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1. Introduction

The four-parameter stable law arises as the limiting distribution of normalized sum of
independent, identically distributed random variables. Stable distributions allow skewness and
heavy tails and are proposed as models for various processes in physics, finance and elsewhere (see,
e.g., [1]). However, modelling is complicated due to lack of a closed form for density of stable law.
A number of parameter estimation techniques are based on the characteristic function. Regression-type
characteristic function based methods are proposed in [2–4] and a minimum distance approach in [5].
Based on the logarithm of characteristic function, Press [6] proposes explicit point estimators for four
parameters of stable law. His estimates depend on an arbitrary choice of two pairs of arguments of
empirical characteristic function, and the method has not been recommended in practice. However,
we found only a few papers (e.g, [5,7] for symmetric stable laws) introducing simulations on Press’s
method while the optimal selection of arguments is still unresolved (for symmetric stable laws, some
suggestions are given in [8]). In this paper, we show that the parameters of stable law can be expressed
through cumulant function of one pair of arguments and hence the method of Press can be applied for
one, not two pairs of arguments. We study the selection of arguments by an empirical search. To assess
the effectiveness of estimates, we perform extensive simulations over the parameter space as well as
present an application to non-life insurance losses.

The paper is organized as follows. In Section 2, we give some preliminary results about the stable
laws. In Section 3, we discuss the main results on cumulant function based estimation. In Section 4, we
present an empirical search for the selection of arguments, and in Section 5, we discuss simulations for
a selected pair of arguments. Section 6 is devoted to an example in non-life insurance, and Section 7
provides conclusions.

2. Preliminaries

A random variable X is referred to as stable (see, e.g., [1,9,10]) if there exist constants dn > 0 and
cn ∈ R such that

n

∑
i=1

Xi
d
= cn + dnX, (1)

where X1, X2, . . . , Xn are independent random variables each having the same distribution as X. It has
been shown (e.g., [1,11]) that in Equation (1), we have necessarily dn = n1/α for some 0 < α ≤ 2
only. The variance of both sides of Equation (1) gives n Var(X) = n2/α Var(X). For non-degenerate
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(Var(X) 6= 0) distributions with finite variance, the index α must be equal to 2. If α 6= 2, the relation
can be formally satisfied only with Var(X) = ∞. Indeed, all stable distributions with α < 2 have
infinite variances, and when α ≤ 1, they have an infinite mean as well. It is well known that normal
(α = 2), Cauchy (α = 1) and Levy (α = 1/2) distributions belong to the class of stable laws. Naturally,
α describes the rate of decay of the tails of stable distribution, the smaller the α, the slower is the
decay and the heavier the tails. The parameter α is called a characteristic exponent, or index of
stability. A skewness or asymmetry parameter β ∈ [−1, 1] characterizes the degree of asymmetry of
the distributions being different from normal law (β is irrelevant when α = 2). For β = 0, we have
symmetric stable distributions and for β = ±1 totally skewed stable distributions. Like normal law, all
stable distributions also remain stable under linear transformations, hence the scale parameter γ > 0
and the location parameter δ ∈ R are introduced. It is worth mentioning that the scale parameter is not
the standard deviation, and the location parameter is not generally the mean [e.g., [1,10]]. However,
for γ = 1, δ = 0 we say standard stable distributions.

The density function of four-parameter stable distributions cannot be written analytically, and
it is not as convenient to use as compared with characteristic (or cumulant) functions that also
contain the complete information. The characteristic function ϕX(u) of a stable random variable X is
ϕX(u) = E[eiuX ] and the cumulant function ΨX(u) is ΨX(u) = lnE[eiuX ]. The explicit representation
of the characteristic (and cumulant) function of X depends on the parametrizations. In [1], several
parametrizations are introduced while Nolan [10] proposes even more. Hence, when discussing
the characteristic or cumulant function of stable law, the parametrization should always be stressed.
Hereby, we denote [10] stable laws by S(α, β, γ, δ; 1), where 1 specifies the parametrization we use.
The representation of characteristic function under 1-parametrization, similar to parametrization (A)
in [1], is one of the most presented (as in [9], for example). The Definition 1 for the cumulant function
of stable law follows the definition of 1-parametrization in [10].

Definition 1. A random variable X is distributed according to distribution S(α, β, γ, δ; 1) if

X =

{
γZ + δ, α 6= 1,
γZ + (δ + β 2

π γ log γ), α = 1,

where Z is a random variable with cumulant function

ΨZ(u) =

{
−|u|α[1− iβ tan(πα

2 ) sign(u)], α 6= 1,
−|u|[1 + iβ 2

π sign(u) log(|u|)], α = 1,

where α ∈ (0, 2], β ∈ [−1, 1], γ > 0 and δ ∈ R, and i =
√
−1. Then, X has the cumulant function

ΨX(u) =

{
−γα|u|α[1− iβ(sign u) tan πα

2 ] + iδu, α 6= 1,
−γ|u|[1 + iβ 2

π (sign u) ln |u|] + iδu, α = 1.
(2)

Our estimation procedure is based on the empirical cumulant function, i.e., on the
logarithm of empirical characteristic function. For a sample X1, . . . , Xn of independent and
identically distributed random variables, the empirical characteristic function ϕ̂X1,...,Xn(u) = ϕ̂n(u)
is given as ϕ̂n(u) = 1

n ∑n
j=1 eiuXj . It is easy to see that if X1, . . . , Xn are distributed as X, then

E[ϕ̂n(u)] = 1
n ∑n

j=1 E[e
iuXj ] = ϕX(u). Hence, by the strong law of large numbers, the theoretical

empirical characteristic function almost surely converges to the characteristic function for n→ ∞, i.e.,

lim
n→∞

ϕ̂n(u)
a.s.
= ϕX(u), (3)
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and ϕ̂n(u) is a consistent estimator for ϕX(u). For studies on parameter estimation of stable laws based
on empirical characteristic function, we refer, for example, to [2–8,12,13].

