model
10g Myt = Ky + ﬁth/

with the constraints

Zﬁx = 1/ ZKf = 0/
x t
LCC: Simplified Lee-Carter cohort model
logmyt = tx + Bkt + Vt—x,

with the constraints
IN—X1

Y Bx=1,) k=0, Y =0
X t

c=t1—Xxp

LCCF: Lee-Carter full cohort model

log Myt = &x + ,Bth + ,BZ')’tfx/

with the constraints

EN—X1

Zﬁx:LZﬁz:lr;Kl‘:Or 2 Ye = 0.

c=t;1—xp

In this study we consider two age group stratifications, the 1 x 1 study which has 100 age groups
per year and the more parsimonious class of models given by the 5 x 1 age group stratification with
21 age groups. Since the number of ages groups differs among stratified and non-stratified mortality
data, that is, we have 21 age groups for the data in “5 X 1” format, we expect that the parameters and
latent variables, which are estimated using above constraints, may differ in magnitude. Therefore,
in order to ensure comparability of the results when we examine the stratification effect on the family
of Lee-Carter models, one must therefore to standardize the magnitude of parameters and variables
of models in order to compare between the stratified and non-stratified case. We demonstrate in the
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new studies that such a problem may be resolved via a simple scaling adjustment to the identification
constraints in order to resolve this issue. Hence, we introduce the scaling parameter a > 0. The models
with imposed adjustment are denoted by lower index adj as follows

LC,4;: Lee-Carter model
10g Myt = By + ,Bth/

with the constraints .
Z,Bx - ZKt - O/
X a 5
LCC,4;: Simplified Lee-Carter cohort model
10g Myt = &y + ﬁth + Yi—x,

with the constraints
IN—X1

0/ Z r)/C = 0

c=t1—Xp

Q| =

L=

LCCF,4;: Lee-Carter full cohort model

’ ZKt
t

10g Myt = Kx + ﬁth + ﬁZ'thxr

with the constraints

Lastly, in order to distinguish between the results of the models for stratified and non-stratified
data, we denote the models for stratified data with the lower index “5 x 1” and for non-stratified data
with “1 x 17, for instance, the results for the Lee-Carter model LC for stratified data are denoted by
LCsy1 and the results for the same model for a data without any stratification are denoted by LC; 1.

10.1.1. The Estimates of the Static Parameters and Filtered Latent Variables

The list of models, which have been examined and are discussed in this subsection, is given in the
first column of Table 5. In addition to LC, LCC and LCCF models, we include into the comparison

also the models with adjusted constraints for the mortality data in format “5 x 1” with the adjustment
_ #agegroups 1x1 __ 100
parameter a = 3 22— ———=

~ #agegroupsbxl — 21
in the 1 x 1 stratification and the 5 x 5 stratification of the age groups in the mortality data.

The Bayesian posterior estimators of the static parameters a, and p across age groups are shown
in Figure 38 when the Bayesian posterior mean estimates of period effect x; and cohort effect state
process ')f? are shown in Figure 39.

The first straightforward remark on the investigation is to note that there is an inconsequential
influence of both the stratification and the adjustment to the identification constraint for stratification,
when investigating the estimation of the level vector of the model, as denoted by parameter vector a.

Also, the basic Lee-Carter models is not affected by the stratification as both its in-sample and
out-of-sample quality of fit is comparable among data with format “5 x 1” and “1 x 1”. However,
the estimates of B for LCs, are greater in the magnitude in comparison to LC; 1 model which appears
to be an offset by a smaller slope of the filtered x;. Importantly, we note that when the adjustment
to the number of age groups is imposed, the B and «; for LCs1 44; are in line to those of LCyx; and
the model still keeps comparable explanatory power. This observation gives us the intuition that the
stratification influences mainly the cohort effect. This is something that we intuitively can understand
due to the interplay between age stratification and cohort effect.

~ 4.762 being a proportion between the number of age groups in
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Table 5. Mean square error of the fit of the models to the data (MSE) and mean square errors of
predictions using forecasting distributions given by MCMC samples (MSEP yscp1c) and Kalman Filter
(MSEPg 11man)- The models highlated by bold font exhibit significant levels of over-fitting.

