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Abstract: The replicating portfolio approach is a well-established approach carried out by many life
insurance companies within their Solvency II framework for the computation of risk capital. In this
note, we elaborate on one specific formulation of a replicating portfolio problem. In contrast to the two
most popular replication approaches, it does not yield an analytic solution (if, at all, a solution exists
and is unique). Further, although convex, the objective function seems to be non-smooth, and hence a
numerical solution might thus be much more demanding than for the two most popular formulations.
Especially for the second reason, this formulation did not (yet) receive much attention in practical
applications, in contrast to the other two formulations. In the following, we will demonstrate that
the (potential) non-smoothness can be avoided due to an equivalent reformulation as a linear second
order cone program (SOCP). This allows for a numerical solution by efficient second order methods
like interior point methods or similar. We also show that—under weak assumptions—existence and
uniqueness of the optimal solution can be guaranteed. We additionally prove that—under a further
similarly weak condition—the fair value of the replicating portfolio equals the fair value of liabilities.
Based on these insights, we argue that this unloved stepmother child within the replication problem
family indeed represents an equally good formulation for practical purposes.

Keywords: life insurance; replicating portfolio; market consistent valuation; cash flow matching; fair
value; stochastic Fermat–Torricelli problem

1. Introduction

Market-consistent valuation has gained increasing importance in the risk management of life
insurance policies (e.g., Bauer et al. [1]). However, many life insurance contracts have features which
are too complicated to undertake analytical analysis. These include participating contracts, surrender
options, and guaranteed interest rates, to name a few. They leave only little structure in the payoff
profile, thus making analytical risk neutral valuation almost impossible. Therefore, one has to resort
to some type of Monte Carlo method for market-consistent valuation of life insurance policies. As a
result, Monte Carlo methods of various types have attracted a lot of attention in recent research.
Although Monte Carlo methods work quite well for one specific valuation, they prove to be rather
inefficient for repeated application in risk capital computation. For instance, the computational
inefficiency of nested Monte Carlo methods for risk capital computation (cf. below and Figure 1 for
a brief description, or see Bauer et al. [1] for more details) has led to an investigation of alternative
methods. Andreatta and Corradin [2], Baione et al. [3], Glasserman and Yu [4], Stentoft [5], and
several other authors apply or analyze the well-known least squares Monte Carlo approach, which was
originally introduced by Longstaff and Schwartz [6] and Tsitsiklis and van Roy [7] to price American
options. Bergmann [8] also mentions the stochastic mesh method of Broadie and Glasserman [9],
although no application to life insurance policies is known to our best knowledge.
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In hindsight, Pelsser [10] probably first suggested valuation of with-profits guaranteed annuity
options—which are typical life insurance products—via static replicating portfolios. Although static
hedging seems overly simplistic—especially compared to more advanced dynamic hedging—a
remarkably good fit of the behaviour of annuity options was obtained by a static portfolio of vanilla
swaptions. In general, by constructing such a static replicating portfolio, one tries to form a static
portfolio of a finite number of selected financial instruments which are easy to price, such that they
generate cash-flows which approximate cash-flows on the liability side at each point in time and in
each scenario. If this approximation is accurate, one obtains a good estimate of the market value of
liabilities from the fair value of the replicating portfolio. Further, the market consistent embedded value
(MCEV) can be obtained accordingly by subtracting this value from the value of the insurer’s asset
holdings. One could of course determine the value of liabilities directly by Monte Carlo simulations:
generate risk-neutral sample paths of liability cash-flows and compute the mean of present values
of the discounted cash-flows (e.g., Grosen and Jørgensen [11]). However, as the Solvency II capital
requirement demands the computation of the 99.5% value at risk (see EIOPA [12], page 7) of the MCEV
distribution in one year under the real world measure, it is not sufficient to compute the MCEV today,
but its distribution in the future. This requires the aforementioned nested approach; see Figure 1.
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Figure 1. Replicating portfolio approach: Each node at t = 1 and t = T represents a state of the
portfolio and liabilities. The target is to estimate the 99.5% quantile of the market consistent embedded
value (MCEV) distribution at t = 1.

As static replication is much more simplistic than dynamic replication, it has been an open
question until quite recently, as to whether the approach of replicating portfolio can actually work.
Although replication seems to resemble traditional immunization approaches, one major difference
stands out: on the one hand, immunization works well in one period (as sensitivities to risk factors
have been immunized), but leaves the portfolio un-immunized in the next period, which requires
re-immunization (this is the main idea of dynamic delta hedging). On the other hand, replication
matches cash flows, so there is hope that although one is not fully immunized in the first period,
the immunization is still reasonable in the next period, as future cash flows are still replicated well.
Very recent results have shown that replication indeed works under quite general setups, with efficiency
comparable to the least squares Monte Carlo approach. The first theoretical foundations for replicating
portfolios have been given in a series of papers by Beutner et al. [13], Pelsser and Schweizer [14],
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and Beutner et al. [15]. They analyze the asymptotic behaviour of matching the terminal value of
liabilities (instead of matching cash flows; see below for more details) as the number of scenarios and
the number of replicating assets grows at specific relative speeds. Recently, Cambou and Filipovic [16]
proved that the matching of terminal values indeed has a mathematical foundation in the sense that
a good match of the terminal values is strongly intertwined with a good approximation of the risk
measure of the future MCEV (i.e., the resulting risk capital). Simultaneously, Natolski and Werner [17]
demonstrated that this foundation holds for any form of matching problem in Natolski and Werner [18]