For a sample X1, . . . , Xn i.i.d. of random variables, the empirical cumulant function
Ψ̂X1,...,Xn(u) = Ψ̂n(u) is

Ψ̂n(u) = ln ϕ̂n(u) = ln

(
1
n

n

∑
j=1

eiuXj

)
. (4)

Complex numbers are complete metric space and the natural logarithm function is continuous; hence,
as Equation (3) holds, then by continuous mapping theorem, see, e.g., [14]

lim
n→∞

Ψ̂n(u)
a.s.
= ΨX(u), (5)

and Ψ̂n(u) is a consistent estimator for ΨX(u). For more on the theory of empirical cumulant function
based estimation, see, for example, [15].

3. Main Results

In this section, we introduce cumulant function estimation procedure. In Theorem 1, we show
that the parameters of S(α, β, γ, δ; 1) can be expressed through the cumulant function, and then, based
on the empirical cumulant function, we propose the cumulant function based estimators.

Theorem 1. Let u1 > 0, u2 > 0 ∈ R, u1 6= u2. The parameters of X ∼ S(α, β, γ, δ; 1) can be expressed
through the cumulant function (2) at u1, u2,

α =
ln(−Re(ΨX(u1)))− ln(−Re(ΨX(u2)))

ln u1 − ln u2
, (6)

γ = exp
{

ln u1 ln(−Re(ΨX(u2)))− ln u2 ln(−Re(ΨX(u1)))

ln(−Re(ΨX(u1)))− ln(−Re(ΨX(u2)))

}
, (7)

and in the case of α 6= 1,

β =
u2 Im(ΨX(u1))− u1 Im(ΨX(u2))

γα
(
u2uα

1 − u1uα
2
)

tan πα
2

, (8)

δ =
uα

1 Im(ΨX(u2))− uα
2 Im(ΨX(u1))

u2uα
1 − u1uα

2
, (9)

where α is given by Equation (6) and γ by Equation (7), and, in the case of α = 1,

β = π
u2 Im(ΨX(u1))− u1 Im(ΨX(u2))

2γu1u2(ln u2 − ln u1)
, (10)

δ =
u2 Im(ΨX(u1)) ln u2 − u1 Im(ΨX(u2)) ln u1

u1u2(ln u2 − ln u1)
, (11)

where γ is given by Equation (7), while Re, Im stand, respectively, for the real and imaginary parts of the
cumulant function.
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Proof. Let us choose constants u1, u2 ∈ R so that u1 > 0, u2 > 0, u1 6= u2. Assuming that the
parameters of a stable random variable X ∼ S(α, β, γ, δ; 1) are fixed, we can write the following system
of equations: 

ΨX(u1) = −γαuα
1 + i

{(
βγαuα

1 tan πα
2 + δu1

)
, α 6= 1,(

− 2
π βγu1 log u1 + δu1

)
, α = 1,

ΨX(u2) = −γαuα
2 + i

{(
βγαuα

2 tan πα
2 + δu2

)
, α 6= 1,(

− 2
π βγu2 log u2 + δu2

)
, α = 1.

(12)

As the system of Equation (12) is a system of complex numbers, it must simultaneously hold
for real and imaginary parts of ΨX(u1) and ΨX(u2). The real parts of ΨX(u1) and ΨX(u2) in
Equation (12) give {

Re(ΨX(u1)) = −γαuα
1 ,

Re(ΨX(u2)) = −γαuα
2 .

(13)

Solving system (13) for α and γ gives Equations (6) and (7). The imaginary parts of ΨX(u1) and
ΨX(u2) in (12) give two systems of equations. First, in the case of α 6= 1, the imaginary parts in
Equation (12) give {

Im(ΨX(u1)) = βγαuα
1 tan πα

2 + δu1,

Im(ΨX(u2)) = βγαuα
2 tan πα

2 + δu2.
(14)

Solving system (14) for δ and β gives Equations (8) and (9), where α and γ are solved from
system (13) (and given by Equation (6) and Equation (7)). In the case of α = 1, the imaginary parts in
Equation (12) give {

Im(ΨX(u1) = − 2
π βγu1 ln u1 + δu1,

Im(ΨX(u2) = − 2
π βγu2 ln u2 + δu2.

(15)

Solving system (15) for δ and β gives the Equations (10) and (11) where γ is solved from
Equation (13) and given by Equation (7).

Next, we propose cumulant function based estimators. Techniques based on the logarithm of
characteristic function are usually classified as characteristic function based methods. We, however,
propose term cumulant estimators.

