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Abstract: In this paper, we study the optimal reinsurance problem where risks of the insurer are
measured by general law-invariant risk measures and premiums are calculated under the TVaR
premium principle, which extends the work of the expected premium principle. Our objective is
to characterize the optimal reinsurance strategy which minimizes the insurer’s risk measure of its
total loss. Our calculations show that the optimal reinsurance strategy is of the multi-layer form,
i.e., f ∗(x) = x ∧ c∗ + (x− d∗)+ with c∗ and d∗ being constants such that 0 ≤ c∗ ≤ d∗.
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1. Introduction

The issue of optimal reinsurance design has recently aroused great interests from mathematicians
in both academia and the financial industry. A reinsurance policy is a contract, according to which
the reinsurance company covers part of the risk of an insurance (or, ceding) company, in exchange
for receiving a premium calculated under some premium principle. It’s seen that identifying the
criterion that is applied to get an optimal reinsurance strategy is the cornerstone of reinsurance
optimization. It is well known that there have been several criterions of reinsurance optimization in
the literature. The first and most classical optimization criterion is variance minimization. It is shown
that the pure stop-loss reinsurance is the optimal reinsurance strategy because of the smallest variance
of the insurer’s retained loss among all the strategies with the same pure premium, see, Borch [1],
Kaluszka [2], Kaas, et al. [3], and so on. The second one is utility maximization, which is attributed
to Arrow [4]. It asserts that the stop-loss reinsurance maximizes the expected utility of the insurer,
provided that the insurer has a concave utility function. Other criterions such as “maximizing the joint
survival probability”, “minimizing the risk-adjusted value” and “behavioral criterion” for example the
disappointment theory related criterion, have also featured in some existing works. See, for instance,
Cai, et al. [5], Chi [6] and Cheung, et al. [7]. Recently, the optimization criterion of minimization of a
number of ingenious risk measures is also widely applied, see Kaluszka [8,9], Gajek and Zagrodny [10],
Promislow and Young [11], Cai, et al. [12], Balbás, et al. [13], Cheung [14], Chi and Weng [15] and the
references therein.

In this paper, the “risk measure minimization” optimization criterion is considered. Under the
“risk measure minimization” criterion the body of literature regarding the optimal reinsurance strategy
has been witnessing the following four directions of generalization from the mathematics aspect.
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(a) Generalizing the set of ceded loss functions. Cai, et al. [12] and Cheung [14] considered the
set of all the increasing and convex functions as their feasible ceded loss function class. While,
Lu, et al. [16] took the set of all the increasing and concave functions as their feasible ceded loss
function class. Chi and Weng [15] extended their feasible ceded loss function class to

{ f (x)|0 ≤ f (x) ≤ x, both x− f (x) and f (x)/x are increasing function of x}.

Chi and Tan [17] further extended their feasible ceded loss function class to

{ f (x)|0 ≤ f (x) ≤ x, both x− f (x) and f (x) are increasing function of x}.

Other more general feasible ceded loss function class

{ f (x)|0 ≤ f (x) ≤ x, x− f (x) (or f (x)) is increasing (left-continuous) function of x}

can be found in Cheung and Lo [18]. Different reinsurance contracts have been introduced in the
reinsurance market among which there are quota-share, stop-loss, stop-loss after quota-share and
quota-share after stop-loss, etc. It can be verified that all these reinsurance contracts belong to
some or all of the above-mentioned feasible ceded loss function classes.

(b) Generalizing the premium principles. To our knowledge, the most widely used premium principle
in the existing works turns out to be the expected premium principle, see Cheung, et al. [19],
Lu, et al. [16], Cai, et al. [5], Chi and Tan [17], etc.. Assa [20], Zheng and Cui [21], Cui, et al. [22]
extended their premium principle to the distortion premium principle. Zhu, et al. [23] further
extended their premium principle to very general one that satisfies three mild conditions:
distribution invariance, risk loading and preserving the convex order, see also Chi and Tan [24].

