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1. Introduction

A spectrally negative Lévy process is a stochastic process with stationary independent increments
and with sample paths of no positive jumps. It often serves as a surplus process in risk theory.
Occupation time also finds applications in risk theory. In the so-called Omega risk model, the Laplace
transform of occupation time is associated with the bankruptcy probability; see Gerber et al. [1] for
more details.

Due to the Wiener–Hopf factorization and excursion theory, many fluctuation results of the
spectrally negative Lévy process can be expressed semi-explicitly in terms of the corresponding
scale functions. Expressions of Laplace transforms of occupation times for spectrally negative Lévy
processes have been obtained in recent years with different approaches; see, for example, Cai et al. [2],
Landriault et al. [3], Loeffen et al. [4] and Li and Palmowski [5].

Using techniques developed in Albrecher et al. [6], in Li and Zhou [7], a Poisson approach is
adopted to find joint Laplace transforms for occupation times over two disjoint intervals for general
spectrally negative Lévy processes. This approach uses a property of Poisson random measure
and can be effectively implemented. With this method, we have also recovered the main results of
Loeffen et al. [4] in Kuang and Zhou [8]. The method can also be easily adapted to study occupation
times of other stochastic processes, as long as the exit problems are solvable and expressions of the
potential measures are available.

In this paper, for a spectrally negative Lévy process, we adopt the Poisson approach to further
find joint Laplace transforms of occupation times (up to the first exit times) over n-disjoint subintervals
resulting from a partition of a finite interval. Equivalently, we find Laplace transforms for weighted
occupation times with step weight functions. The Laplace transforms are expressed in terms of iterated
integrals of the scale functions. In particular, they generalize the results in Li and Zhou [7]. For the
proofs, we use induction and improve the previous arguments of Li and Zhou [7]. Although our
results can also be obtained by solving the integral equations in Li and Palmowski [5], our generic
approach can be easily adapted to handle situations not covered by the integral equations of Li and
Palmowski [5].
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This paper is arranged as follows. In Section 2, we review the basics of spectrally negative
Lévy processes that we need for this paper and introduce generalized versions of the scale functions.
Section 3 contains the main results with proofs, and Section 4 provides the conclusions.

2. Spectrally Negative Lévy Processes

Let X = (Xt)t≥0 be a spectrally negative Lévy process, that is, a stochastic process with
stationary independent increments and with no positive jumps, defined on a filtered probability
space (Ω, (Ft)t≥0,P) with the natural filtration (Ft)t≥0 generated by X. We also assume that X is
not the negative of a subordinator. Denote by Px the probability law of X given X0 = x, and the
corresponding expectation by Ex. Write P and E when x = 0. Because of the Lévy process, X allows
no positive jumps, and its Laplace transform always exists and is given by

EeλXt = eψ(λ)t,

for λ ≥ 0, where

ψ(λ) = µλ +
1
2

σ2λ2 +
∫
(−∞,0)

(eλx − 1− λx1{x>−1})π(dx),

for µ ∈ R, σ ≥ 0 and the σ-finite Lévy measure π on (−∞, 0) satisfying
∫
(−∞,0)(1 ∧ x2)π(dx) < ∞.

Furthermore, there exists a function Φ : [0, ∞) −→ [0, ∞) defined by

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}, for q ≥ 0.

We first recall the definition of a q-scale function W(q). For q ≥ 0, the q-scale function of process X
is defined on [0, ∞) as the continuous function with Laplace transform specified by∫ ∞

0
e−λyW(q)(y)dy =

1
ψ(λ)− q

for λ > Φ(q), (1)

with initial value W(q)(0) := limx↓0 W(q)(x). The function W(q) is unique, positive and strictly
increasing for x ≥ 0. For convenience, we extend the domain of W(q) to the whole real line by
setting W(q)(x) = 0 for x < 0. Write W = W(0) whenever q = 0. It is known that W(q)(0) = 0 if and
only if process X has sample paths of unbounded variation.

Write
Z(q)(x) := 1 + q

∫ x

0
W(q)(y)dy.

The next identities on scale function are first noticed in Loeffen et al. [4]. For a > 0,

(q− p)
∫ a

0
W(p)(a− y)W(q)(y)dy = W(q)(a)−W(p)(a),

(q− p)
∫ a

0
W(p)(a− y)Z(q)(y)dy = Z(q)(a)− Z(p)(a).

(2)

Many fluctuation results for spectrally negative Lévy processes can be expressed in terms of scale
functions; see, for example, Kyprianou [9] and Kuznetsov et al. [10]. We list some of those that are
needed in this paper. Define exit times

τ−a := inf{t > 0 : Xt < a}, and τ+
a := inf{t > 0 : Xt > a},
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with the convention inf ∅ = ∞. For 0 < x < a and q ≥ 0, it is well known that

Ex[e−qτ+a ; τ+
a < τ−0 ] =

W(q)(x)
W(q)(a)

, (3)

and

Ex[e−qτ−0 ; τ−0 < τ+
a ] = Z(q)(x)−W(q)(x)

Z(q)(a)
W(q)(a)

. (4)

The following expression is for potential measure of process X killed upon exiting interval [0, b].
For 0 < x < b and p ≥ 0,

∫ ∞

0
Px{t < τ+

b ∧ τ−0 , Xt ∈ dy}e−ptdt =

(
W(p)(x)W(p)(b− y)

W(p)(b)
−W(p)(x− y)

)
dy. (5)

In this paper, we generalize scale functions W(q) and Z(q) as follows. For any λ0, λ1, λ2, . . . , λm ≥ 0,
0 = a0 ≤ a1 ≤ . . . ≤ am and x ∈ R, write

W(λ0)
(a0)

(x) := W(λ0)(x), Z(λ0)
(a0)

(x) := Z(λ0)(x),

and for n = 1, . . . , m

W(λ0,...,λn)
(a0,...,an)