Definition 2. If X1, X2, . . . , Xn form a sample of independent and identically distributed random variables
having the same distribution as X ∼ S(α, β, γ, δ; 1), and u1 > 0, u2 > 0 ∈ R, u1 6= u2, then
cumulant estimators

α̂n = α̂(u1, u2, X1, . . . , Xn), (16)

β̂n = β̂(u1, u2, X1, . . . , Xn), (17)

γ̂n = γ̂(u1, u2, X1, . . . , Xn), (18)

δ̂n = δ̂(u1, u2, X1, . . . , Xn), (19)

for the parameters of X ∼ S(α, β, γ, δ; 1) are defined to satisfy Equations (6)–(11), where the real and imaginary
parts of cumulant functions (2) are replaced with the real and imaginary parts of the empirical cumulant
function (4).
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As Equation (5) holds, then lim
n→∞

Re(Ψ̂n(u))
a.s.
= Re(ΨX(u)) and lim

n→∞
Im(Ψ̂n(u))

a.s.
= Im(ΨX(u)),

and by continuous mapping theorem, see, e.g., [14], the cumulant estimators α̂n, β̂n, γ̂n, δ̂n are consistent
for the parameters of X ∼ S(α, β, γ, δ; 1) (as also discussed in [6]).

Proposition 1. The real and imaginary parts of empirical cumulant function (4)

satisfy the representation’s Re(Ψ̂n(u))=ln
√
( 1

n ∑n
j=1 cos uXj)2 + ( 1

n ∑n
j=1 sin uXj)2 and

Im(Ψ̂n(u))=atan2( 1
n ∑n

j=1 sin uXj, 1
n ∑n

j=1 cos uXj), where X1, . . . , Xn form a sample of i.i.d.
random variables.

Proof. From Euler’s formula, we have Ψ̂n(u) = ln
(

∑n
j=1

1
n cos(uXj) + i ∑n

j=1
1
n sin(uXj)

)
.

The logarithm of a complex number z = x + iy is ln z = ln |z| + i arg z, where |z| =
√

x2 + y2

and arg z is calculated as arctangent function with two arguments (see, e.g., Kasana [16]), denoted by
atan2(x, y). Hence, the real and imaginary part of Ψ̂n(u) are as given in Proposition 1.

It has been proposed to standardize the data with some estimates for the location δ and scale
parameters γ before estimation procedure. Fama and Roll [17], and later [2,3] used the truncated
sample mean for δ and sample quantiles for γ, while [4,5] proposed search methods for the initial
estimates of δ and γ. However, we propose scaling by sample median, i.e., apply cumulant estimation
procedure on the reduced (by sample median) data. For simplicity, we denote cumulant as well as
reduced values’ cumulant estimators by α̂n, β̂n, γ̂n, δ̂n, while the estimation method will be specified
in context.

Definition 3. Reduced values’ cumulant estimators α̂n, β̂n, γ̂n, δ̂n for the parameters of X ∼ S(α, β, γ, δ; 1)
are defined through the cumulant estimators (Definition 2) on 1

m X1, . . . , 1
m Xn ,i.e., for the parameters of 1

m X,
where m > 0 is the absolute value of the median of the sample X1, . . . , Xn i.i.d. random variables.

Note that reduced values’ cumulant estimators can only be used for samples with
non-zero median.

Proposition 2. If X ∼ S(α, β, γ, δ; 1), then for any m > 0,

1
m

X ∼
{

S(α, β, 1
m γ, 1

m δ; 1), α 6= 1,
S(α, β, 1

m γ, 1
m δ− 2

π βγ 1
m ln 1

m ; 1), α = 1.
(20)

Proof. The proof is based on the representation of the property of cumulant function,
ΨaX+b(u) = lnE[eiu(aX+b)] = ln

(
eibuE[ei(au)X ]

)
= ibu + ΨX(au) for any a 6= 0, b ∈ R.

In the Section, following Section 4, we empirically search for the arguments u1 > 0, u2 >

0 ∈ R, u1 6= u2 for the estimators α̂n, β̂n, γ̂n, δ̂n. In what follows, we discuss cumulant estimates,
denoted by α̂n, β̂n, γ̂n, δ̂n (not in bold), i.e., the non-random values computed on a particular realization
x1, . . . , xn of a sample X1, . . . , Xn i.i.d. random variables.

4. Empirical Search for the Optimal Arguments of Cumulant Estimators

Without loss of generality, we fix location parameter δ = 0 and scale parameter γ = 1, i.e., study
standard stable distributions and by reflection property (e.g., [1,10]) perform simulations for β ∈ [0, 1]
only. All simulations are carried out with package “stabledist” [18] in the open-source environment for
statistical computing and graphics R [19].

Under each fixed α ∈ (0, 2], β ∈ [0, 1], we simulate 200 realizations (replicates) of the sample
X1, ..., Xn, n = 105 i.i.d stable random variables, Xi ∼ S(α, β, γ = 1, δ = 0; 1). For each replicate, we
calculate the squared errors of cumulant and reduced values’ cumulant estimates at several selections
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of u1, u2 ∈ R, u1 > 0, u2 > 0, u1 6= u2. We assess the quality of estimates to be the mean of squared
errors (of 200 estimates), denoted by MSE (α̂n), MSE(β̂n), MSE(γ̂n), and MSE(δ̂n).