(c) Generalizing the risk measures. Using the VaR, CTE, AVaR, respectively, Hu, et al. [25], Cai and
Tan [26], Cai, et al. [12], Cheung [14] and Chi and Tan [24] found the optimal reinsurance contract.
In Asimit, et al. [27], a quantile-based risk measure was adopted in accordance with the insurer’s
appetite. Assa [20], Zheng and Cui [21] and Cui, et al. [22] generalized their risk measures to the
distortion risk measures. Cheung, et al. [19] further extended the problem by using a general
law-invariant convex risk measure.

(d) Constraints involved. Borch [1] (and also Arrow [4]) showed that, subject to a budget constraint,
the stop-loss policy is an optimal reinsurance contract for the ceding company when the risk is
measured by variance (or by a utility function). Reinsurance optimization problems involving
premium constraint were also considered in Gajek and Zagrodny [10], Zhou, et al. [28], Zheng
and Cui [21], Cui, et al. [22] and Cheung and Lo [18]. Cheung, et al. [29] introduced a reinsurer’s
probabilistic benchmark constraint of his potential loss. In Tan and Weng [30], a profitability
constraint was proposed.

Inspired by the above four directions of generalization, this paper extends the work of
Cheung, et al. [19] from the expected premium principle to the TVaR premium principle, which was
first proposed in Young [31] (see also, Kaluszka [9]). The optimal reinsurance problem under
the general law-invariant convex risk measures with premiums being calculated according to the
TVaR premium principle is considered. The optimal reinsurance strategy which minimizes the
insurer’s risk measure of its total loss is characterized. By constraining the ceded loss function
class to be the set of 1-Lipschitz continuous functions, the optimal reinsurance strategy is of the form
f ∗(x) = x ∧ c∗ + (x− d∗)+ with 0 ≤ c∗ ≤ d∗.

The rest of the paper is organized as follows. Section 2 gives the mathematical presentation of
our reinsurance optimization problem. The optimal reinsurance strategy is characterized in Section 3.
In Section 4 some sensitivity analysis is carried out for the optimal value function given by (2)
(see Section 2), where two particular scenarios of Problem (2) (see Section 2) are considered.
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2. The Mathematical Presentation of the Reinsurance Optimization Problem

Suppose that the probability space (Ω,F ,P) carries all the random arguments concerned in the
sequel. Let X be a nonnegative random variable defined on (Ω,F ,P), representing the amount of
claims in a fixed time period. We also suppose that an insurance company which is exposed to the risk
X decides to purchase a reinsurance policy, and f (X) is the part of loss transferred from the insurer
to the reinsurer, the insurer’s retained loss thus is X− f (X). Here, the function f : [0, ∞)→ [0, ∞) is
said to be a ceded loss function or an indemnification function. The reinsurance premium charged by
the reinsurer for taking up the loss f (X) is assumed to be calculated according to the so-called TVaR
premium principle with level parameter β ∈ (0, 1] and safety loading coefficient θ ≥ 0, i.e.,

µ( f (X))=̂
1 + θ

β

∫ β

0
S−1

f (X)
(x)dx with S−1

Y (x)=̂ inf{y ≥ 0| SY(y) ≤ x}. (1)

Here, SX(y)=̂1− FX(y)=̂P(X > y) is the tail distribution of X. Such a premium principle was first
proposed by Young [31] (see also, Kaluszka [9]). It can be viewed as an extended version of the expected
premium principle, that is, letting β = 1 in (1) gives the expected premium principle. Consequently,
the total cost of the insurer under the reinsurance arrangement is given by X− f (X) + µ( f (X)), and
the corresponding cost of the reinsurer is given by f (X)− µ( f (X)). To avoid tedious discussions and
arguments, we assume further that the distribution function of X, say FX(y), is continuous on [0, ∞)

with FX(0) = 0.
The objective of this paper is to determine the optimal design of reinsurance contracts so that the

insurer’s risk exposure, measured by a general law-invariant convex risk measure, can be minimized.
Specifically, we focus on the following problem

inf
f∈H

ρ
(
X− f (X) + µ( f (X))