(x) := W(λ0,...,λn−1)
(a0,...,an−1)

(x) + (λn − λn−1)
∫ x

an
W(λn)(x− y)W(λ0,...,λn−1)

(a0,...,an−1)
(y)dy, (6)

Z(λ0,...,λn)
(a0,...,an)

(x) := Z(λ0,...,λn−1)
(a0,...,an−1)

(x) + (λn − λn−1)
∫ x

an
W(λn)(x− y)Z(λ0,...,λn−1)

(a0,...,an−1)
(y)dy, (7)

where, for x < an, the integral is understood as 0. Observe from the above definitions that

W(λ0,...,λn)
(a0,...,an)

(x) = W
(λ0,...,λj)

(a0,...,aj)
(x) and Z(λ0,...,λn)

(a0,...,an)
(x) = Z

(λ0,...,λj)

(a0,...,aj)
(x) (8)

for 1 ≤ j ≤ n− 1 and x ∈ (−∞, aj+1]. In addition, for 0 ≤ i ≤ n and λi = λi+1 = . . . = λn,

W(λ0,...,λi ,...,λi)
(a0,...,ai ,...,an)

= W(λ0,...,λi)
(a0,...,ai)

and Z(λ0,...,λi ,...,λi)
(a0,...,ai ,...,an)

= Z(λ0,...,λi)
(a0,...,ai)

.

Using the Poisson approach, Li and Zhou [7] show that for λ0, λ1 > 0, 0 = a0 < a1 < a2 and
0 = a0 < x < a2,

Ex

[
e−λ0

∫ τ+a2
0 1Xs∈(0,a1)

ds−λ1
∫ τ+a2

0 1Xs∈(a1,a2) ; τ+
a2

< τ−0

]
=

W(λ0,λ1)
(0,a1)

(x)

W(λ0,λ1)
(0,a1)

(a2)

and

Ex

[
e−λ0

∫ τ−0
0 1Xs∈(0,a1)

ds−λ1
∫ τ−0

0 1Xs∈(a1,a2) ; τ−0 < τ+
a2

]
= Z(λ0,λ1)

(a0,a1)
(x)−

W(λ0,λ1)
(0,a1)

(x)

W(λ0,λ1)
(0,a1)

(a2)
Z(λ0,λ1)
(0,a1)

(a2).

We end this section by presenting explicit expressions of the above-mentioned generalized scale
functions for two examples.
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If X is a standard one-dimensional Brownian motion with scale function

W(q)(x) =
1√
2q

(e
√

2qx − e−
√

2qx), for x ≥ 0.

One can easily verify that

W(λ0,λ1)
(0,a1)

(x) =
λ0 − λ1

2
√

λ0λ1

(
e(
√

2λ0−
√

2λ1)a1
√

2λ0 −
√

2λ1
+

e−(
√

2λ0+
√

2λ1)a1
√

2λ0 +
√

2λ1

)
e
√

2λ1x

− λ0 − λ1

2
√

λ0λ1

(
e(
√

2λ0+
√

2λ1)a1
√

2λ0 +
√

2λ1
+

e−(
√

2λ0−
√

2λ1)a1
√

2λ0 −
√

2λ1

)
e−
√

2λ1x

(9)

and

W(λ0,λ1,λ2)
(0,a1,a2)

(x) =
(λ0 − λ1)(λ1 − λ2)

2
√

2λ0λ1λ2

(
e(
√

2λ0+
√

2λ1)a1
√

2λ0 +
√

2λ1
+

e−(
√

2λ0−
√

2λ1)a1
√

2λ0 −
√

2λ1

)

×
(

e−(
√

2λ1+
√

2λ2)a2
√

2λ1 +
√

2λ2
e
√

2λ2x − e−(
√

2λ1−
√

2λ2)a2
√

2λ1 −
√

2λ2
e−
√

2λ2x

)

− (λ0 − λ1)(λ1 − λ2)

2
√

2λ0λ1λ2

(
e(
√

2λ0−
√

2λ1)a1
√

2λ0 −
√

2λ1
+

e−(
√

2λ0+
√

2λ1)a1
√

2λ0 +
√

2λ1

)

×
(

e(
√

2λ1+
√

2λ2)a2
√

2λ1 +
√

2λ2
e−
√

2λ2x − e(
√

2λ1−
√

2λ2)a2
√

2λ1 −
√

2λ2
e
√

2λ2x

)
.

The corresponding Laplace transforms for occupation times then follow readily from Theorem 1
and Theorem 2.

If X is a compound Poisson process, i.e.,

Xt = µt−
Nt

∑
i=1

ξi, t > 0,

where µ > 0, ξi are i.i.d variables, which are exponentially distributed with parameter ρ > 0 and Nt is
an independent Poisson process with intensity a > 0. Then, the Laplace exponent is given by

ψ(t) = µt− at
ρ + t

, t > 0.

For q ≥ 0, the equation ψ(t) = q has two real solutions {−g(q), Φ(q)} such that

g(q) =
1

2µ

(√
(a + q− µρ)2 + 4µqρ− (a + q− µρ)

)
and

Φ(q) =
1

2µ

(√
(a + q− µρ)2 + 4µqρ + (a + q− µρ)

)
.