(and many more), especially including all cash flow matching and all terminal value matching
problems considered here. In both Cambou and Filipovic [16] and Natolski and Werner [18], it is
shown that it is possible to change from the real world measure in the first period to the risk neutral
measure while maintaining the strong link between objective function and error in risk capital.
These results provide the basis for the practically most relevant replication setup1 where only the risk
neutral measure is considered (see Section 2 for the mathematical setup).

The replicating portfolio approach represents a well-established approach carried out by many
life insurance companies within their Solvency II framework for the computation of market risk capital.
It is very specific to life insurance companies, and to our best knowledge so far, not used outside life
insurance. We note that it could in theory also be used in banks for improving risk figure computation
for hard-to-price portfolios2.

Of course, only considering financial instruments might fall short of matching actuarial risks like
mortality or lapse risk. This is one of the well-known weaknesses of replicating portfolios, and usually
leads to a remaining mismatch. However, as replicating portfolios are usually only applied within
the market risk computation in Solvency II, this only represents a minor issue of replicating portfolios
in practice.

As already briefly indicated above, there exist different choices for the specific matching problem.
In Natolski and Werner [18], some of these criteria were already investigated in more detail. The focus
there was put on the two criteria which are most popular in the insurance industry:

• Squared cash flow matching: this was probably the first formulation considered in the context of
replicating portfolios. Here, the difference of cash flows at the same time point is measured by
the squared L2-norm, and the sum of these is used as matching criterion. This problem is called
(RPSCF) in the following.

• Terminal value matching: as an alternative to the cash flow matching criterion, terminal value
matching—called (RP ˜TV) below—was introduced by Oechslin et al. [20]. The main idea is that
it is expected that a good approximation of the risk capital can already be obtained if the value
of the cash flows is matched sufficiently well, while the timing of the cash flows should not be
of any importance. Usually, cash flows are aggregated to the terminal time point, leading to the
consideration of terminal values. This point of view was mathematically supported in Natolski
and Werner [17].

These two (and other) choices might differ in important properties:

• Depending on the choice of the fitting criterion, similarly good fits of the fitting criterion lead to
differing good or even only reasonably good approximations of the risk capital figure. In summary,
terminal value matching provides better bounds than cash flow matching. Further, squared cash
flow matching provides worse bounds than cash flow matching (to be defined below). Details on
the exact relationships are provided in Natolski and Werner [17].

1 In Natolski and Werner [18] it is argued that working with the risk neutral measure is feasible, while it is better to keep the
mix of measures as indicated in Figure 1.

2 A recent paper by Broadie et al. [19] gives some first arguments in this direction. Although the paper does not explicitly
treat replicating portfolio, but focuses on least squares Monte Carlo methods, the idea can also be extended to replicating
portfolios. The reason for this is that replication and least squares Monte Carlo are strongly interconnected, as has been
shown by Glasserman and Yu [4].
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• Depending on the choice of the fitting criterion, the solution of the corresponding optimization
problems might pose difficulties. Although all formulations usually lead to convex problems,
not all problems might be strictly convex, and thus may have non-unique optimal solutions.
Further, non-smooth problems might be much harder to solve than smooth problems. Finally,
some fitting criteria (for instance, those based on L1-norms instead of L2-norms) lead to an increase
of the problem dimension with increasing number of scenarios, while others do not face this issue.

• It is expected by practitioners that the fair value of the replicating portfolio also matches the fair
value of the liabilities. This has already been proven for the two most practically relevant criteria,
but this question remains open for other criteria.

The analysis of the replication problems in Natolski and Werner [18] focused on the two most
popular matching criteria, as these are a) quite easy to analyze and b) are strongly connected. As has
been shown in Natolski and Werner [18], the terminal value match can be seen as a squared cash
flow match plus an additional dynamic trading strategy moving cash flows optimally in time.
From a theoretical perspective, both choices provide a good link between matching criterion and
approximation of risk capital (see Natolski and Werner [17]), although terminal value matching
dominates squared cash flow matching. Further, both problems lead to strictly convex quadratic
optimization problems possessing a unique optimal solution (under rather weak assumptions). From a
practical perspective, however, both problems show some unwanted behaviour. Extensive numerical
tests (Daul and Vidal [21]) have shown that the out-of-sample performance of terminal value matching
is worse than the corresponding performance of (squared) cash flow matching. However, the latter
problem reacts more sensitively to the scaling and the conditioning of the data than terminal value
matching due to increased dimensions of relevant covariance matrices. The bad out-of-sample
performance of terminal value matching can be linked to the property that it actually already
includes a dynamic cash flow distribution strategy. This indicates that an unwanted overfitting
takes place; i.e., there are too many optimization variables given only a few number of scenarios.
As pointed out, it is not feasible to provide more scenarios, as these are computationally quite expensive.
Therefore, the consideration of more enhanced replication—for example, by a more dynamic replication
strategy—is clearly not advocated.