)
, (2)

whereH is the following admissible ceded loss function set

H=̂{ f | 0 ≤ f (x) ≤ x, f (x) and x− f (x) are nondecreasing functions of x},

ρ is the general law-invariant convex risk measure adopted by the insurer. According to Föllmer and
Schied [32] it has a representation of the following form

ρ(Y) = sup
ν∈M1

( ∫
(0,1]

AVaRα(Y)ν(dα)− ψ(ν)
)

,

hereM1 is the set of all probability measures on (0, 1], ψ :M1 → R is a functional, and AVaRα is the
average value at risk (risk measure) with level parameter α,

AVaRα(Y)=̂
1
α

∫ α

0
VaRλ(Y)dλ,

with Y being any wealth random variable, and VaRα(Y) = S−1
Y (α) is the VaR risk measure. Hence,

the so-called TVaR premium principle introduced in Young [31] (see also, Kaluszka [9]) equals, up to
multiplication by the constant 1 + θ, to the AVaRβ risk measure of f (X). That is, we have µ( f (X)) =

(1 + θ)AVaRβ( f (X)).
It can be seen that the AVaR (hence the TVaR) measures average losses in the most adverse cases

rather than just the minimum loss, as the VaR does. Therefore, calculating premiums by the TVaR
has two advantages: (a) unlike the expected premium principle, premiums for catastrophic losses are
taken into account well enough by AVaR and hence underestimation of premiums is avoided; (b) TVaR
has the subadditivity property, while the subadditivity is an appealing property when aggregating
risks in order to preserve the benefits of diversification. Hence, the TVaR would appear to be a more
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powerful premium principle for assessing the actual risks faced by the reinsurance companies. For
more detailed information about TVaR (AVaR) please refer to Belles-Sampera, et al. [33].

It is necessary to claim that the ceded loss function classH consists of all 1-Lipschitz continuous
functions. In fact, the nondecreasing property of f (x) results in 0 ≤ f (x) − f (y), while the
nondecreasing property of x − f (x) results in y − f (y) ≤ x − f (x) ⇔ f (x) − f (y) ≤ x − y for
all 0 ≤ y ≤ x.

3. Characterizing the Optimal Reinsurance Strategy

As a transition, we first study the following optimal reinsurance problem

inf
f∈H

AVaRα{X− f (X) +
1 + θ

β

∫ β

0
S−1

f (X)
(x)dx}. (3)

By the definition of S−1
X (x) in the latter equality of Equation (1), we have

S−1
X (α) > x ⇔ SX(x) > α, S−1

X (α) ≤ x ⇔ SX(x) ≤ α, SX(S−1
X (α)) ≤ α. (4)

In addition, for any continuous nondecreasing function f , we have

S−1
f (X)

(α) = f (S−1
X (α)). (5)

See, Equation (2.2) of Cheung and Lo [18] for example.
The following Lemma 1 is essential for the proof of our main result, Theorem 1.

Lemma 1. For any feasible indemnity function f ∈ H, there exists another feasible indemnity function

fc,d ∈ H0=̂{ f | f = x ∧ c + (x− d)+, (c, d) ∈ D},

where D=̂[0, S−1
X (β)]× [S−1

X (β), sup X] with sup X denoting the essential supremum of X, such that for all
α ∈ [0, 1],

AVaRα(X− fc,d(X) +
1 + θ

β

∫ β

0
S−1

fc,d(X)
(x)dx) ≤ AVaRα(X− f (X) +

1 + θ

β

∫ β

0
S−1

f (X)
(x)dx).

Proof. Using the definition of AVaR risk measure given in the third equation right below (2),
Problem (3) can be re-expressed as

inf
f∈H

1
α

∫ α

0
VaRλ

(
X− f (X) +

1 + θ

β

∫ β

0
S−1

f (X)
(x)dx

)
dλ.