The scale function is

W(q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

e−g(q)x

ψ′(−g(q))
, x ≥ 0.
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Thus, one can easily verify that

W(λ0,λ1)
(0,a1)

(x) = Φ′(λ0)eΦ(λ0)x +
e−g(λ0)x

ψ′(−g(λ0))

+
(λ1 − λ0)Φ′(λ1)Φ′(λ0)eΦ(λ0)x

Φ(λ0)−Φ(λ1)
− (λ1 − λ0)Φ′(λ1)Φ′(λ0)eΦ(λ1)x e(Φ(λ0)−Φ(λ1))a1

Φ(λ0)−Φ(λ1)

+
(λ1 − λ0)Φ′(λ0)eΦ(λ0)x

ψ′(−g(λ1))(Φ(λ0) + g(λ1))
− (λ1 − λ0)

Φ′(λ0)e−g(λ1)x

ψ′(−g(λ1))
× e(Φ(λ0)+g(λ1))a1

Φ(λ0) + g(λ1)

− (λ1 − λ0)Φ′(λ1)e−g(λ0)x

ψ′(−g(λ0))(g(λ0) + Φ(λ1))
+ (λ1 − λ0)

Φ′(λ1)eΦ(λ1)x

ψ′(−g(λ0))
× e−(g(λ0)+Φ(λ1))a1

g(λ0) + Φ(λ1)

− (λ1 − λ0)e−g(λ0)x

ψ′(−g(λ1))ψ′(−g(λ0))(g(λ0)− g(λ1))
+

(λ1 − λ0)e−g(λ1)x

ψ′(−g(λ1))ψ′(−g(λ0))
× e−(g(λ0)−g(λ1))a1

g(λ0)− g(λ1)
.

It is evident that the expression of W(λ0,...,λn)
(a0,...,an)

for general n would be a rather complicated linear
combination of exponential functions.

3. Main Results

We first present several auxiliary lemmas that are of independent interest. The next lemma
generalizes identity (2).

Lemma 1. For 0 = a0 ≤ a1 ≤ . . . ≤ an ≤ x, λ0, λ1, . . . , λn ≥ 0, q ≥ 0, and n ∈ N

(q− λn)
∫ x

an
W(q)(x− y)W(λ0,...,λn)

(a0,...,an)
(y)dy = W(λ0,...,λn−1,q)

(a0,...,an)
(x)−W(λ0,...,λn)

(a0,...,an)
(x) (10)

and

(q− λn)
∫ x

an
W(q)(x− y)Z(λ0,...,λn)

(a0,...,an)
(y)dy = Z(λ0,...,λn−1,q)

(a0,...,an)
(x)− Z(λ0,...,λn)

(a0,...,an)
(x). (11)

Proof. The proof of identity (11) is similar to that of identity (10). We only prove identity (10).
Applying definition (6), changing the order of integrals, and then, by identity (2), we have

(q− λk)
∫ x

ak

W(q)(x− y)W(λ0,...,λk)
(a0,...,ak)

(y)dy

= (q− λk)
∫ x

ak

W(q)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

+ (q− λk)(λk − λk−1)
∫ x

ak

W(q)(x− y)dy
∫ y

ak

W(λk)(y− z)W(λ0,...,λk−1)
(a0,...,ak−1)

(z)dz

= (q− λk)
∫ x

ak

W(q)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

+ (q− λk)(λk − λk−1)
∫ x

ak

W(λ0,...,λk−1)
(a0,...,ak−1)

(z)dz
∫ x

z
W(q)(x− y)W(λk)(y− z)dy

= (q− λk)
∫ x

ak

W(q)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

+ (λk − λk−1)
∫ x

ak

W(λ0,...,λk−1)
(a0,...,ak−1)

(z)
(

W(q)(x− z)−W(λk)(x− z)
)

dz

= (q− λk−1)
∫ x

ak

W(q)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy− (λk − λk−1)
∫ x

ak

W(λk)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

= W(λ0,...,λk−1,q)
(a0,...,ak)

(x)−W(λ0,...,λk)
(a0,...,ak)

(x),

where we use definition (6) again for the last equation.



Risks 2017, 5, 8 6 of 14

It follows from Lemma 1 that, for an+1 = an,

W(λ0,...,λn ,λn+1)
(a0,...,an ,an+1)

= W(λ0,...,λn−1,λn+1)
(a0,...,an−1,an+1)

and Z(λ0,...,λn ,λn+1)
(a0,...,an ,an+1)

= Z(λ0,...,λn−1,λn+1)
(a0,...,an−1,an+1)

.

Lemma 2. For any 0 = a0 ≤ a1 ≤ . . . ≤ an+1, λ0, λ1, . . . , λn ≥ 0, q ≥ 0 and x ∈ R, we have

(q− λn)
∫ an+1

an
W(q)(x− y)W(λ0,...,λn)

(a0,...,an)
(y)dy = W(λ0,...,λn−1,q)

(a0,...,an−1,an)
(x)−W(λ0,...,λn ,q)

(a0,...,an ,an+1)
(x) (12)

and

(q− λn)
∫ an+1

an
W(q)(x− y)Z(λ0,...,λn)

(a0,...,an)
(y)dy = Z(λ0,...,λn−1,q)

(a0,...,an−1,an)
(x)− Z(λ0,...,λn ,q)

(a0,...,an ,an+1)
(x). (13)

Proof. Identities (12) and (13) for x < an follow from Equation (8).
For x ≥ an, by definition (6) and Lemma 1, we have

(q− λn)
∫ an+1

an
W(q)(x− y)W(λ0,...,λn)

(a0,...,an)
(y)dy

= (q− λn)
∫ x

an
W(q)(x− y)W(λ0,...,λn)

(a0,...,an)
(y)dy− (q− λn)

∫ x

an+1

W(q)(x− y)W(λ0,...,λn)
(a0,...,an)

(y)dy

= W(λ0,...,λn−1,q)
(a0,...,an)

(x)−W(λ0,...,λn)
(a0,...,an)

(x)−
(

W(λ0,...,λn ,q)
(a0,...,an+1)

(x)−W(λ0,...,λn)
(a0,...,an)

(x)
)

= W(λ0,...,λn−1,q)
(a0,...,an)

(x)−W(λ0,...,λn ,q)
(a0,...,an+1)

(x).

The proof of identity (13) is similar.

The following result has been first pointed out in Loeffen et al. [4].