For the above reasons, it might make sense to look for alternative criteria which have the
potential to successfully address these issues. For this purpose, we consider a modified cash
flow matching problem—called (RPCF)—where the penalization of cash flows does not use the
squared L2-norm, but just the L2-norm itself. This problem has already been briefly considered
in Natolski and Werner [18], but a full analysis was out of the scope of that paper.

Compared to the other two problems (RPSCF) and (RP ˜TV), it has a more complicated objective
function, since the objective function cannot be expressed as a convex quadratic function. Thus, it is
impossible to obtain an explicit expression for the solution of the problem, and results on the existence
and uniqueness of a solution are not straightforward. Further, the objective function of (RPCF) might
be non-smooth at certain points. We believe that it is for this reason that problem formulation (RPCF)
did not yet get as much attention as the other two formulations, both from practitioners and academics.

In the following, we will argue that on the contrary, there are good reasons to believe that (RPCF)
is indeed at least as preferable as (RPSCF) or (RP ˜TV). To be able to do so, we first provide the detailed
proofs for the existence and uniqueness of the solution under weak assumptions. Further, we show
that despite the similarity to the famous Fermat–Torricelli problem, it matches the fair value of the
replicating portfolio and the fair value of liabilities under an additional rather weak assumption.
We also prove that the objective function is uniformly convex in practical problem instances (satisfying
an additional assumption), a useful feature for optimization and statistical properties. Finally, we
demonstrate that (RPCF) can be equivalently cast as a second-order cone problem, which allows its
unique solution to be obtained by efficient second-order methods like interior point methods (without
the additional assumption satisfied in practical problems). Ultimately, we provide a discussion as to
why problem (RPCF) should be preferred over problems (RPSCF) and (RP ˜TV), and why not.
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The rest of the paper is organized as follows. In Section 2, we introduce the mathematical setup for
the financial market following Natolski and Werner [17], and we recall the cash flow matching problem
of the Fermat–Torricelli type. The main Section 3 states and proves the aforementioned properties of
the replication problem, and Section 4 concludes.

2. The Mathematical Setup

As mentioned in the introduction, this setup is taken from Natolski and Werner [17]. We fix
a finite time horizon T ∈ N and set T := {t = 1, 2, . . . , T}, T0 := {0} ∪ T . Let

(
Ω,F , (Ft)t∈T0

,Q
)

be

a filtered probability space with risk-neutral3 measure and numéraire (Nt)t∈T0
, where F0 is assumed

to be complete and trivial and FT = F . Denote by

1. C̃F
t =

(
C̃F

i,t

)
i=1,...,m

∈ L2 (Q)m , t ∈ T , the discounted4 financial cash flows of all assets at time t,

where 1 ≤ i ≤ m and m denotes the number of available financial assets,
2. ÃF := ∑t∈T C̃F

t the vector of discounted terminal5 financial cash flows,
3. C̃L

t ∈ L2 (Q) , t ∈ T the discounted liability cash flows, and by
4. ÃL := ∑t∈T C̃L

t , the discounted terminal value of liability cash flows.

The final cash flow C̃F
T is equal to the corresponding asset value. The interpretation is that all

assets are sold at the time horizon T. Assets are bought and sold at time t before the time t cash flows
take place.

The following three replication problems were considered in Natolski and Werner [18], where the
first problem (RPCF), cash flow matching, is in the focus of this exposition. In this context, a portfolio α

represents the units of the financial instruments which have to be bought or sold.

inf
α∈Rm

T

∑
t=1

[
EQ
([

C̃L
t − α>C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

. (RPCF)

inf
α∈Rm

[
T

∑
t=1

EQ
([

C̃L
t − α>C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

. (RPSCF)

inf
α∈Rm

[
EQ
([

ÃL − α>ÃF
]2
∣∣∣∣∣F0

)] 1
2

. (RP ˜TV)

The first formulation penalizes the deviation of cash flows by the L2-norm, whereas the second
formulation penalizes the cash flows by the squared L2-norm. Otherwise, the formulations are the
same. The third formulation (where the sum has moved inside the square inside the expected value)
represents the penalized squared deviation of the terminal values.