Recalling (5) with the continuous non-decreasing function x + k for some real number k, we get

VaRλ(Y + k) = S−1
Y+k(λ) = S−1

Y (λ) + k.

Note that the function x− f (x) is also continuous and non-decreasing, then Problem (3) is equivalent to

inf
f∈H

{
1
α

∫ α

0
[S−1

X (λ)− f (S−1
X (λ))]dλ +

1 + θ

β

∫ β

0
f (S−1

X (x))dx
}

. (6)

Let

Vα,β( f ) =
1
α

∫ α

0
[S−1

X (λ)− f (S−1
X (λ))]dλ +

1 + θ

β

∫ β

0
f (S−1

X (x))dx.
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Then a change of variable x = S−1
X (λ) leads to

Vα,β( f ) =
1
α

∫ sup X

S−1
X (α)

[x− f (x)]dFX(x) +
1 + θ

β

∫ sup X

S−1
X (β)

f (x)dFX(x),

where we have used the fact that SX(S−1
X (α)) = α whenever S−1

X (α) > 0, and f (0) = 0.
For any f ∈ H, define a new reinsurance strategy as

fc,d = x ∧ c + (x− d)+ ∈ H0, (7)

with
c = f (S−1

X (β)) ≤ S−1
X (β),

and d ∈ [S−1
X (β), sup X] such that

∫ sup X

S−1
X (β)

f (x)dFX(x) =
∫ sup X

S−1
X (β)

fc,d(x)dFX(x). (8)

We claim that there is no doubt of the existence of d ∈ [S−1
X (β), sup X] satisfying (8). Notice that

fc,d(x)|c= f (S−1
X (β)) continuously depends on d, the right hand side of (8) being considered as a function

of d is a continuous function, by the bounded convergence theorem. Further, d = S−1
X (β) implies

fc,d(x) ≥ f (x) for all x ∈ [S−1
X (β), sup X]. Hence

∫ sup X

S−1
X (β)

fc,d(x)dFX(x) ≥
∫ sup X

S−1
X (β)

f (x)dFX(x).

On the other hand, for d = sup X we have fc,d(x) = c = f (S−1
X (β)) ≤ f (x) for all x ∈ [S−1

X (β), sup X], then

∫ sup X

S−1
X (β)

fc,d(x)dFX(x) ≤
∫ sup X

S−1
X (β)

f (x)dFX(x).

Thus, the existence of d ∈ [S−1
X (β), sup X] satisfying (8) is direct by the intermediate theorem for

continuous functions.
Let

τf = inf
{

x ≥ S−1
X (β)| fc,d(y) ≥ f (y) all y ∈ [x, sup X]

}
.

Now, by taking difference we get

Vα,β( f )−Vα,β( fc,d) =
1
α

∫ sup X

S−1
X (α)

[ fc,d(x)− f (x)]dFX(x), (9)

where fc,d is defined as in (7). Consider the following cases.

(a) If S−1
X (α) ≥ τf ≥ S−1

X (β), then fc,d(x) ≥ f (x) for any x ∈ [S−1
X (α), sup X]. Hence (9) implies that

Vα,β( f )−Vα,β( fc,d) ≥ 0.
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(b) If τf ≥ S−1
X (α) ≥ S−1

X (β), then it follows from (8) and (9) that

Vα,β( f )−Vα,β( fc,d)

=
1
α

(∫ sup X

S−1
X (β)

[ fc,d(x)− f (x)]dFX(x)−
∫ S−1

X (α)

S−1
X (β)

[ fc,d(x)− f (x)]dFX(x)

)

=− 1
α

∫ S−1
X (α)

S−1
X (β)

[ fc,d(x)− f (x)]dFX(x)

≥ 0,

since fc,d(x) ≤ f (x) for all x ∈ [S−1
X (β), τf ] ⊇ [S−1

X (β), S−1
X (α)].