Lemma 3. For any λ0, λ1 ≥ 0, and 0 ≤ a ≤ x ≤ b, 0 ≤ y < a,

Ex[e−λ1τ−a W(λ0)(Xτ−a
− y); τ−a < τ+

b ]

= W(λ0)(x− y) + (λ1 − λ0)
∫ x

a
W(λ1)(x− z)W(λ0)(z− y)dz

− W(λ1)(x− a)
W(λ1)(b− a)

(
W(λ0)(b− y) + (λ1 − λ0)

∫ b

a
W(λ1)(b− z)W(λ0)(z− y)dz

)
and

Ex[e−λ1τ−a Z(λ0)(Xτ−a
− y); τ−a < τ+

b ]

= Z(λ0)(x− y) + (λ1 − λ0)
∫ x

a
W(λ1)(x− z)Z(λ0)(z− y)dz

− W(λ1)(x− a)
W(λ1)(b− a)

(
Z(λ0)(b− y) + (λ1 − λ0)

∫ b

a
W(λ1)(b− z)Z(λ0)(z− y)dz

)
.

Lemma 4. For any λ0, . . . , λn ≥ 0, 0 = a0 < a1 . . . < an and an−1 ≤ x ≤ an, n ≥ 2,

Ex[e
−λn−1τ−an−1 W(λ0,...,λn−2)

(a0,...,an−2)
(Xτ−an−1

); τ−an−1
< τ+

an ]

= W(λ0,...,λn−1)
(a0,...,an−1)

(x)− W(λn−1)(x− an−1)

W(λn−1)(an − an−1)
W(λ0,...,λn−1)

(a0,...,an−1)
(an)

(14)
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and

Ex[e
−λn−1τ−an−1 Z(λ0,...,λn−2)

(a0,...,an−2)
(Xτ−an−1

); τ−an−1
< τ+

an ]

= Z(λ0,...,λn−1)
(a0,...,an−1)

(x)− W(λn−1)(x− an−1)

W(λn−1)(an − an−1)
Z(λ0,...,λn−1)
(a0,...,an−1)

(an).
(15)

Proof. We only prove identity (15) by induction. The case of n = 2 follows from Lemma 3. Suppose
that identity (15) holds for n = k. Then, by Lemma 2, for n = k + 1, we have

Ex[e
−λkτ−ak Z(λ0,...,λk−1)

(a0,...,ak−1)
(Xτ−ak

); τ−ak
< τ+

ak+1
]

= Ex[e
−λkτ−ak Z(λ0,...,λk−3,λk−1)

(a0,...,ak−2)
(Xτ−ak

); τ−ak
< τ+

ak+1
]

− (λk−1 − λk−2)
∫ ak−1

ak−2

Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)Ex[e
−λkτ−ak W(λk−1)(Xτ−ak

− y); τ−ak
< τ+

ak+1
]dy.

(16)

Suppose that identity (15) holds for n = k, we use definition (7) to expand the right-hand side of
the identity (15). By Lemma 3 and the inductive assumption, the above quantity is equal to

Z(λ0,...,λk−3,λk−1)
(a0,...,ak−2)

(x) + (λk − λk−1)
∫ x

ak

W(λk)(x− y)Z(λ0,...,λk−3,λk−1)
(a0,...,ak−2)

(y)dy

− W(λk)(x− ak)

W(λk)(ak+1 − ak)

(
Z(λ0,...,λk−3,λk−1)
(a0,...,ak−2)

(ak+1) + (λk − λk−1)
∫ ak+1

ak

W(λk)(ak+1 − y)Z(λ0,...,λk−3,λk−1)
(a0,...,ak−2)

(y)dy
)

− (λk−1 − λk−2)
∫ ak−1

ak−2

W(λk−1)(x− y)Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)dy

− (λk − λk−1)(λk−1 − λk−2)
∫ ak−1

ak−2

Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)
∫ x

ak

W(λk)(x− z)W(λk−1)(z− y)dzdy

+
W(λk)(x− ak)

W(λk)(ak+1 − ak)
(λk−1 − λk−2)

∫ ak−1

ak−2

W(λk−1)(ak+1 − y)Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)dy

+
W(λk)(x− ak)

W(λk)(ak+1 − ak)
(λk − λk−1)(λk−1 − λk−2)

×
∫ ak−1

ak−2

Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)
∫ ak+1

ak

W(λk)(ak+1 − z)W(λk−1)(z− y)dzdy.

Notice that

(λk−1 − λk−2)
∫ ak−1

ak−2

Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)
∫ x

ak

W(λk)(x− z)W(λk−1)(z− y)dzdy

= (λk−1 − λk−2)
∫ x

ak

W(λk)(x− z)
∫ ak−1

ak−2

W(λk−1)(z− y)Z(λ0,...,λk−2)
(a0,...,ak−2)

(y)dydz

=
∫ x

ak

W(λk)(x− y)Z(λ0,...,λk−3,λk−1)
(a0,...,ak−2)

(y)dy−
∫ x

ak

W(λk)(x− y)Z(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy.

With cancelations the right-hand side of Equation (16) is equal to

Z(λ0,...,λk−1)
(a0,...,ak−1)

(x) + (λk − λk−1)
∫ x

ak

W(λk)(x− y)Z(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

− W(λk)(x− ak)

W(λk)(ak+1 − ak)

(
Z(λ0,...,λk−1)
(a0,...,ak−1)

(ak+1) + (λk − λk−1)
∫ ak+1

ak

W(λk)(ak+1 − y)Z(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy
)

= Z(λ0,...,λk)
(a0,...,ak)

(x)− W(λk)(x− ak)

W(λk)(ak+1 − ak)
Z(λ0,...,λk)
(a0,...,ak)

(ak+1).

Therefore, identity (15) holds for n = k + 1.