Remark 1. It has to be noted that there is no budget constraint in all three optimization problems, as the budget
is not restricted, but allowed to vary freely. In Section 3.4, we will characterize the optimal budget, which is
equal to the fair value of the replicating portfolio. It is shown there that the optimal budget equals the fair value
of the liabilities under rather weak assumptions.

3 All results of this exposition remain true with one obvious exception: if instead of the risk neutral measure the real world
measure is chosen. Naturally, the result on the fair value in Section 3.4 crucially depends on the property that a risk neutral
measure is chosen.

4 We use tilded variables to express the fact that the variable is discounted.
5 ÃF

i represents the pathwise discounted terminal value of all cash flows of asset i, i.e., the cash flow at time t is invested in
the numeraire until time T, and the aggregated value of all these is discounted by the terminal numeraire value to time 0.
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Remark 2. In this context, an open issue concerning the formulation of the optimization problems is the
relevance of the particular risk neutral measure chosen. Assuming that the probability space (Ω,F ,Q) cannot be
partitioned into finitely many atoms, the market has to be incomplete, and there are infinitely many risk-neutral
measures for each numéraire. Hence, one can choose from a variety of risk neutral measure/numéraire pairs
(Q, (Nt)t=1,...,T) to construct replicating portfolios. Obviously, for fixed numéraire, the objective function in
(RPCF) depends on the specific choice of the risk neutral measure. Thus, the optimal solution (i.e., the replicating
portfolio) depends on this risk neutral measure. Similarly, the fair value of both the liability and the replicating
portfolio also depend on the choice of the risk neutral measure. Only in the special case of perfect replication
(i.e., optimal objective value of 0) is there no dependence on the choice of the measure. As all risk neutral measures
for some numéraire are equivalent, the same (unique) replicating portfolio is optimal for all such measures.

In practice, a natural measure to use in the objective function is the real-world measure. It is well-known
(see for example Korn and Schäl [22]) that the real-world measure becomes a martingale measure if the numéraire
is chosen as the portfolio process maximizing the logarithmic utility function. Then, the real world measure P
is a martingale measure with numéraire given by the maximizing portfolio process. This way, one can avoid
the discussion on the choice of the risk neutral measure and simply use the real world measure together with
portfolio process (π∗t )t=1,...,T as numéraire.

Unfortunately, this approach is usually not followed in practical settings. The main reason is probably
twofold: first, in practice, insurance companies are provided with economic scenario generators (ESG) tools
which readily yield risk neutral scenarios for arbitrary numéraires (usually the cash rollup). Second, due to the
linear nature of real world scenarios provided by these ESG tools, the utility maximizing portfolio process cannot
be calculated due to the missing nested scenario structure.

For further analysis, let us introduce the symmetric matrices

QSCF
t := EQ

[(
C̃F

t

) (
C̃F

t

)> ∣∣∣∣∣F0

]
,

QSCF :=
T

∑
t=1

QSCF
t , and

QTV := EQ
[(

ÃF
i ÃF

j

) ∣∣∣∣∣F0

]
i,j=1,...,m

These matrices represent the covariance matrices of the terminal values and the cash flows,
respectively. They will play an important role in formulations of (weak) assumptions on the financial
market. To obtain existence and uniqueness results (and more), the following few rather weak
assumptions will have to be made. These are usually satisfied if financial assets for replication are
chosen accordingly.

Assumption 1. The matrix QSCF is positive definite or equivalently

6 ∃ u ∈ Rm \ {0} : ∀t = 1, . . . , T :
(

C̃F
t

)>
u = 0.

Assumption 2. The matrix QTV is positive definite or equivalently

6 ∃ u ∈ Rm \ {0} :

(
T

∑
t=1

C̃F
t

)>
u = 0.

Assumption 3. The numéraire is replicable at any time; that is,

∃ u ∈ Rm : ∀t = 1, . . . , T : u>C̃F
t = 1.
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Assumption 3 can be easily6 fulfilled, taking into account that the numéraire is a tradable
instrument itself. For any choice of the numéraire, one simply has to provide T financial instruments
as follows: for each time t, we add an option on the numéraire to the market with strike 0 and maturity
t. Equivalently, this can be seen as an asset which costs N0 today (today’s price of the numéraire)
and yields a cash flow of Nt at time t. A proper combination of these options then yields the desired
portfolio u as in Assumption 3. Of course, Assumption 3 is only necessary if cash flow matching is
considered; for terminal value matching, it is sufficient to include exactly one of these options.

For problems (RPSCF) and (RP ˜TV), the following two properties have been shown in Natolski and
Werner [18]:

(1) The solutions to (RPSCF) and (RP ˜TV) exist and under Assumption 1 (Assumption 2, respectively)
they are unique; i.e., there exist unique αSCF

opt , αTV
opt ∈ Rm such that

αSCF
opt = argmin

α∈Rm

[
T

∑
t=1

EQ
([

C̃L
t − α>C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

αTV
opt = argmin

α∈Rm

[
EQ
([

ÃL − α>ÃF
]2
∣∣∣∣∣F0

)] 1
2

.