(c) If S−1
X (α) < S−1

X (β), then (8) and (9) imply that

Vα,β( f )−Vα,β( fc,d)

=
1
α

(∫ S−1
X (β)

S−1
X (α)

[ fc,d(x)− f (x)]dFX(x) +
∫ sup X

S−1
X (β)

[ fc,d(x)− f (x)]dFX(x)

)

=
1
α

∫ S−1
X (β)

S−1
X (α)

[ fc,d(x)− f (x)]dFX(x)

≥ 0,

since fc,d(S−1
X (β)) = f (S−1

X (β)) = c and fc,d(x) ≥ f (x) for all x ∈ [0, S−1
X (β)] by the construction

of fc,d(x) as in (7).

Combining inequalities of all cases (a), (b) and (c), proof of Lemma 1 is completed.

Remark 1. From the proof of Lemma 1, one can see that the form of the ceded loss function fc,d(x) defined
by (7), or more exactly, (c, d) does not depend on the choice of α. Indeed, it only depends on f (x) and β with
c = f (S−1

X (β)) and d satisfies (8). That is to say,

sup
α∈[0,1]

(
AVaRα

(
X− fc,d(X) +

1 + θ

β

∫ β

0
S−1

fc,d(X)
(x)dx

)
−AVaRα

(
X− f (X) +

1 + θ

β

∫ β

0
S−1

f (X)
(x)dx

))
≤ 0.

This kind of uniformity plays an essential role in the proof of Theorem 1. In fact, a similar uniform inequality
for all α ∈ (0, SX(0)) was also obtained in Proposition 3.1 of Cheung, et al. [19]. Some further observations of
the reasoning of the proofs in Cheung, et al. [19] will reveal that such an inequality also holds uniformly for
all α ∈ [0, SX(0)]. While in our case SX(0) = 1 is assumed and hence we obtained in our paper an inequality
that holds uniformly for all α ∈ [0, 1]. In addition, we can also see from Theorem 3.6 of Cheung, et al. [19] that
SX(0) = 1 is assumed to lead to the corresponding conclusions of that theorem, especially the reasoning of the
shrinking of the ceded loss function class in which the optimal ceded loss function lies.

Remark 2. Lemma 1 states that Problem (3) is equivalent to

inf
f∈H0

AVaRα

(
X− f (X) +

1 + θ

β

∫ β

0
S−1

f (X)
(x)dx

)
,

where

H0=̂{ f | f = x ∧ c + (x− d)+, (c, d) ∈ D}

with D=̂[0, S−1
X (β)]× [S−1

X (β), sup X].
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The following Theorem 1 proves the existence of optimal reinsurance strategy for Problem (2).
Moreover, the optimal reinsurance strategy comes fromH0.

Theorem 1. Assume that X with sup X < +∞ is a nonnegative integrable random variable representing the
loss faced by the insurer. Let ρ be a law-invariant convex risk measure. There always exists an optimal solution
(c∗, d∗) of the following minimization problem:

Minimize ρ(X− fc,d(X) + µ( fc,d(X))),

subject to 0 ≤ c ≤ S−1
X (β), S−1

X (β) ≤ d ≤ sup X. (10)

Furthermore, the ceded loss function defined by fc∗ ,d∗(x) = x∧ c∗+(x− d∗)+ serves as the optimal reinsurance
strategy for Problem (2).

Proof of Theorem 1. Any law-invariant convex risk measure ρ has a representation of the following
form (see, Föllmer and Schied [32]).

ρ(Y) = sup
ν∈M1

( ∫
(0,1]

AVaRα(Y)ν(dα)− ψ(ν)
)

, (11)

whereM1 is the set of all probability measures on (0, 1], and ψ is a functional defined onM1. Since it
is verified in Lemma 1 (see also, Remark 2) that for any ceded loss function f ∈ H, there exists another
ceded loss function fc,d ∈ H such that

AVaRα(X− fc,d(X) + µ( fc,d(X))) ≤ AVaRα(X− f (X) + µ( f (X))), for all α ∈ (0, 1].