In general, the selection of arguments u1 > 0, u2 > 0 ∈ R, u1 6= u2 is arbitrary. In our empirical
search, we focus on pairs where the first argument u1 > 0 is an arbitrary number on the order of
magnitude−2,−1 or 0, and the second argument u2 > 0 is a multiple of the first argument. We present
(and suggest) in Table 1 an arbitrary example of such set of pairs.

Table 1. Selection of pairs of u1, u2.

Argument Values

u1 0.03 0.03 0.03 0.03 0.3 0.3 0.3 0.3 3 3 3 3

u2 0.09 0.9 9 90 0.09 0.9 9 90 0.09 0.9 9 90

There is no specific reason for the selection of pairs in Table 1. We constructed (and performed
simulations on) several similar sets, while in the main simulation used the set in Table 1. For the sake
of space, we do not present all simulations (distributions) for pairs of arguments in Table 1. We will
just choose four disparate standard stable distributions as examples. In Appendix A, the MSEs of
reduced values’ estimates for S(0.5, 0.1, 1, 0; 1), S(0.5, 1, 1, 0; 1), S(1.5, 0.1, 1, 0; 1) and S(1.5, 1, 1, 0; 1) for
the pairs of arguments are presented in Table 1. In addition, we do not present the MSEs of cumulant
estimates, as in all cases they turned out higher than the MSEs of reduced values’ cumulant estimates.
Naturally, for each stable law in Appendix A, there is a unique best (i.e., the values of MSE(α̂n),
MSE(β̂n), MSE(γ̂n), MSE(δ̂n) are lowest) pair of arguments. However, based on our empirical search
(Appendix A and additional simulations), we propose the pair of u1 = 0.03, u2 = 0.09 as optimal (not
necessarily the best).

Remark 1. In our empirical search, we used the set of pairs arguments presented in Table 1 and proposed the
pair of u1 = 0.03 and u2 = 0.09 as optimal.

In the remark, we accentuate u1 = 0.03 and u2 = 0.09, as they are the only good pair of arguments
for S(1.5, 0.1, 1, 0; 1) as well as giving MSEs less than 0.004 (at least) to all considered distributions.
However, the quality of estimates may not be as good as for a single simulation as well as for real data.
In Section 5, we present simulation over α ∈ (0, 2], β ∈ [0, 1] at u1 = 0.03, u2 = 0.09, while in Section 6,
for the application to non-life insurance losses, we use all the pairs of arguments in Table 1.

5. Simulations on the Effectiveness of Cumulant Estimates at u1 = 0.03, u2 = 0.09

In this section, we present simulations to assess the effectiveness of α̂n, β̂n, γ̂n, δ̂n at the selected
pair of arguments u1 = 0.03, u2 = 0.09 (as proposed in Remark, Remark 1). We fix location parameter
δ = 0 and scale parameter γ = 1, and, by reflection property (e.g., [1,10]), perform simulations for
β ∈ [0, 1] only. Similarly to the previous section, under each fixed α ∈ (0, 2], β ∈ [0, 1], we simulate 200
realizations (replicates). We simulate samples of sizes of n = 102, 103, 104, 105, while, to save space,
present the mean squared errors, MSE(α̂n), MSE(β̂n), MSE(γ̂n), MSE(δ̂n), for n = 105 only. We note that
the quality of estimates strongly depended on the sample size, as the smaller the sample, the lower the
quality of estimates. All simulations are carried out with package “stabledist” [18] in the open-source
environment for statistical computing and graphics R [19].

5.1. Simulations for α = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75

We present in the Appendix B the mean squared errors of cumulant (Definition 2) and of reduced
values’ cumulant estimates (Definition 3) with n = 105 in the cases of α = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75,
β = 0.1, 0.25, 0.5, 0.75, 1.
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Remark 2. The mean squared errors of reduced values’ estimates (at u1 = 0.03, u2 = 0.09 with n = 105)
for the parameters of S(α, β, γ = 1, δ = 0; 1) in the cases of α = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, β = 0.1,
0.25, 0.5, 0.75, 1 turned out to be on the order of magnitude −6 (the values of MSE(δ̂n) were on the order of
magnitude from −6 to −2).

Based on Appendix B and additional simulations (not presented here), we give the
following remark.

Remark 3. In our simulations, reduced values’ estimates turned out of better quality than cumulant estimates
in the cases of α < 1.75 and β > 0.1, while not in the cases of α > 1.75 and β 6 0.1.

Similarly to our Remark 3 it has been discussed [2–5,7,8,17] that standardising, or scaling,
improves estimates as it extenuates the dependence of the estimates on δ, and γ.

5.2. Simulations in the Neighbourhood of α = 1

We study reduced values’ cumulant estimates in situations where the index of stability α is close
to 1, i.e., 0.95 < α < 1.05, while β = 0.1, 0.25, 0.5, 0.75, 1. We present in Table 2 the mean squarer errors
of some estimates where β was calculated by the Formulas (8), and (10) and δ was calculated by the
Formulas (9) and (11).

Table 2. MSEs of cumulant estimates for S(α, β, 1, 0; 1), n = 10−5.