(2) Under Assumption 3, the fair values of both optimal replicating portfolios equal the fair value of
liability cash flows; that is:

EQ
((

αSCF
opt

)>
ÃF

∣∣∣∣∣F0

)
= EQ

((
αTV

opt

)>
ÃF

∣∣∣∣∣F0

)
= EQ

(
ÃL

∣∣∣∣∣F0

)
.

For existence and uniqueness, the proofs exploit the convex quadratic structure of the two problems.
Both replicating portfolios can be written as solutions to quadratic problems, and under the assumption
of no redundant assets, the corresponding quadratic matrices are positive definite. Equality of fair values
can then be deduced directly from the corresponding optimality conditions.

So far, problem (RPCF) has not been analyzed on the same level of detail. As pointed out in Natolski
and Werner [18], its close connection to the Fermat–Torricelli problem (c.f. Nam [23]) gives strong
evidence that on the one hand, existence and uniqueness of a solution is provided, whereas on the
other hand, equality of fair values cannot be expected in all cases.

In what follows, we give a detailed proof of the existence and uniqueness of a solution based on the
above assumptions. We also show that the optimal replicating portfolio indeed has the same fair value
as the liability cash flows under surprisingly weak additional conditions. Further, we prove that for
realistic problem instances (i.e., under certain additional assumptions), the numerical solution of (RPCF)
can be obtained by efficient standard second-order methods like Newton’s method. Going one step
further, we provide a reformulation as a linear second order cone program and thus demonstrate that
these additional assumptions are actually not necessary to allow for efficient numerical solution by
efficient second-order methods. Based on these novel insights, we will argue that (RPCF) ranks at least
equal to the two alternative formulations for practical problem instances.

6 Let us note that in Theorem 4 we will need a somewhat stronger condition; however, this condition can be satisfied exactly
along the same lines as Assumption 3, and can thus also be characterized as rather weak condition.
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3. Properties of RPCF

Before we start to provide the results, we need a few technical preparations. Let us define:

ϕ(α) :=
T

∑
t=1

ϕt(α), with

ϕt(α) :=

[
EQ
([

C̃L
t − α>C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

=

∥∥∥∥∥∥∥C̃L
t − α>C̃F

t︸ ︷︷ ︸
=:εt(α)

∥∥∥∥∥∥∥
L2

,

so that we may rewrite problem (RPCF) as

inf
α∈Rm

ϕ(α).

It is easily seen that each ϕt (and thus the objective function ϕ as well) is convex on the whole
Rm. As all ϕt are finite on Rm, they are thus also (locally Lipschitz) continuous. Their directional
derivatives in direction d are given by

ϕ′(α, d) =
T

∑
t=1

ϕ′t(α, d), with

ϕ′t(α, d) =


∥∥d>C̃F

t
∥∥

L2 , if ϕt(α) = 0

EQ
(
−εt(α)·d>C̃F

t

∣∣∣F0

)
‖εt(α)‖L2

= d>∇ϕt(α), else.

If ϕt is differentiable, then

∇ϕt(α) =
EQ
(
−εt(α) · C̃F

t

∣∣∣F0

)
‖εt(α)‖L2

.

Obviously, if ϕt is (continuously) differentiable in a point α, it is also twice continuously
differentiable there. Its Hessian is given as

∇2 ϕt(α) =
‖εt(α)‖2

L2 EQ
(

C̃F
t
(
C̃F

t
)>)−EQ (εt(α) · C̃F

t
) (

EQ (εt(α) · C̃F
t
))>

‖εt(α)‖3
L2

. (1)

As ϕt is convex, its Hessian is positive semidefinite. Unfortunately, it cannot be expected that the
Hessian is positive definite due to potential rank deficits in EQ

(
C̃F

t
(
C̃F

t
)>), plus a further rank deficit

of at most one (due to the dyadic term in the nominator).

3.1. Existence of Optimal Solution

We begin by showing that a solution to (RPCF) exists in the first place.

Theorem 1. Under Assumption 1, problem (RPCF) possesses at least one optimal solution αCF
opt.
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Proof. As already observed, ϕ is convex and continuous. Furthermore, ϕ is also coercive7. To see
this, denote by λSCF

min the smallest eigenvalue of the matrix QSCF. Due to Assumption 1, λSCF
min > 0, and

we obtain

λSCF
min‖α‖2 ≤

√
λSCF

min · α>QSCFα =
√

λSCF
min ·E

Q
(

T

∑
t=1

[
α>C̃F

t

]2
∣∣∣∣∣F0

) 1
2

.