Subtracting both sides of the above inequality by ψ(ν) and then taking integral on both sides of the
resulting inequality, we have∫

(0,1]
AVaRα(X− fc,d(X) + µ( fc,d(X)))ν(dα)− ψ(ν)

≤
∫
(0,1]

AVaRα(X− f (X) + µ( f (X)))ν(dα)− ψ(ν).

Taking supremum on both sides of the above inequality we arrive at

ρ(X− fc,d(X) + µ( fc,d(X))) ≤ ρ(X− f (X) + µ( f (X))),

which implies that

inf
f∈H0

ρ(X− f (X) + µ( f (X))) ≤ inf
f∈H

ρ(X− f (X) + µ( f (X))).

Note that the inclusion relationH0 ⊆ H leads to the inverse inequality

inf
f∈H0

ρ(X− f (X) + µ( f (X))) ≥ inf
f∈H

ρ(X− f (X) + µ( f (X))).

We thus have

inf
f∈H0

ρ(X− f (X) + µ( f (X))) = inf
f∈H

ρ(X− f (X) + µ( f (X))),

which means that the optimal reinsurance strategy of the Problem (2) is the solution of the Problem (10).
In the sequel, we prove the existence of optimal solution of Problem (10). By (11), the objective

function can be re-expressed as
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ρ(X− fc,d(X) + µ( fc,d(X)))

= sup
ν∈M1

(∫
(0,1]

AVaRα(X− fc,d(X) + µ( fc,d(X)))ν(dα)− ψ(ν)

)
= sup

ν∈M1

(∫
(0,1]

1
α

∫ α

0
VaRλ(X− fc,d(X))dλν(dα) + µ( fc,d(X))− ψ(ν)

)
= sup

ν∈M1

(∫
(0,1]

1
α

∫ α

0
S−1

X− fc,d(X)
(λ)dλν(dα) +

1 + θ

β

∫ β

0
S−1

fc,d(X)
(x)dx− ψ(ν)

)
= sup

ν∈M1

(∫
(0,1]

1
α

∫ α

0
[S−1

X (λ)− fc,d(S−1
X (λ))]dλν(dα) +

1 + θ

β

∫ β

0
fc,d[S−1

X (x)]dx− ψ(ν)

)
= sup

ν∈M1

( ∫
(0,1]

1
α

∫ α

0
[S−1

X (λ)− c]+ ∧ (d− c)dλν(dα)

+
1 + θ

β

∫ β

0
[S−1

X (x) ∧ c + [S−1
X (x)− d]+]dx− ψ(ν)

)
=̂ sup

ν∈M1

Gν(c, d),

which can be considered as a bivariate function of (c, d) on D=̂[0, X−1
X (β)]× [X−1

X (β), sup X]. We claim
that ρ(X− fc,d(X) + µ( fc,d(X))) is a lower semi-continuous function of (c, d) defined on compact set
D. Indeed, for any (c0, d0) ∈ D we have

lim inf
(c,d)→(c0,d0)

(c,d)∈D

ρ(X− fc,d(X) + µ( fc,d(X))) = lim inf
(c,d)→(c0,d0)

(c,d)∈D

sup
ν∈M1

Gν(c, d)

= lim
δ→0

inf
(c−c0)

2+(d−d0)
2≤δ

(c,d)∈D

sup
ν∈M1

Gν(c, d) = sup
δ>0

inf
(c−c0)

2+(d−d0)
2≤δ

(c,d)∈D

sup
ν∈M1

Gν(c, d)

≥ sup
δ>0

sup
ν∈M1

inf
(c−c0)

2+(d−d0)
2≤δ

(c,d)∈D

Gν(c, d)

= sup
ν∈M1

sup
δ>0

inf
(c−c0)

2+(d−d0)
2≤δ

(c,d)∈D

Gν(c, d)

= sup
ν∈M1

lim inf
(c,d)→(c0,d0)

(c,d)∈D

Gν(c, d)

= sup
ν∈M1

Gν(c0, d0)

= ρ(X− fc0,d0(X) + µ( fc0,d0(X))), (12)

where we have used the fact the two “sups" commute with each other in the fourth line, and the fact
that Gν(c, d) is a continuous function of (c, d) on D in the last but one equality.