Model MSE  MSEPycamc  MSEPkaiman
LCiy1 0.0128 0.0577 0.0568
LCsy1 0.0113 0.0457 0.0457
LCs.x1,0dj 0.0116 0.0512 0.0516
LT 0.0079 0.0249 0.0243
LCCs, 0.0097 0.1778 0.1774
LCCsy14qj  0.0099 0.1664 0.1625
LCCF,; 0.2588 0.4735 0.6150
LCCFs51 0.0107 0.0458 0.0464
LCCFsy1,44; 0.0131 0.0481 0.0508

The results in Table 5 shows that the out-of-sample quality of the fit for the LCCs,1 model is
significantly lower than the corresponding result for LCCy 1. As the adjustment, that is LCCs 1 44
model, produces similar outcomes, the discrepancy in the out-of-sample quality of fit between LCC
model applied to “5 x 1”7 and “1 x 1” data is not caused by the smaller number of age groups and
therefore different magnitude of estimates of § and «; (recall Figures 38 and 39). Since the discrepancy
of the in-sample explanatory power is smaller between the models, we observe that the LCC model
tends to over-fit when applied to stratified data.

We begin discussion of these results by noting the following finding. There appears to be
an interplay present between the model parsimony and the bias and variance in the results for both
in-sample fits and out-of-sample forecasts, as reflected by the Mean Squared Error (MSE) results,
which is more largely affected by the model structure rather than stratification effects.

For instance, we see that the more parsimonious model choices, corresponding to say the three
LC sub-family of models always had a larger MSE than the less parsimonious class of simplified LCC
model. That is the in-sample MSE improved by around an order of magnitude when we incorporated
extra structure corresponding to the cohort feature. This was not influenced by the age stratification
reformed. We conjecture that although the LC models will have potentially lower variance, due to less
model parameters to be estimated, the in-sample MSE is still worse generally due to increased bias
that may arise from not capturing sufficiently the stochastic structure of the data.

Furthermore, we also see a pronounced effect of stratification on the out-of-sample forecast
performance of the simplified class of LCC models in which no adjustment was made for the
stratification effect. This indicates that the adjustment we propose to use when undertaking age-group
stratification can substantially reduce the bias in the resulting model estimates when we compare
between the simplified LCCs,1 model and the adjusted form.

Thirdly, we observe that the most flexible class of LCC model, the non-simplified LCCF class of
models was significantly affected by removing the age stratification of 5 x 1 compared to the 1 x 1
case. To understand this, we have significantly increased the dimension of the model parameters to be
estimated in the LCCF; 1 compared to the LCCFs 1. This we believe produces a poor in sample and
out-of-sample MSE and MSEP due to the resulting over-fitting and increased variance in the model
estimates, compared to the simplified LCC model equivalents. However, importantly the stratification
effect is significant here, the dimension reduction in model parameters in the LCCFs5,1 compared to
the LCCFj «; reduces the variance in the estimates of the mortality in sample and out-of-sample as
well as providing additional degrees of freedom to also reduce the bias that arises from the constrained
version of the LCCs1 model, resulting in the optimal MSE and MSEP performance.
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Figure 37. 10-year out-of-sample forecasted log death (y axis) rates of different age groups
(different subplots) under different models (colours of lines) with corresponding prediction intervals.
Calibration period: 1922-2002
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Figure 38. Bayesian posterior estimators with 95% posterior credible intervals for the estimation of «
and B under different models (colours of lines) for British female mortality data (1922-2002).

10.2. The Estimates of the Intercept for the Factor Model DEM-PC-D-r

The following study addresses the interpretation of the estimates of « under the the new class
of stochastic mortality factor model in comparison to the standard Lee-Carter models without the
matrix with demographic factors. Please refer to Section 10.2. The argument we proposed to interpret
« is adjusted to the fact that we have the exogenous factors incorporated into our model compared
to standard Lee-Carter model. As such, we argue that the the interpretation of the intercept should
now incorporate both «, the classical intercept, and the term F;g; corresponding to the intercept which
arises from the exogenous factors. In the time series context this is considered as a stochastic intercept.
Hence the interpretation of & typically adopted in the classical stochastic Lee-Carter type period-cohort
models, does not hold under the new model, since we have now incorporated the additional structure
corresponding to the regression term from the demographic factors. The expression F;g; which is
added to the observation equation provides with time-varying supplementary information to the
static level given by «. To validate this claim we have undertaken the additional studies which
demonstrate when we combine the « with this component of the model, the posterior mean of this
quantity behaves in analogues fashion to what you would expect on the posterior mean of « in the
standard, non-factor class of Lee-Carter models. This is interesting as it shows the factor influence and
additional interpretation to the level contributed by the long-term demographic exogenous factors.
The plot in Figure 40 shows the Bayesian posterior mean estimates with 95% creditable intervals of
o« + Frol averaged over time, whereas Figure 41 illustrates the posteriori mean over time. The level of
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the expression on either of plots is below zero and behaves in a fashion we would have expected from
« in standard Lee-Carter models. It confirms our interpretation as well as answers the question asked
by the reviewer.