By Minkowski’s inequality, it follows

[
EQ
(

T

∑
t=1

[
α>C̃F

t

]2
∣∣∣∣∣F0

)] 1
2

≤
[
EQ
(

T

∑
t=1

[
α>C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

+

[
EQ
(

T

∑
t=1

[
C̃L

t

]2
∣∣∣∣∣F0

)] 1
2

.

Finally, it holds

[
EQ
(

T

∑
t=1

[
α>C̃F

t − C̃L
t

]2
∣∣∣∣∣F0

)] 1
2

≤
[

T ·max
t∈T

EQ
([

α>C̃F
t − C̃L

t

]2
∣∣∣∣∣F0

)] 1
2

=
√

T ·max
t∈T

[
EQ
([

α>C̃F
t − C̃L

t

]2
∣∣∣∣∣F0

)] 1
2

≤
√

T ·
T

∑
t=1

[
EQ
([

α>C̃F
t − C̃L

t

]2
∣∣∣∣∣F0

)] 1
2

=
√

T · ϕ(α).

Therefore, in total we have

λSCF
min‖α‖2 ≤

√
λSCF

min ·

√T · ϕ(α) +
[
EQ
(

T

∑
t=1

[
C̃L

t

]2
∣∣∣∣∣F0

)] 1
2
 , (2)

so that in particular

‖α‖2 → ∞ =⇒ ϕ(α)→ ∞.

As a continuous convex and coercive function, ϕ attains its minimum, and we are finished.

3.2. Uniqueness of Optimal Solution

Now, let us consider under which conditions we get uniqueness of the optimal replicating
portfolio. Let us first consider the rather easy but practically most likely case that no liability cash flow
at any time can be replicated:

Assumption 4.
∀α ∈ Rm : min

t∈T
ϕt(α) > 0 .

7 A function f : Rm 7→ R is called coercive iff f (x)→ +∞ whenever ‖x‖ → ∞.
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Under this assumption, ϕ is obviously twice continuously differentiable on the whole Rm.
In practice, Assumption 4 is usually fulfilled, since liability cash flows are not replicable at any
time in the future. If it holds, one can easily show the following strong result.

Theorem 2. Under Assumptions 1 and 4, the objective function ϕ is strictly convex and twice continuously
differentiable. Furthermore, it is strongly and uniformly convex on each compact subset of Rm. Especially,
the global minimum of ϕ is unique.

Proof. Let α ∈ Rm be arbitrary. As for each t, ϕt is twice continuously differentiable, and we can
consider the Hessian ∇2 ϕt(α) (cf. (1)). As this Hessian is positive semi-definite, it holds that

∀ t ∈ T , ∀ x ∈ Rm : x>EQ
(

εt(α) · C̃F
t

)
EQ
(

C̃F
t · εt(α)

)>
x

≤ ‖εt(α)‖2
2 x>EQ

(
C̃F

t

(
C̃F

t

)>)
x.

As no ϕt vanishes, we have εt(α) 6= 0 for all t. Then, due to the Cauchy–Schwarz inequality, it
holds that this inequality is strict for t if and only if x>C̃F

t 6= 0 and εt(α) is not collinear with x>C̃F
t .

Due to Assumption 1, for each x 6= 0, there is at least one t0 such that x>C̃F
t0
6= 0. Now let us assume

that εt0(α) is collinear to x>C̃F
t0

; i.e., let us assume that

∃λ0 ∈ R : λ0 x>C̃F
t0
= εt0(α).

By definition of ε, this is equivalent to

C̃L
t0
= (λ0x + α)>C̃F

t0
.

However, this means that in t0, the liability cash flow can be perfectly replicated, which is
a contradiction to Assumption 4. Therefore, εt0(α) cannot be collinear to x>C̃F

t0
, and the above

inequality is strict for each x 6= 0. Thus, the Hessian matrix of ϕ is positive definite, and as α was
arbitrary, ϕ is strictly convex. The remaining claims are straightforward consequences.

Remark 3. In Görner and Kanzow [24], it is shown that for uniformly convex ϕ, Newton’s method is globally
quadratically convergent on any compact set. From inequality (2), we see that

{α ∈ Rm | ϕ(α) ≤ ϕ(0)}

is compact and contains the optimal solution. Hence, if we restrict to the optimization on this set we know that
Newton’s method will be globally quadratically convergent.

Although for practical purposes the following result might not be as important as Theorem 2
(obtained under the stronger Assumption 4), there still remain some cases when Assumption 4 is
violated. In particular, this includes all models where liability cash flows are predictable, for example,
as in Grosen and Jørgensen [11]. In this more general case, it is still possible to show uniqueness of the
optimal replicating portfolio. However, without Assumption 4, strict convexity and smoothness of the
objective function will be lost in general.

Theorem 3. Under Assumption 1, the global minimum of ϕ is unique.

Proof. Let us assume that ϕ possesses (at least) two different global minima, called α1 and α2. Then,
let us consider the midpoint

α :=
1
2
(α1 + α2) ,
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which, due to convexity, has to be optimal as well. Due to the optimality of α, the directional derivative
of ϕ′(α, d) has to vanish in all directions d, especially in direction h := α− α1.