We next present the main results on Laplace transform of joint occupation times for spectrally
negative Lévy processes.
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Theorem 1. For 0 = a0 < a1 < . . . < an, λ0, λ1, . . . , λn−1 ≥ 0 and 0 ≤ x ≤ an, we have

Ex

e
−

n−1
∑

i=0
λi
∫ τ+an

0 1(ai ,ai+1)
(Xs)ds

; τ+
an < τ−0

 =
W(λ0,...,λn−1)

(a0,...,an−1)
(x)

W(λ0,...,λn−1)
(a0,...,an−1)

(an)
. (17)

Proof. Write ωn(x) for the left-hand side of Equation (17). By the strong Markov property and lack of
positive jumps, for x < an−1, we have

ωn(x) = ωn−1(x)ωn(an−1). (18)

We proceed to prove this theorem by induction. The case for n = 1 is obvious. Let us suppose
that identity (17) holds for n ≤ k. By identities (3) and (18), the assumption for n = k and Lemma 4,
for n = k + 1, ε > 0 and ak + ε ≤ ak+1, we have

ωk+1(ak + ε)

= Eak+ε[e
−λkτ+ak+1 ; τ+

ak+1
< τ−ak

] +Eak+ε[e
−λkτ−ak ωk+1(Xτ−ak

); τ−ak
< τ+

ak+1
]

=
W(λk)(ε)

W(λk)(ak+1 − ak)
+

ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
Eak+ε[e

−λkτ−ak W(λ0,...,λk−1)
(a0,...,ak−1)

(Xτ−ak
); τ−ak

< τ+
ak+1

]

=
W(λk)(ε)

W(λk)(ak+1 − ak)
+

ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

{
W(λ0,...,λk)

(a0,...,ak)
(ak + ε)− W(λk)(ε)

W(λk)(ak+1 − ak)
W(λ0,...,λk)

(a0,...,ak)
(ak+1)

}
.

(19)

For each i = 0, . . . , k, let Ni be an independent Poisson process with rates λi and write
0 < Ti

1 < Ti
2 < . . . for the sequence of arrival times for Ni. We also assume that the Poisson processes

(Ni) are independent of process X. Observe that

ωk+1(x) = Px

{
∩k

i=0

{
{Ti

j} ∩ {s : s < τ+
ak+1

< τ−0 , Xs ∈ (ai, ai+1)} = ∅
}}

,

where we have used a property of the Poisson process. The simplest version of this property is

P{{T1
j } ∩ B = ∅} = e−λ1L(B)

for any Borel set B ⊂ [0, ∞) and Lebesgue measure L.
For convenience, let

Dj := {0, . . . , j− 1, j + 1, . . . , k}, λ :=
k

∑
i=0

λi, λj := λ− λj, (20)

and

A : =
k−1

∑
i=0

λi

∫ ak+ε

ak

∫ ∞

0
e−λtPak{t < τ+

ak+ε ∧ τ−0 , X(t) ∈ dy}ωk+1(y)dt

=
k−1

∑
i=0

λi

∫ ak+ε

ak

(
W(λ)(ak)W(λ)(ak + ε− y)

W(λ)(ak + ε)
−W(λ)(ak − y)

)
ωk+1(y)dy.
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Using identities (3) and (5), for any ε > 0,

ωk+1(ak)

= Pak{τ+
ak+ε < min{τ−0 , T0, . . . , Tk}}ωk+1(ak + ε)

+
∫ ak+ε

ak

Pak

{
∪k−1

i=0 {T
i < min{τ−0 , τ+

ak+ε, T0, . . . , Ti−1, Ti+1, . . . , Tk}, X(Ti) ∈ dy}
}

ωk+1(y)

+
k−1

∑
j=0

∫ aj+1

aj

Pak

{
∪i∈Dj{T

i < min{τ−0 , τ+
ak+ε, T0, . . . , Ti−1, Ti+1, . . . , Tk}, X(Ti) ∈ dy}

}
ωk+1(y).

Then

ωk+1(ak) = Eak [e
−λτ+ak+ε ; τ+

ak+ε < τ−0 ]ωk+1(ak + ε) + A

+
k−1

∑
j=0

λj

∫ aj+1

aj

∫ ∞

0
e−λtPak{t < τ+

ak+ε ∧ τ−0 , X(t) ∈ dy}ωk+1(y)dt

=
W(λ)(ak)

W(λ)(ak + ε)
ωk+1(ak + ε) + A

+
k−1

∑
j=0

λj

∫ aj+1

aj

(
W(λ)(ak)W(λ)(ak + ε− y)

W(λ)(ak + ε)
−W(λ)(ak − y)

)
ωk+1(y)dy,

where, by identity (18) and Lemma 2, the second term is equal to

ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

{
W(λ)(ak)

W(λ)(ak + ε)

k−1

∑
j=0

λj

∫ aj+1

aj

W(λ)(ak + ε− y)W
(λ0,...,λj)

(a0,...,aj)
(y)dy

−
k−1

∑
j=0

λj

∫ aj+1

aj

W(λ)(ak − y)W
(λ0,...,λj)

(a0,...,aj)
(y)dy

}

=
ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

{ W(λ)(ak)

W(λ)(ak + ε)

(
W(λ)(ak + ε)−W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε)

)

−
(

W(λ)(ak)−W(λ0,...,λk−1,λ)
(a0,...,ak)

(ak)

)}
= ωk+1(ak)−

W(λ)(ak)

W(λ)(ak + ε)

ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε).

Therefore,

0 =
W(λ)(ak)

W(λ)(ak + ε)
ωk+1(ak + ε) + A− W(λ)(ak)

W(λ)(ak + ε)

ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε). (21)

Combining Equations (21) and (19), by Lemma 1, we have

W(λk)(ε)

W(λk)(ak+1 − ak)

 ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W(λ0,...,λk)

(a0,...,ak)
(ak+1)− 1


=

W(λ)(ak + ε)

W(λ)(ak)
A− ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

(
W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε)−W(λ0,...,λk)

(a0,...,ak)
(ak + ε)

)

=
W(λ)(ak + ε)

W(λ)(ak)
A− ωk+1(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

k−1

∑
i=0

λi

∫ ak+ε

ak

W(λ)(ak + ε− y)W(λ0,...,λk)
(a0,...,ak)

(y)dy.