K

100

-100

-200

-300

1920
1940
2000

Figure 39. The Bayesian posterior mean estimates with 95% posterior credible intervals for x;
(upper panel) and cohort effect state process 7Y (lower panel) under different models (colours of
lines) for British female log death rates during 1922-2002.
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Figure 40. The Bayesian posterior mean estimates with 95% posterior credible intervals average over
time for « + F;¢; for DFM-PC-D-r.
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Figure 41. The Bayesian posterior mean estimates of « + FtQtT over time for DFM-PC-D-r. Colours of
lines are related to the age groups (the elements of the vector ).

11. Conclusions

We developed and presented a comprehensive study which focuses on the analysis and the
incorporation of demographic data into state-space framework for stochastic mortality modelling.
We have extended the well-known Lee-Carter model with stochastic cohort effect by introducing new
state processes which correspond to the age-specific dynamic of European female log death rates.

We showed by means of Probabilistic Principal Component Analysis the ideas of extracting the
meaningful features from demographic data of European countries and applying them as explanatory
variables to the mortality estimation and forecasting. In the presence of short time series and
different types of missingness, the suggested methodology aims to be as parsimonious as possible.
By analysing of the extracted features, we found more evidences about region specific mortality
structures. Also, the features exhibit significant sensitivity to the methodology of estimation of
moments. As overviewed in Section 8, the robust alternatives to the sample estimators provide with
more consistent results regardless to the number of missing entries, especially if the data has been not
preprocessed or smoothed.
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The results of applying studied models to the British female log mortality data showed that
incorporating the features extracted from European demographic data provide valuable information
about the mortality forces which affect British population. Also, the models with dynamic factors
exhibit better in-sample and out-of-sample fit than the Lee-Carter model with the cohort effect.

As an additional outcome of the study, we analyse the effect of the stratification of the data on the
family of Lee-Carter Model. In Section 10 we argue that the stratification influences mainly the cohort
effect process and requires more flexibility of modelling than provided by simplified Lee-Carter cohort
model. The investigation showed that the standard Lee-Carter model has similar performance for
stratified and none-stratified data, whereas simplified Lee-Carter cohort model is prone to significant
overfitting when fitted to stratified data. Also, the investigation shows that stratification helps to
resolve the issues of overfitting related to Lee-Carter full cohort due to smaller dimensionality of the
observation vector.

There are a few ways in which the paper can be further extended. First of all, with appropriate
data it would be straightforward to conduct similar analysis for extended data set, as for gender
and region specific disaggregation of mortality and demographic data with the inclusion of various
population related factors such as cause-of-death Murray and Lopez (1997); (Girosi and King 2008)
or more recently (Gaille and Sherris 2015), midlife conditions as in Gavrilov and Gavrilova (2015)
or migration. Secondly, considering different distribution priori assumptions and introducing the
methodology to handle more advanced patterns of missigness would benefit in better explanatory
power and even more consistent interpretability. We can also improve the framework of feature
extraction to account for fat tail distributions by means of different robustification methodologies
or extensions to Principal Component analysis such as Independent Component Analysis and their
functional alternatives as in Shang and Hyndman (2016).
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Appendix A. Bayesian Modelling and Sampling of Demographic Factor Model Extension to the
Period-Cohort Stochastic Mortality State-Space Models

In this appendix section we explain the Bayesian models developed for the estimation of the
demographic factor model extension to the period-cohort stochastic mortality state-space models
that are applied in this paper. These are based on the frameworks detailed and developed in
Fung et al. (2016) and Fung et al. (2017).