As ϕ is the sum of convex functions ϕt, α can only be optimal if all terms ϕt are linear in
direction h (e.g., Nam [23] for the same argument). If ϕt(α) = 0, this can only be the case if both
ϕt(α1) = 0 = ϕt(α2); otherwise, we would have a contradiction to the assumption that both α1 and
α2 are optimal, and we are done. From ϕt(α1) = 0 = ϕt(α2), it directly follows that h is such that
0 = h>C̃F

t . If, alternatively, ϕt(α) > 0, then the second derivative in direction h has to vanish for
linearity. This can only happen if either 0 = h>C̃F

t or h>C̃F
t is collinear to εt(α). In the first case,

the directional derivative of ϕt in direction h vanishes, whereas in the second case, we have that

ϕ′t(α, h) = |λ0| ‖εt(α)‖L2 > 0

as h>C̃F
t = λ0εt(α) for some λ0 6= 0 due to collinearity. So, for all t, we need to have h>C̃F

t = 0 for
optimality. However, due to Assumption 1, there is at least one t0 such that 0 6= h>C̃F

t0
; thus, h>C̃F

t0
has

to be collinear to εt0(α), which shows that the directional derivative of ϕ does not vanish in direction h.
This is a contradiction to our initial assumption, and we are done.

In the general case without Assumption 4, no first- or even second-order method can be used to
directly solve the cash flow replication problem (RPCF) due to potential non-smoothness of ϕ. However,
we will show in the following that we can avoid this non-smoothness by an equivalent reformulation
as a second-order cone program, which can then be solved by efficient second-order methods.

3.3. Reformulation as Second-Order Cone Program

Let us start with the unconstrained formulation of the cash flow replication problem

min
α∈Rm

ϕ(α) = min
α∈Rm

T

∑
t=1

ϕt(α) ,

and let us introduce auxiliary variables γt ∈ R for each term to obtain the obviously equivalent
constrained formulation

min
α∈Rm

γ∈RT

T

∑
t=1

γt

subject to

ϕt(α) ≤ γt, t = 1, . . . , T.

Now, we have

ϕt(α) =
∥∥∥C̃L

t − α>C̃F
t

∥∥∥
L2

=

(∥∥∥C̃L
t − α>C̃F

t

∥∥∥2

L2

) 1
2

=

( 1
−α

)>
EQ

(C̃L
t

C̃F
t

)(
C̃L

t
C̃F

t

)>( 1
−α

) 1
2

=

( 1
−α

)>
RSCF

t

(
1
−α

) 1
2

=

∥∥∥∥∥HSCF
t

(
1
−α

)∥∥∥∥∥
2

,
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where

RSCF
t := EQ

(C̃L
t

C̃F
t

)(
C̃L

t
C̃F

t

)>
and

HSCF
t := (RSCF

t )
1
2

is the root matrix of the positive semi-definite matrix RSCF
t . In summary, we obtain the linear second

order cone program

min
α∈Rm

γ∈RT

T

∑
t=1

γt

subject to∥∥∥∥∥HSCF
t

(
1
−α

)∥∥∥∥∥
2

≤ γt, t = 1, . . . , T,

which can be solved by efficient numerical methods with superlinear convergence (e.g., Alizadeh and
Goldfarb [25]).

3.4. Fair Value of Optimal Solution

Finally, let us consider the equality of fair values. The standard Fermat–Torricelli problem as
in Nam [23] is given by

inf
x∈Rm

T

∑
t=1
‖x− at‖2 ,

with a ∈ RT and where ‖.‖2 denotes the standard Euclidean norm. In general, this problem does not
entail optimality conditions which yield equality of means; i.e., in general,

x =
1
T

T

∑
t=1

x 6= 1
T

T

∑
t=1

at.

However, although the structure of (RPCF) is very similar, there is a crucial difference. Instead of
x ∈ Rm being fixed in each t, (RPCF) allows some degree of freedom at each time t in the appearance of
the time-dependent random variable α>C̃F

t . In particular, we may assume that for any t we may trade
an option today which has payoff equal to the numéraire at t and no payoff otherwise (i.e., call options
on the numéraire with strike price 0 and maturity t). In the context of (RPCF), this corresponds to the
freedom of choosing the expectation of α>C̃F

t for each t individually. However, since (RPCF) is nothing
but a sum of optimization problems in L2, optimality conditions will yield that it is best to match
expectations of α>C̃F

t and C̃L
t . This observation is made precise in the following theorem.