Formula (8) (10) (9) (11)

α β MSE (α̂n) MSE (β̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n) MSE (δ̂n)

0.95 0.1 0.0000 0.0001 0.0003 0.0000 0.0458 1.6567
0.95 1 0.0003 0.0008 0.0688 0.0023 9× 101 2× 102

0.96 0.1 0.0000 0.0001 0.0002 0.0001 0.1537 2.6231
0.96 1 0.0005 0.0012 0.0496 0.0044 5× 104 3× 102

0.98 0.1 0.0001 0.0002 0.0003 0.0003 7× 101 1× 101

0.98 1 0.0009 0.0027 0.0309 0.0135 4× 105 1× 103

0.99 0.1 0.0002 0.0005 0.0005 0.0007 1× 106 4× 101

0.99 1 0.0017 0.0045 0.0553 0.0333 2× 104 4× 103

1.01 0.1 0.0002 0.0004 0.0004 0.0007 2× 105 4× 101

1.01 1 0.0016 0.0060 0.0383 0.0278 4× 106 4× 103

1.02 0.1 0.0001 0.0002 0.0002 0.0002 1× 103 1× 101

1.02 1 0.0009 0.0027 0.0202 0.0108 4× 104 9× 102

1.04 0.1 0.0001 0.0001 0.0002 0.0001 0.1101 2.4367
1.04 1 0.0006 0.0015 0.0340 0.0046 2× 104 2× 102

1.05 0.1 0.0000 0.0001 0.0001 0.0000 0.0458 1.5814
1.05 1 0.0005 0.0013 0.0392 0.0032 3× 102 1× 102

It follows that reduced values’ cumulant estimates fail for the location parameter δ in the
neighbourhood of α = 1. However, the estimates for other parameters are of better quality. Note that,
for skewness parameter β, Formula (8) does not give better estimates than Formula (10), even if α is
very close to 1. In addition, again, the MSEs of cumulant estimates (not presented here) were lower
than reduced values’ cumulant estimates. In addition, we performed cumulant and reduced values’
cumulant estimates for all pairs of arguments given in Table 1. It follows that some other pairs of
arguments (in Table 1) gave better estimates for the location parameter δ but concurrently fail in
estimating the remaining parameters.
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5.3. Simulations for α = 1

In Table 3, the MSEs of cumulant estimates for the case of α = 1 and β = 0.1, 0.25, 0.5, 0.75, 1
are presented. As in the estimation procedure, α̂n is not exactly 1. Then, for comparison, we present
cumulant estimates for β with Formulas (8) and (10) and for δ with Formulas (9) and (11).

Table 3. MSEs of cumulant estimates for S(α = 1, β, 1, 0; 1), n = 10−5.

Formula (8) (10) (9) (11)

β MSE (α̂n) MSE (β̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n) MSE (δ̂n)

0.1 0.0002 0.0004 0.0004 0.0013 5× 101 0.0012
0.25 0.0002 0.0609 0.0609 0.0216 3× 103 0.0072
0.5 0.0002 0.2421 0.2422 0.0348 2× 101 0.0430

0.75 0.0002 0.5476 0.5473 0.0443 1× 103 0.0938
1 0.0002 0.9717 0.9713 0.3854 5× 103 0.1925

In Table 3, cumulant estimates for the parameters of S(α = 1, β, 1, 0; 1) are of good quality for the
index of stability α (as well as for the other pairs of u1, u2 in Table 1). As expected, the estimates for the
location parameter δ are better with Formula (11) than with Formula (9).

5.4. Simulations for α ↓ 0 and α ↑ 2

In the case of α ↓ 0, stable distributions are very condensed and scale factor γ has not much
influence on the shape of the distribution (and may be difficult to estimate). We studied reduced
values’ estimates for several cases of α < 0.2, β ∈ [0, 1]. To save space, we do not present simulation
results here. We will just summarise our findings by the following remarks.

Remark 4. For α < 0.2 (with n = 105), MSE(α̂n) and MSE(δ̂n) of reduced values’ estimates turned out to
be on the order of magnitude from −6 to −3, while the method fails for the scale parameter γ and (based on
Equation (8)) for the skewness parameter β.

For the case of α ↑ 2, it is discussed (see, e.g., [10,20]) that the value of β loses its effect (and
may be difficult to estimate) as stable distributions get close to the normal distributions. We studied
reduced values’ estimates for several cases of α > 1.8, β ∈ [0, 1] and summarise our findings with the
following remark.

Remark 5. For α > 1.8 (with n = 105), the MSE(α̂n), MSE(γ̂n), and MSE(δ̂n) of reduced values’ estimates
turned out to be on the order of magnitude from −6 to −3, while the method fails for the skewness parameter, β.

6. Application in Non-Life Insurance

We consider an Estonian data set on fire, natural forces and other property insurance claim sizes
of legal persons in a calendar year. The sample contains 2802 losses (EUR), and the summary statistics
are in Table 4.

Table 4. Summary of non-life insurance claims (EUR) n = 2802.

Min 1st Quartile Median Mean 3rd Quartile Maximum

15.3 358.0 955.0 6703.0 2781.0 1166000.0

Based on the histogram of losses in Figure 1 and statistics in Table 4, the data is skewed, i.e.,
we expect the estimate for β to be close to 1. In addition, as the data is not condensed, it is natural
to expect that estimates for α are not close to 0, as well as not close to 2 (claim sizes clearly are not
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normally distributed). We fit losses using cumulant and reduced values’ cumulant estimates for
all pairs of arguments suggested in Table 1. Before estimating, we apply a simple non-parametric
bootstrap with replacement.