(22)
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Notice that limx→0+ W(p)(x)/W(x) = 1; see equation (56) and Lemma 3.1 of Kuznetsov et al. [10].
Then, we have

A = o(W(λk)(ε)) and
∫ ak+ε

ak

W(λ)(ak + ε− y)W(λ0,...,λk)
(a0,...,ak)

(y)dy = o(W(λk)(ε))

as ε → 0+, where o(W(λk)(ε)) is simply o(1) for X of bounded variation. Dividing both sides of
Equation (22) by W(λk)(ε), letting ε→ 0+ in Equation (22), we have

ωk+1(ak) =
W(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk)
(a0,...,ak)

(ak+1)
. (23)

Plugging Equation (23) into Equation (19), we prove that identity (17) holds for n = k + 1.

Theorem 2. For 0 = a0 < a1 < . . . < an, λ0, λ1, . . . , λn ≥ 0, 0 ≤ x ≤ an,

Ex

e
−

n−1
∑

i=0
λi
∫ τ−0

0 1(ai ,ai+1)
(Xs)ds

; τ−0 < τ+
an


= Z(λ0,...,λn−1)

(a0,...,an−1)
(x)−

W(λ0,...,λn−1)
(a0,...,an−1)

(x)

W(λ0,...,λn−1)
(a0,...,an−1)

(an)
Z(λ0,...,λn−1)
(a0,...,an−1)

(an).

(24)

Proof. Write fn(x) for the left-hand side of Equation (24). Then for x < an−1,

fn(x) = fn−1(x) + ωn−1(x) fn(an−1). (25)

We want to prove identity (24) by induction. The case for n = 1 is obvious. Suppose identity (24)
holds for n ≤ k. By identity (25), the assumption for n = k and Lemma 4, if n = k + 1, ε > 0 and
ak + ε ≤ ak+1, we have

fk+1(ak + ε)

=
∫ ak

−∞
Eak+ε[e

−λkτ−ak ; τ−ak
< τ+

ak+1
, Xτ−ak

∈ dy] fk+1(y)

= Eak+ε[e
−λkτ−ak fk+1(Xτ−ak

); τ−ak
< τ+

ak+1
]

= Eak+ε[e
−λkτ−ak Z(λ0,...,λk−1)

(a0,...,ak−1)
(Xτ−ak

); τ−ak
< τ+

ak+1
]

+
fk+1(ak)− Z(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
Eak+ε[e

−λkτ−ak W(λ0,...,λk−1)
(a0,...,ak−1)

(Xτ−ak
); τ−ak

< τ+
ak+1

]

= Z(λ0,...,λk)
(a0,...,ak)

(ak + ε)− W(λk)(ε)

W(λk)(ak+1 − ak)
Z(λ0,...,λk)
(a0,...,ak)

(ak+1)

+
fk+1(ak)− Z(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

{
W(λ0,...,λk)

(a0,...,ak)
(ak + ε)− W(λk)(ε)

W(λk)(ak+1 − ak)
W(λ0,...,λk)

(a0,...,ak)
(ak+1)

}
.

(26)

For the (Ti
j ) defined in the proof of Theorem 1, observe that

fk+1(x) = Px

{
∩k

i=0

{
{Ti

u} ∩ {s : s < τ−0 < τ+
ak+1

, Xs ∈ (ai, ai+1)} = ∅
}}

.
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We can obtain the expressions of fk+1(ak) as follows. Put

B : =
∫ ak+ε

ak

Pak

{
∪k−1

i=0 {T
i < min{τ−0 , τ+

ak+ε, T0, . . . , Ti−1, Ti+1, . . . , Tk}, X(Ti) ∈ dy}
}

fk+1(y)

=
k−1

∑
i=0

λi

∫ ak+ε

ak

∫ ∞

0
e−λtPak{t < τ+

ak+ε ∧ τ−0 , X(t) ∈ dy} fk+1(y)dt,

where λ̄ is defined in definition (20). Similar to the proof of Theorem 1, for any ε > 0,

fk+1(ak)

= Pak{τ−0 < min{τ+
ak+ε, T0, . . . , Tk}}+ Pak{τ+

ak+ε < min{τ−0 , T0, . . . , Tk}} fk+1(ak + ε)

+
∫ ak+ε

ak

Pak

{
∪k−1

i=0 {T
i < min{τ−0 , τ+

ak+ε, T0, . . . , Ti−1, Ti+1, . . . , Tk}, X(Ti) ∈ dy}
}

fk+1(y)

+
k−1

∑
j=0

∫ aj+1

aj

Pak

{
∪i∈Dj{T

i < min{τ−0 , τ+
ak+ε, T0, . . . , Ti−1, Ti+1, . . . , Tk}, X(Ti) ∈ dy}

}
fk+1(y)

= Eak [e
−λτ−0 ; τ−0 < τ+

ak+ε] +Eak [e
−λτ+

ak+ε ; τ+
ak+ε < τ−0 ] fk+1(ak + ε) + B

+
k−1

∑
j=0

λj

∫ aj+1

aj

∫ ∞

0
e−λtPak{t < τ+

ak+ε ∧ τ−0 , X(t) ∈ dy} fk+1(y)dt,

which by Equations (3)–(5) and (25) is further equal to

Z(λ)(ak)−
Z(λ)(ak + ε)

W(λ)(ak + ε)
W(λ)(ak) +

W(λ)(ak)

W(λ)(ak + ε)
fk+1(ak + ε) + B

+
k−1

∑
j=0

λj

∫ aj+1

aj

(
W(λ)(ak)W(λ)(ak + ε− y)

W(λ)(ak + ε)
−W(λ)(ak − y)

)

×

Z
(λ0,...,λj)

(a0,...,aj)
(y) +

fk+1(ak)− Z(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W

(λ0,...,λj)

(a0,...,aj)
(y)

dy.