Theorem 4. Suppose that for any c ∈ RT there exists β ∈ Rm such that

∀t ∈ T : β>C̃F
t = ct. (3)

Then, any solution αCF
opt to (RPCF) satisfies

EQ
((

αCF
opt

)>
ÃF
∣∣∣F0

)
= EQ

(
ÃL
∣∣∣F0

)
.
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Proof. Condition (3) implies that for any t̄ ∈ T there exists β t̄ ∈ Rm such that

β>t̄ C̃F
t =

{
1, t = t̄

0, t 6= t̄
.

By examining the directional derivatives of the objective function ϕ in (RPCF) with respect to the
direction β t̄, we see that all but the t̄’th summand disappear:

ϕ′(α, β t̄) = ϕ′t̄(α, β t̄).

As αCF
opt is an unconstrained minimum of a convex function, this requires that all directional

derivatives are non-negative, especially the ones in directions of ±β t̄. If ϕt(αCF
opt) = 0 we do not need

to inspect the directional derivative, as in this case the cash flow at time t̄ is exactly replicated and thus
the fair values of these cash flows are equal. Therefore, let us consider the case ϕt(αCF

opt) 6= 0. Then,
considering both ±β t̄, this means that

EQ
(
−
[
C̃L

t̄ − α>C̃F
t̄

]
β>t̄ C̃F

t̄

∣∣∣∣∣F0

)
= 0

and thus

EQ
([

C̃L
t̄ − α>C̃F

t̄

] ∣∣∣∣∣F0

)
= 0 .

As t̄ ∈ T was chosen arbitrarily, this shows that the fair value of cash flows is in fact equal at any
time. In particular, this obviously implies the claim.

Remark 4. As a matter of fact, the observation that some degree of freedom becomes available through time
dependence of α>ÃF

t has already been made in Natolski and Werner [18] in Subsection “Time-separable case”.
There it was demonstrated that in the case where cash payments are generated at each time separately, (RPCF)
and (RPSCF) are equivalent. In particular, fair values of the replicating portfolios are the same and equal to
the fair value of liability cash flows. Going one step further, Theorem 4 now illustrates that for matching fair
values it is already sufficient if cash payments equal to the numéraire can be generated at each time separately.
This can be considered a rather weak condition, which is usually fulfilled in practical settings if the replication
instruments are chosen accordingly.

3.5. Pros and Cons of (RPCF) versus (RPSCF) and (RP ˜TV)

So far, problem (RPCF) has not received much attention amongst practitioners. The reasons for
this are manifold:

1. Problems (RPSCF) and (RP ˜TV) possess analytical solutions. Thus, the replicating portfolio can be
obtained by simple numerical linear algebra, and no optimization framework is needed.

2. Problems (RPSCF) and (RP ˜TV) possess unique solutions with fair values equal to the liability
fair value.

3. Problem (RPCF) potentially represents a non-smooth problem, and thus cannot be solved efficiently.

In the above analysis, we have shown that all other reasons besides the first one go up in smoke
after a detailed investigation of (RPCF). From a theoretical point of view (see for example Natolski and
Werner [17]), terminal value matching should be preferred over cash flow matching, as it yields lower
error estimates on the resulting risk capital figure. However, numerous numerical studies have shown
that the out-of-sample performance of cash flow matched replicating portfolios is superior to terminal
value matched portfolios. Further, if one is interested in matching the cash flow profile (and not only
risk capital), then cash flow matching is (almost) inevitable. From this point of view, (RPSCF) should
be clearly preferred.
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However, due to the long maturity of life insurance contracts (usual models range from
40 to 60 years final maturity), numerical issues cannot be avoided. Usually, the matching error of
certain maturities significantly dominates all other maturities. In this case, only the dominating
maturities are properly matched. From a statistical point of view (robust statistics, robust least
squares), it is well known that this can be partially mitigated if one moves from the square of the
L2-norm to the L2-norm itself (i.e., if a kind of Fermat–Torricelli structure is chosen). From that
perspective, (RPCF) might indeed represent the formulation which leads to the most stable portfolios
with satisfying out-of-sample performance. To support such a hypothesis, a thorough numerical
analysis is strongly indicated—however, this is clearly beyond the scope of this contribution and is
thus left for future research.

4. Conclusions

We picked up on the replication problems presented in Natolski and Werner [18]. Therein,
for (RPSCF) and (RP ˜TV), existence and uniqueness results as well as the matching of the fair value of
liabilities have been provided. In this contribution, similar results are shown for (RPCF), and we also
prove further structural results on this problem. We especially show that it possesses a unique solution
under weak assumptions. Furthermore, we supplement Natolski and Werner [18] by showing that the
optimal replicating portfolio indeed has the same fair value as liabilities under additional rather weak
assumptions. Finally, we also provided a reformulation of (RPCF) as an SOCP for efficient numerical
solution. In case an additional assumption holds, (RPCF) can be solved directly by Newton’s method,
thus rendering the solution of (RPCF) as efficient as for (RPSCF) and (RP ˜TV). Finally we have provided
a discussion on the pros and cons of each formulation, which shows that the best formulation still
remains to be found.
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