6.1. Cumulant Estimates for Claim Sizes

We present in Table 5 the mean values of cumulant estimates for 200 bootstrap replicates.
We remind readers that cumulant estimates are the same as Press’s [6] estimates, where we used
the same pair of arguments for all parameters.

Table 5. Cumulant estimates for the data of claims (n = 2802).

u1 u2 Mean (α̂n) Mean (β̂n) Mean (γ̂n) Mean (δ̂n)

0.03 0.09 0.13 1.62 9× 1077 –3.77
0.03 0.9 0.01 6.70 Inf 1.53
0.03 9 0.03 2.98 Inf –0.10
0.03 90 0.02 –0.76 Inf –0.02
0.3 0.09 0.04 –0.42 Inf 3.05
0.3 0.9 –0.17 –1.22 Inf 1.93
0.3 9 –0.01 –1.46 Inf –0.17
0.3 90 –0.01 0.79 Inf –0.02
3 0.09 0.01 –2.35 Inf 0.12
3 0.9 0.14 2.18 3× 10125 –0.87
3 9 –0.04 0.36 5× 10184 –0.29
3 90 –0.03 0.59 Inf –0.02

Inf–infinity.

As previously discussed, the estimates for α should not be close to 0, while estimates for β should
be close to 1. In addition, cumulant estimates for scale parameter γ turned out infinite (Inf). Hence,
cumulant estimates in Table 5 are not meaningful, as also mentioned in [5] about Press’s [6] method.

6.2. Reduced Values’ Cumulant Estimates for Claim Sizes

We present in Table 6 the mean and coefficient of variation of reduced values’ cumulant estimates
for 200 bootstrap replicates from claimsdata.

Table 6. Reduced values’ cumulant estimates for data of claims (n = 2802).

Mean CV Mean CV Mean CV Mean CV
u1 u2 (α̂n) (α̂n) (β̂n) (β̂n) (γ̂n) (γ̂n) (δ̂n) (δ̂n)

0.03 9 0.71 0.030 1.19 0.059 382.46 0.073 –432.25 0.206
3 0.09 0.72 0.030 1.12 0.042 444.48 0.045 –574.15 0.209

0.3 9 0.67 0.032 1.17 0.046 410.33 0.059 –335.48 0.181
0.03 0.9 0.77 0.039 1.05 0.057 568.07 0.057 –1113.55 0.328
0.03 90 0.56 0.039 1.78 0.079 119.88 0.192 –103.29 0.181
0.3 0.9 0.80 0.048 1.06 0.055 578.91 0.059 –1460.33 0.342
0.3 90 0.48 0.058 1.87 0.085 181.45 0.175 –85.05 0.183
3 0.9 0.60 0.064 1.18 0.061 475.25 0.046 –283.09 0.345

0.3 0.09 0.75 0.069 1.00 0.072 523.66 0.145 –819.13 0.793
0.03 0.09 0.78 0.099 1.09 0.101 581.48 0.304 –1989.91 1.272

3 9 0.60 0.107 0.94 0.133 484.41 0.092 –139.00 0.608
3 90 0.33 0.151 2.00 0.157 690.79 0.194 –60.62 0.204

CV–coefficient of variation.

Table 6 is sorted increasingly by the variation of coefficient of α̂n. Reduced values’ estimates for
the parameters of stable distribution in Table 6 are similar for several pairs of arguments. Based on the
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smallest coefficients of variation, we choose estimates at u1 = 3, u2 = 0.09, i.e., the stable distribution
S(α = 0.72, β = 1, γ = 444, δ = −574; 1). However, similar to how it is discussed by Borak et al. [20]
for Press”s [6] procedure, the optimal selection of arguments is still an open question. Clearly, optimal
selection of u1 and u2 is related to scaling, i.e., reducing by the median. However, the relationship is
not clear and needs further study.

6.3. Comparison to Other Estimation Methods

We compare the reduced values’ cumulant estimates with other commonly used estimation
procedures, i.e., maximum likelihood method by Nolan [21], quantile based method by McCulloch [22]
and empirical characteristic function based method by Koutrouvelis [2,3], and Kogon and Williams [4].
The estimates are performed with the STABLE program version, manufacturer,... (version 3.14.02, John
P. Nolan, Washington, DC, USA) [23]. We present the estimated stable distributions in Table 7.

Table 7. Modelling non-life insurance losses (n = 2802) via stable distributions.

Fitting Method Estimated Stable Distribution

Reduced values’ cumulant estimates S(α = 0.72, β = 1, γ = 444, δ = −574; 1)
Characteristic function based [23] S(α = 0.78, β = 1, γ = 581, δ = −1117; 1)
Maximum likelihood based [23] S(α = 0.60, β = 1, γ = 606, δ = −189; 1)
Quantile based [23] S(α = 0.82, β = 1, γ = 1213, δ = −3258; 1)

All estimation methods in Table 7 propose skewed stable distribution (β = 1) with an index
of stability less than 1 (α < 1) and negative location parameter (δ < 0). To illustrate the matches,
we present in Figure 1 the histogram of losses and the density functions of stable distributions from
Table 6. Densities in figures are numerically computed with package “stabledist” [18] in R [19].
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Figure 1. Modelling non-life insurance losses (n = 2802) via stable distributions (Table 6).