Appendix A.1. Bayesian Model Development and Inference for Stochastic Mortality Models

The observation and state equations Equations (5a) and (5b) imply that the cohort model that we
have formulated here belongs to the linear-Gaussian class of state-space models. As a result one can
perform efficient maximume-likelihood or Bayesian estimation on fitting the model to data as discussed
in detail in Fung et al. (2016). In this paper we focus on Bayesian inference so that the forecasting
distribution can take into account parameter uncertainty.

To achieve these inference goals we must first develop the Bayesian models. In this section
we detail the Bayesian estimation of the cohort model Equations (5a) and (5b) and its extensions
incorporating population information to state-space formulation Equations (8a) and (8b). We firstly
note that the models belong to the linear and Gaussian class of state-space models. As a result one
can apply an efficient MCMC estimation algorithm based on Gibbs sampling with conjugate priors
combined with forward-backward filtering as described in Fung et al. (2016). We describe procedures
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using the notation of general cohort model Equations (5a) and (5b) and indicate the differences to
considered extensions.

We borrow the notation from the LC cohort model Equations (5a) and (5b) and indicate similarities
and differences between Equations (5a) and (5b) and Equations (8a) and (8b) while developing the
estimation algorithm. In the general setting, our target density is

7 (@o.1, ¥ |y1.1) (A1)

where @q.1 is a vector of latent variables and 1 is a vector of static parameters. In the case of
the cohort LC model @o.7 := (%o.1, 'nglT'- .. ,’ygf’T) is the p 4+ 1 dimensional (for each t) latent state
vector and ¢ = (ocx3;xp,[SXZ;XP,H,U,A,UE,U,%, ?y
For extended models, we add vectors of global factors latent variable ¢; and its static model parameters.

) is the 2p — 1 dimensional static parameter vector.

Recall that our proposed identification constraint is given by Equation (6); therefore only ax,.x, and
Px,:x, are required to be estimated. We perform block sampling for the latent state via the so-called
forward-filtering-backward-sampling (FFBS) algorithm (Carter and Kohn 1994) and the posterior
samples of the static parameters are obtained via conjugate priors. The sampling procedure is described
in Algorithm 2, where N is the number of MCMC iterations performed.

Algorithm 2 MCMC sampling for 7w (@o.7, ¥ |y1.1)

1. Initialise: ¢ = (©),

2. fori=1,...,Ndo

3:  Sample (pg:)T from 77(¢o.7|® "V, y1.7) via FFBS (Appendix A.2).
4 forh=1,...,2p—1do

5: Sample lp;(li) from (¢, |q)g:)T, tp(_izl, y1.7), (Appendix A.3)
o wherey!) = (p{",. Lyl ul el ).

7: end for

8: end for

Appendix A.2. Forward-Backward Filtering for Latent State Dynamics

The FFBS procedure requires to carry out multivariate Kalman filtering forward in time and then
sample backwardly using the obtained filtering distributions. For the cohort model Equations (2)
and (3) (or Equations (5a) and (5b)), the conditional distributions involved in the multivariate Kalman
filtering recursions are given by

@1yt ~ N(m_1,Crq), (A2a)
@tly1i—1 ~ N (ag, Ry), (A2b)
Ylyre—1 ~ N (ft, Q). (A2c)
@tly1e ~ N (my, Cy) (A2d)
where
ar=Am;_1+0, Ri=AC_ A" +Y, (A3a)
fi=wa+Ba;, Qi =BRB' +d7l, (A3b)

m; = ay + RtBTQ;1 (yt — ft)/ Ct =Ry — RtBTQleRt. (A3C)
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fort=1,...,T. Since

T T

(o, yir) = [ [ n(@tlpeirr, ¢ yrr) = [ [ ml@il@eir, . y1:), (A4)
t=0 t=0

We see that for a block sampling of the latent state, one can first draw @ from N(mrt, Cr) and then,
fort =T —1,...,1,0 (that is backward in time), draws a sample of @¢|g, .y, recursively given a
sample of ;1. It turns out that @¢|e, ,,,p,y,.r ~ N (ht, Hi) where

hy = m; + CtATRt_.h (@r41— ari1), (A5a)
H; = Ci — GATRLAC,, (A5b)

t+1

based on Kalman smoothing (Carter and Kohn 1994). For the extended models, we simply need
to replace the vectors and matrices of the LC cohort model with objects stressed by tildes from
Section 3.