Now, the property of lower semi-continuous function enables us to conclude that there must be
some (c∗, d∗) such that the function ρ(X− fc,d(X) + µ( fc,d(X))) attains it’s minimum value at (c∗, d∗).
There exists an optimal solution of Problem (10), and hence Problem (2) is verified.

4. Sensitivity Analysis

Let us consider two particular scenarios of Problem (2) for the case that X is exponentially
distributed with expectation 100, i.e., P(X > x) = e−

1
100 x.
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(i) According to Lemma 1, Problem (3) is equivalent to

inf
fc,d∈H0

( 1
α

∫ α

0
[S−1

X (λ)− fc,d(S−1
X (λ))]dλ +

1 + θ

β

∫ β

0
fc,d(S−1

X (x))dx
)

= inf
(c,d)∈D

( 1
α

∫ α

0
[S−1

X (λ)− [(S−1
X (λ) ∧ c) + (S−1

X (λ)− d)+]]dλ

+
1 + θ

β

∫ β

0
[(S−1

X (x) ∧ c) + (S−1
X (x)− d)+]dx

)
. (13)

Problem (13) is reduced by Problem (2) by shrinking the probability measure set M1 to the
singleton {Φ} with Φ = δα with α ∈ [0, 1] fixed. Here, δα({α}) = 1.

We take the infimum given by (13) as the bivariate function of (α, β), and numerically investigate
how sensitively the value of (α, β) will affect our optimal value. The corresponding numerical
results are given by Figure 1 below. It seems that significant differences in the size of optimal
value can be obtained depending on the value of (α, β). It also seems that the optimal value
increases as α and β approaches 0.
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Figure 1. The horizontal axis represents β, the vertical axis represents α, the lateral axis represents
the optimal value given by (13). The Greek θ is set to be 0.1. The distribution of X is exponential:
SX(x) = e−

1
100 x.

(ii) Consider the following optimization problem,

inf
f∈H

( ∫ 1

0

1
α

∫ α

0
[S−1

X (λ)− f (S−1
X (λ))]dλdΦ(α) +

1 + θ

β

∫ β

0
f (S−1

X (x))dx
)

= inf
(c,d)∈D

( ∫ 1

0

1
α

∫ α

0
[S−1

X (λ)− [(S−1
X (λ) ∧ c) + (S−1

X (λ)− d)+]]dλdΦ(α)

+
1 + θ

β

∫ β

0
[(S−1

X (x) ∧ c) + (S−1
X (x)− d)+]dx

)
, (14)

with dΦ(α) = 1dα, α ∈ [0, 1]. Problem (14) is another particular case of Problem (2). In fact,
Problem (14) is reduced by Problem (2) by shrinking the probability measure set M1 to the
singleton {Φ}.
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We take the infimum given by (14) as the function of β, and numerically investigate how sensitively
the value of β will affect our optimal value. The corresponding numerical results are given by
Figure 2 below. It can be seen that the optimal value decreases as the value of β increases.
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Figure 2. The horizontal axis represents β, the vertical axis represents the optimal value given by (14).
The Greek θ is set to be 0.1. The distribution of X is exponential: SX(x) = e−

1
100 x.

5. Concluding Remarks

In this paper, we study the optimal reinsurance problem under the general law-invariant convex
risk measure and the TVaR premium principle. Cheung, et al. [19] considered the analogous problem
with the premium being calculated via the expected premium principle. It is worth mentioning that the
TVaR premium principle we considered is an extension of the expected premium principle. However,
since the general law-invariant risk measures considered in this paper (and Cheung, et al. [19]) are
a class of very general risk measures, it is not easy to make further extensions for the premium
principle. The optimal reinsurance strategy which minimizes the insurer’s risk measure of its total
loss is characterized. Our results show that the optimal reinsurance strategy is of the multi-layer form,
which is also an extended version of that in Cheung, et al. [19].
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