We also present the tail behaviour in Figure 2. According to Figures 1 and 2, the stable distribution
estimated by reduced values’ cumulant estimates seem to match best with claims data. Naturally, the
best fit should be measured with some goodness-of-fit test. In addition, as the estimated stable laws in
Table 6 turned out different then our conclusions, similar to [24], more than one technique should be
applied to fit any data with stable distributions.
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Figure 2. Modelling non-life insurance losses (n = 2802) via stable distributions (Table 6).

7. Summary

In this paper we review the procedure of Press [6] for estimating the parameters of stable law.
The method is based on cumulant function and leads explicit point estimators for all parameters.
Press’s [6] estimates depend on an arbitrary choice of two pairs of arguments of empirical characteristic
function, and it has not been recommended in practice. In this paper, we

• show that the parameters of stable law can be expressed through cumulant function of one pair
of arguments, and hence

• propose the method of Press [6] at one pair of arguments only;
• suggest data scaling by median, i.e., introduce reduced values’ cumulant estimates;
• perform an empirical search for the selection of two arguments;
• carry out simulation experiments over parameter space at arguments of u1 = 0.03 and u2 = 0.09;
• present an application to non-life insurance losses;

According to our simulations reduced values’ estimates are of good quality for large samples
(n > 104) at empirically selected arguments of u1 = 3 u2 = 0.09. In our simulations reduced values’
cumulant estimates turned out of better quality than Press’s [6] estimates at almost all empirically
studied cases. Also, based on our application reduced values’ cumulant estimates can be suggested
in practice.

An area for further research is to study the cumulant function based method under some other
parametrization of stable laws, as well as some different shifting and scaling of data. Also, the cumulant
function based method may be generalized to the multivariate case. Withal, the optimal selection of
the two arguments still is an open question.
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Appendix A

Table A1. The MSEs of reduced values’ cumulant estimates for the selection of u1, u2 for 200 replicates
(sample size n = 105) from S(α, β, γ = 1, δ = 0; 1).

S(α = 0.5, β = 0, γ = 1, δ = 0; 1)

u1 0.03 0.03 0.03 0.03 0.3 0.3 0.3 0.3 3 3 3 3

u2 0.09 0.9 9 90 0.09 0.9 9 90 0.09 0.9 9 90

MSE (α̂n) 0.0000 0.0000 0.0059 0.0392 0.0000 0.0002 0.0163 0.0755 0.0007 0.0045 0.1520 0.2151
MSE (β̂n) 0.0002 0.0001 0.0012 0.0091 0.0002 0.0007 0.0086 0.0311 0.0005 0.0231 4× 101 3× 101

MSE (γ̂n) 0.0001 0.0002 0.0425 0.3183 0.0001 0.0011 0.2077 7.7057 0.0002 0.1267 Inf Inf
MSE (δ̂n) 0.0003 0.0000 0.0006 0.0000 0.0001 0.0002 0.0006 0.0000 0.0008 0.0030 0.0014 0.0000

S(α = 0.5, β = 1, γ = 1, δ = 0; 1)

u1 0.03 0.03 0.03 0.03 0.3 0.3 0.3 0.3 3 3 3 3

u2 0.09 0.9 9 90 0.09 0.9 9 90 0.09 0.9 9 90

MSE (α̂n) 0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0001 0.0014
MSE (β̂n) 0.0003 0.0001 0.0001 0.0043 0.0003 0.0002 0.0001 0.0146 0.0001 0.0002 0.0004 0.0993
MSE (γ̂n) 0.0036 0.0002 0.0002 0.0183 0.0012 0.0005 0.0002 0.0081 0.0001 0.0001 0.0003 0.0009
MSE (δ̂n) 0.0230 0.0006 0.0001 0.0218 0.0047 0.0013 0.0001 0.0235 0.0002 0.0004 0.0003 0.0318

S(α = 1.5, β = 0, γ = 1, δ = 0; 1)

u1 0.03 0.03 0.03 0.03 0.3 0.3 0.3 0.3 3 3 3 3

u2 0.09 0.9 9 90 0.09 0.9 9 90 0.09 0.9 9 90

MSE (α̂n) 0.0001 0.3339 0.8957 1.2256 0.0933 2.2773 2.2475 2.2518 1.1632 2.2708 2.2755 2.2477
MSE (β̂n) 0.0002 0.0414 0.0369 0.0594 0.2565 2× 102 1× 102 4× 102 0.0653 2× 102 2× 102 4× 102

MSE (γ̂n) 0.0000 0.1838 0.6175 0.8490 0.0056 Inf Inf Inf 1.0659 Inf Inf Inf
MSE (δ̂n) 0.0001 5× 103 0.0003 0.0000 8× 101 0.1019 0.0004 0.0000 0.0029 0.0090 0.0010 0.0000