Appendix A.3. Posteriors for Static Parameters in the Cohort Model

To sample the posterior distribution of the static parameters, we assume the following
independent conjugate priors:

Ay ~ N(ﬁar‘ﬁ)r .Bx ~ N(ﬂﬁrﬁé)/ 6 ~ /\/(ﬁg,ﬁg), o~ N(f‘n/ﬁ%) (Aba)

A~ N (i 03), 07 ~1G(de, be),  of ~1G(ax, by), 03 ~1G(y,by) (A6b)

where Nj_;;) denotes a truncated Gaussian with support [—1,1] and IG(a

an inverse-gamma distribution with mean b/ (4 — 1) and variance b?/((d — 1)?(a — 2)
The posteriors of the static parameters are then obtained as follows:!

,b) denotes
) fora > 2.

<2 T XN 2 a2 2
O g1 (Yt — Bakt — F) + fla0? 0407
D‘X’yi¢/ lp—ax N( 6_D%T+U‘€2 7 D%T+0_€2 7 (A7)
N 0 L1 (s — (ax + 7))kt + figo? o507 A
,Bx|y/(P/ lp—ﬁx ~ 5.2 ZT K2+0.2 ’aZZT K2+0-2 ( 8)
B t=1 "t e B t=1"t £
G2Vl (ki — 1) + figo? G207
Oly, @, p_o ~ N [ L==0 K 0K A9
eas < 52T + o2 53T + o2 (A9)
<2 T o
Yic1(ve — Aveo1) +fiyos G0
[ 1% 1%y
77|y'(P'lP*9 NN( 5’2T+0'2 ,5'2T+0'2 (AlO)
2y (O —17)% )+ faos o303
My, @y~ N1 < (A11)
- Zt (7! 1) +03 "2 (11)? 4 02
Cly.e v . ~IG< % Z Z (Yt — (ax + Bakr +9F)) ) (A12)
X X1 t=
2 T - 1 2
ly, @ ¢_p2 ~1G 50 by + 5 Y (ke — (k-1 +6))° |, (A13)
=1
2 ~ T - 1 L X1 x1 )2
Y9y ~1G | 8yt byt g 2 (0 = At)” ) (Ald)
=

! For simplicity, we denote y = y1.7, ¢ = @o.r and ¢_j, = (1, .., Pr_1, Pur1, - - -, Pop—2).
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Appendix A.4. Posteriors for Static Parameters in the Extended Models

In order to develope sampling algorithm for models incorporating European countries population
information, we add the conjugate priori assumptions to Equation (A6) related to static parameters
of Equation (7)

[Qij ~ N(fia,58), ¥~ N (v, 7). g ~1G(ag by) (A15)

The posteriors of static parameters from Equation (7) are essential for Gibbs backward sampling
regardless of the considered case for the extended model. We refer by small letters i, to ages x;,
Xj € {x1,...,xp}, fori, je {1,...,p}, and letters m, I € {1,...,k} to the components of the matrix F;.
An element labelled as im corresponds to [F;]; ,, or a latent variable 0{"". Then

78 (0" — of 1 [Qim,.) + fiyoy 5507
Yiuly, @ ¥y, ~N [ :, ,
zm|y P 1/’ Yim ( TT—I-OE TT—FU'(%
(i iy @ %100, ~
. ; i .

N UE) ZtT:l [(Qi‘m - ‘Yim - th;éjm Q?ﬁl[ﬂ]im,xh) Q{E—l] + #0‘73 5603 (A16)
- l 7 - 7
0 i (e 1)+ o5 T4 i (Qt71)2 + 03

B kT - 1 T P k ) 2
U§|yf¢fll’—gg ~1G (”Q ach by + 5 ZZ ) (Qltm—‘fim _QtT—l[Q]im,-) )

where @ is a vector of latent variables from Equation (8b) and ¢ is a vector of static parameters updated
to Equation (7). Depends on the cases f extended model, we have the following replacement of the
posterioris from Appendix A.3

Case 1 Global factors F; in the observation equation

52y T B.1T & 002 5252
~ Ox Zt:l (]/x,t - [Bt]x qot) + fla 0% Oy0;
7P Py ™~ p 5 ’ Al17
[y @ s N( 72T + 0?2 02T + o? (A17)
i 05 Ly [yt — (ax +oF + [Felf.00) ] e + fipo? o302
Bly. @ p-p, ~ N s S | (Al8)
Op L= K7 + 0 Of L1 K7 + ¢
2y, ¢ ¢ 2 ~1G <a€+ bg+ Z 2 [yt — (ax + [Be]x, T¢t))2] (A19)
x X1 t=
Case 2 Global factors F; in the state equation of «;
GV — k1 — Fo1) + flgoZ G307
9 @, NN g ~t=1 t t K, oY« , A20
1.3 90 ( 02T + 02 02T + o2 (820)