By Lemma 2,

k−1

∑
j=0

λj

∫ aj+1

aj

W(λ)(ak + ε− y)Z
(λ0,...,λj)

(a0,...,aj)
(y)dy = Z(λ)(ak + ε)− Z(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε)

and

k−1

∑
j=0

λj

∫ aj+1

aj

W(λ)(ak − y)Z
(λ0,...,λj)

(a0,...,aj)
(y)dy = Z(λ)(ak)− Z(λ0,...,λk−1,λ)

(a0,...,ak)
(ak).

Then

0 =
W(λ)(ak)

W(λ)(ak + ε)
fk+1(ak + ε) + B− W(λ)(ak)

W(λ)(ak + ε)
Z(λ0,...,λk−1,λ)
(a0,...,ak)

(ak + ε)

− W(λ)(ak)

W(λ)(ak + ε)

fk+1(ak)− Z(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε).

(27)
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Combining Equations (26) and (27), by Lemma 1, we have

W(λk)(ε)

W(λk)(ak+1 − ak)

Z(λ0,...,λk)
(a0,...,ak)

(ak+1) +
fk+1(ak)− Z(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)
W(λ0,...,λk)

(a0,...,ak)
(ak+1)


= Z(λ0,...,λk)

(a0,...,ak)
(ak + ε)− Z(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε) +

W(λ)(ak + ε)

W(λ)(ak)
B

+
fk+1(ak)− Z(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

{
W(λ0,...,λk)

(a0,...,ak)
(ak + ε)−W(λ0,...,λk−1,λ)

(a0,...,ak)
(ak + ε)

}

=
W(λ)(ak + ε)

W(λ)(ak)
B−

k−1

∑
i=0

λi

∫ ak+ε

ak

W(λ)(ak + ε− y)Z(λ0,...,λk)
(a0,...,ak)

(y)dy

−
fk+1(ak)− Z(λ0,...,λk−1)

(a0,...,ak−1)
(ak)

W(λ0,...,λk−1)
(a0,...,ak−1)

(ak)

k−1

∑
i=0

λi

∫ ak+ε

ak

W(λ)(ak + ε− y)W(λ0,...,λk)
(a0,...,ak)

(y)dy.

Notice that ∫ ak+ε

ak

W(λ)(ak + ε− y)Z(λ0,...,λk)
(a0,...,ak)

(y)dy = o(W(λk)(ε)),

∫ ak+ε

ak

W(λ)(ak + ε− y)W(λ0,...,λk)
(a0,...,ak)

(y)dy = o(W(λk)(ε)) and B = o(W(λk)(ε)).

Letting ε→ 0+, we have

fk+1(ak) = Z(λ0,...,λk−1)
(a0,...,ak−1)

(ak)−
Z(λ0,...,λk)
(a0,...,ak)

(ak+1)

W(λ0,...,λk)
(a0,...,ak)

(ak+1)
W(λ0,...,λk−1)

(a0,...,ak−1)
(ak). (28)

Using Equation (28) in Equation (26), we have thus proved identity (24) for n = k + 1.

For general spectrally negative Lévy processes, it appears challenging to find explicit expressions
for Laplace transforms of weighted occupation times with weight functions more general than step
functions. We end this paper with a corollary.

Corollary 1. Given n ≥ 1 and λ−1, λ0, . . . , λn−1 ≥ 0, for −∞ = a−1 < 0 = a0 < a1 < . . . < an−1 <

an < ∞, we have

Ex

e
−

n−1
∑

i=−1
λi
∫ τ+an

0 1(ai ,ai+1)
(Xs)ds

; τ+
an < ∞

 =
Wn−1(x)
Wn−1(an)

, (29)

where x < an,

W−1(x) = eΦ(λ−1)x, Wk(x) = Wk−1(x) + (λk − λk−1)
∫ x

ak

W(λk)(x− y)Wk−1(y)dy, k ≥ 0; (30)

for 0 = a0 < a1 < . . . < an−1 < an = ∞, we have

Ex

e
−

n−1
∑

i=0
λi
∫ τ−0

0 1(ai ,ai+1)
(Xs)ds

; τ−0 < ∞

 = Z(λ0,...,λn−1)
(a0,...,an−1)

(x)− zn−1

wn−1
W(λ0,...,λn−1)

(a0,...,an−1)
(x), (31)
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where x > 0 and (wn−1, zn−1) is given by

wn−1 = 1−
n−1

∑
k=1

(λn−1 − λk−1)
∫ ak

ak−1

e−Φ(λn−1)yW(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy

and

zn−1 =
λn−1

Φ(λn−1)
−

n−1

∑
k=1

(λn−1 − λk−1)
∫ ak

ak−1

e−Φ(λn−1)yZ(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy.

Proof. For k ≥ 0 and a > 0,

W(λ−1,λ0,λ1,...,λk)
(0,a,a+a1,...,a+ak)

(a + x)

= W(λ−1,λ0,λ1,...,λk−1)
(0,a,a+a1,...,a+ak−1)

(a + x) + (λk − λk−1)
∫ a+x

a+ak

W(λk)(a + x− y)W(λ−1,λ0,λ1,...,λk−1)
(0,a,a+a1,...,a+ak−1)

(y)dy

= W(λ−1,λ0,λ1,...,λk−1)
(0,a,a+a1,...,a+ak−1)

(a + x) + (λk − λk−1)
∫ x

ak

W(λk)(x− z)W(λ−1,λ0,λ1,...,λk−1)
(0,a,a+a1,...,a+ak−1)

(a + z)dz.