T . 1& _ 2
il @ ¥_2 ~1G (ﬁK + 5 bt 5 ) [Kt - (Kt_1 1O+ f?qt)} ) (A21)
t=1
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Case 3 Global factors F; in the state equation of ¢

| - ll) N N 57? Zthl (,)/;Cl — )L')/;Cll - Q?[Ft]xlr'> + ﬁWO% 5-%0-% (A22)
11 yl(Pl 79 5’%T+0’% ’&%T+0'% 7
)\|y P, N (622& ):tTil((ryfl /A QtT[Ft]xp')'Yﬁﬂ + ﬁAO’% 5’/%(7% )
Pr¥—A "~ IN[-11 — . ,
- AL (i) e AN
(A23)
2 T, 1&, o \2
Tl ~1G Byt byt L (= A (A24)
t=1

Appendix A.5. Application of the Constraints

The constraints are applied for every iteration of the sampler. Let the current iteration be denoted
by i, then the following procedures are performed:

1. The constraints of the vector B(!) are applied after sampling the arbitrary vector of static

parameters B7), the vector is mapped into a vector of transformed parameters, (V) by the

following rescaling B = Zﬁ i;)(,.) . Then we replace B with () and proceed to the next steps of

X MX

the sampler.
¢

2. The constraints for the latent processes x; ' and <;_ are applied after the finalisation of Forward

Backward. The arbitrary filtered estimates of the processes are transformed to kt(i) = Kt(i) — (0
and ’7t@x = vt(gx — ')"/(i) for ¢ = % Z,Iyzl K;z) and ’7(i) = 7N+;17—1) Zé’i;lx_lxp 751). Then we replace

(i) (i) (i) (i)

x,  with &, and v, with 4, and and proceed to the next steps of the sampler.

If one models the full cohort model the constraints of the vector 7 are applied applied in the
same fashion as for the vector B. For a simplified cohort model, the vector of parameters is set to the
vector of ones and is not sampled.

Appendix B. Description of Stochastic Mortality Models Utilizing Factor Extraction from
European Demographic Data

Recalling the notation from the Equation (8), all models which utilize features extracted from
Demographic data have the following the state-space representation

yi =0+ Bipr ter, & N(0,0%0y), (A25a)
Gi=Agr 1 +O+@;, ®CNOY). (A25b)

As we examine only Case 1 defined in Section 3, the corresponding transition matrices of the
observation and state equations are equal to

By o1 (24m) = ( By | Fy )

(A26)

i [ Axx2 ‘ 022xm
(22+m)x (22+m) — 0% 22 ‘ Qo

where m is the dimensionality of the latent process vector g; which corresponds to the factor matrix F;.
The structure of the matrix depends on the models what is further discussed in the next two subsections.
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Appendix B.1. DFM-PC-B Model

The model is constructed as follow

Step 1: Take the first eigenvector of robustly standardized Birth counts which is of vector-type,

country specific

AUT
1,1

Fla=1 : |
UKR
21,1
Step 2: Take the mean across the countries (components of the first eigenvector vector) which is a scalar
f and use a one per age group latent process to model additional supplementary information per
age group;
Step 3: Incorporate f as elements of the diagonal matrix F

f q 0O --- 0

0 f 0 -0
F=10 0 ° 0 O

0 0 O

00 0 0 f—21><21

The corresponding ¢; is age group specific vector, that is

o= (ol ... )

Appendix B.2. The Models of the Class DFM-PC-D and DFM-PC-Mx

1x21

The models are constructed as follow

Step 1: Take the first eigenvector of robustly standardized corresponding data set which is of
matrix-type, age and country specific

AUT ... fUKR
1,1 1,28
F=| @
AUT ... rUKR
211 21,28 ] 2128

Step 2: Notice that the matrix F is equal to F
Step 3: Use a one per country latent process to model the impact of country specific vector;

The corresponding g; is country specific vector, that is

AUT UKR>
t 1x28

Qf:<Q seer0f
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