(32)

Since

W−1(x) := lim
a→∞

W(λ−1)(a + x)
W(λ−1)(a)

= eΦ(λ−1)x

for any x, we can show by induction and Equation (32) that, for x < an and k ≥ 0,

Wk(x) := lim
a→∞

W(λ−1,λ0,λ1,...,λk)
(0,a,a+a1,...,a+ak)

(a + x)/W(λ−1)(a)

exists and satisfies Equation (30). Since X is spatially homogeneous, by Theorem 1,

Ex

e
−

n−1
∑

i=−1
λi
∫ τ+an

0 1(ai ,ai+1)
(Xs)ds

; τ+
an < ∞

 = lim
a→∞

W(λ−1,λ0,λ1,...,λn−1)
(0,a,a+a1,...,a+an−1)

(a + x)

W(λ−1,λ0,λ1,...,λn−1)
(0,a,a+a1,...,a+an−1)

(a + an)
.

Then identity (29) follows.
Similarly, let

w0 = 1, z0 = lim
y→∞

Z(λn−1)(y)
W(λn−1)(y)

=
λn−1

Φ(λn−1)
,

and, for k = 1, . . . , n− 1, put

wk := lim
y→∞

W(λ0,...,λk−1,λn−1)
(a0,...,ak−1,ak)

(y)/W(λn−1)(y)

and
zk := lim

y→∞
Z(λ0,...,λk−1,λn−1)
(a0,...,ak−1,ak)

(y)/W(λn−1)(y).

By Lemma 2, we have

W(λ0,...,λk−1,λn−1)
(a0,...,ak−1,ak)

(x) = W(λ0,...,λk−2,λn−1)
(a0,...,ak−2,ak−1)

(x)− (λn−1 − λk−1)
∫ ak

ak−1

W(λn−1)(x− y)W(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy,

Z(λ0,...,λk−1λn−1)
(a0,...,ak−1,ak)

(x) = Z(λ0,...,λk−2,λn−1)
(a0,...,ak−2,ak−1)

(x)− (λn−1 − λk−1)
∫ ak

ak−1

W(λn−1)(x− y)Z(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy.

Then, by asymptotic results for scale functions, we can show by induction that (wk, zk) also exists
and satisfies

w0 = 1, wk = wk−1 − (λn−1 − λk−1)
∫ ak

ak−1

e−Φ(λn−1)yW(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy,

z0 =
λn−1

Φ(λn−1)
, zk = zk−1 − (λn−1 − λk−1)

∫ ak

ak−1

e−Φ(λn−1)yZ(λ0,...,λk−1)
(a0,...,ak−1)

(y)dy,
(33)
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for k = 1, . . . , n− 1. Since

lim
an→∞

W(λ0,...,λn−1)
(a0,...,an−1)

(an)

Z(λ0,...,λn−1)
(a0,...,an−1)

(an)
= lim

an→∞

W(λ0,...,λn−1)
(a0,...,an−1)

(an)/W(λn−1)(an)

Z(λ0,...,λn−1)
(a0,...,an−1)

(an)/W(λn−1)(an)
=

wn−1

zn−1
,

identity (31) then follows from Theorem 2 by letting an → ∞, and the expression of (wn−1, zn−1)

follows from Equation (33).

4. Conclusions

In this paper, for spectrally negative Lévy processes we obtain Laplace transforms of weighted
occupation times with step weight functions up to the first exit times. The results are expressed using
multiple integrals of the associated scale functions. In the proofs we modify the Poisson approach of
Li and Zhou [7], which can be further adapted to study other problems involving Laplace transforms
of occupation times. The results have possible applications in risk theory for insurance.

Acknowledgments: The authors are thankful to anonymous referees for helpful comments and suggestions.

Author Contributions: The two authors have equal contributions to this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gerber, H.U.; Shiu, E.S.W.; Yang, H. The Omega model: From bankruptcy to occupation times in the red.
Eur. Actuar. J. 2012, 2, 259–272.

2. Cai, N.; Chen, N.; Wan, X. Occupation times of jump-diffusion processes with double exponential jumps and
the pricing of options. Math. Oper. Res. 2010, 35, 412–437.

3. Landriault, D.; Renaud, J.-F.; Zhou, X. Occupation times of spectrally negative Lévy processes with
applications. Stoch. Process. Appl. 2011, 121, 2629–2641.

4. Loeffen, R.L.; Renaud, J.-F.; Zhou, X. Occupation times of intervals until first passage times for spectrally
negative Lévy processes. Stoch. Process. Appl. 2014, 124, 1408–1435.

5. Li, B.; Palmowski, Z. Fluctuations of Omega-killed spectrally negative Lévy processes. Mathematics 2016,
arXiv:1603.07967.

6. Albrecher, H.; Ivanovs, J.; Zhou, X. Exit identities for Lévy processes observed at Poisson arrival times.
Bernoulli 2016, 22, 1364–1382.

7. Li, Y.; Zhou, X. On pre-exit joint occupation times for spectrally negative Lévy processes. Stat. Probab. Lett.
2014, 94, 48–55.

8. Kuang, X.; Zhou, X. A Poisson approach on occupation time Laplace transforms for spectrally negative Lévy
processes. 2016, submitted.

9. Kyprianou, A.E. Introductory Lectures on Fluctuations of Lévy Processes with Applications. In Universitext;
Springer-Verlag: Berlin, Germany, 2006.

10. Kuznetsov, A.; Kyprianou, A.E.; Rivero, V. The theory of scale functions for spectrally negative Lévy
processes. In Lévy Matters; Springer Lecture Notes in Mathematics; Springer: Berlin, Germany, 2013;
pp. 97–186.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spectrally Negative Lévy Processes
	Main Results
	Conclusions