S(α = 1.5, β = 1, γ = 1, δ = 0; 1)

u1 0.03 0.03 0.03 0.03 0.3 0.3 0.3 0.3 3 3 3 3

u2 0.09 0.9 9 90 0.09 0.9 9 90 0.09 0.9 9 90

MSE (α̂n) 0.0004 0.0001 0.1231 0.4640 0.0001 0.0000 0.3508 0.9181 0.0114 0.0928 2.2727 2.2629
MSE (β̂n) 0.0011 0.0003 1.2741 1.9049 0.0002 0.0002 2.4033 4.4211 1.6320 5.1234 2× 102 4× 102

MSE (γ̂n) 0.0008 0.0000 0.3852 0.8615 0.0000 0.0000 0.1876 0.6170 0.0216 0.0039 Inf Inf
MSE (δ̂n) 0.0003 0.0002 0.1416 0.0045 0.0002 0.0002 8.5030 0.0030 0.2452 5× 101 0.0973 0.0005

Inf–infinity.

Appendix B

Table B1. The MSEs of reduced values’ cumulant estimates (RVCE) and cumulant estimates (CE) at
u1 = 0.03, u2 = 0.09 for 200 replicates (sample size n = 105) from S(α, β, γ = 1, δ = 0; 1).

α β Method MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.25 0.1 RVCE 5.7× 10−6 6.9× 10−5 1.5× 10−4 1.7× 10−6

0.25 0.1 CE 3.8× 10−5 6.3× 10−4 5.5× 10−3 5.5× 10−3

0.25 0.25 RVCE 4.1× 10−6 4.9× 10−5 6.6× 10−5 1.4× 10−5

0.25 0.25 CE 3.5× 10−5 4.6× 10−4 4.6× 10−3 4.6× 10−3

0.25 0.5 RVCE 4.3× 10−6 5.2× 10−5 3.8× 10−4 1.7× 10−4

0.25 0.5 CE 3.9× 10−5 6.1× 10−4 5.8× 10−3 5.8× 10−3

0.25 0.75 RVCE 3.4× 10−6 5.9× 10−5 5.8× 10−4 8.9× 10−4

0.25 0.75 CE 3.6× 10−5 6.1× 10−4 5.4× 10−3 5.4× 10−3

0.25 1 RVCE 4.2× 10−6 1.0× 10−4 1.1× 10−3 4.3× 10−3

0.25 1 CE 4.3× 10−5 7.1× 10−4 6.3× 10−3 6.3× 10−3

0.5 0.1 RVCE 4.1× 10−6 1.8× 10−5 1.5× 10−5 3.0× 10−5

0.5 0.1 CE 4.6× 10−5 3.2× 10−4 4.3× 10−3 4.3× 10−3
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Table B1. Cont.

α β Method MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.5 0.25 RVCE 3.7× 10−6 2.5× 10−5 5.5× 10−5 1.2× 10−4

0.5 0.25 CE 6.7× 10−5 2.4× 10−4 3.6× 10−3 3.6× 10−3

0.5 0.5 RVCE 5.5× 10−6 2.4× 10−5 1.5× 10−4 3.2× 10−4

0.5 0.5 CE 5.8× 10−5 2.6× 10−4 4.4× 10−3 4.4× 10−3

0.5 0.75 RVCE 7.4× 10−6 3.6× 10−5 2.9× 10−4 1.1× 10−3

0.5 0.75 CE 5.5× 10−5 2.8× 10−4 6.1× 10−3 6.1× 10−3

0.5 1 RVCE 8.5× 10−6 3.9× 10−5 4.5× 10−4 2.5× 10−3

0.5 1 CE 5.5× 10−5 3.0× 10−4 8.4× 10−3 8.4× 10−3

0.75 0.1 RVCE 4.5× 10−6 1.6× 10−5 2.0× 10−5 1.9× 10−4

0.75 0.1 CE 9.9× 10−5 3.1× 10−4 7.3× 10−3 7.3× 10−3

0.75 0.25 RVCE 8.3× 10−6 2.5× 10−5 8.8× 10−5 6.7× 10−4

0.75 0.25 CE 1.2× 10−4 3.1× 10−4 9.6× 10−3 9.6× 10−3

0.75 0.5 RVCE 1.2× 10−5 3.9× 10−5 2.0× 10−4 2.5× 10−3

0.75 0.5 CE 9.9× 10−5 2.5× 10−4 1.7× 10−2 1.7× 10−2

0.75 0.75 RVCE 2.0× 10−5 4.0× 10−5 4.2× 10−4 8.3× 10−3

0.75 0.75 CE 9.5× 10−5 2.3× 10−4 2.8× 10−2 2.8× 10−2

0.75 1 RVCE 2.1× 10−5 5.4× 10−5 5.3× 10−4 1.6× 10−2

0.75 1 CE 9.4× 10−5 2.3× 10−4 4.3× 10−2 4.3× 10−2

1.25 0.1 RVCE 5.8× 10−6 1.5× 10−5 5.7× 10−6 5.7× 10−5

1.25 0.1 CE 3.2× 10−4 8.5× 10−4 1.4× 10−3 1.4× 10−3

1.25 0.25 RVCE 1.8× 10−5 3.9× 10−5 4.3× 10−5 1.3× 10−4

1.25 0.25 CE 4.1× 10−4 1.0× 10−3 2.7× 10−3 2.7× 10−3

1.25 0.5 RVCE 3.8× 10−5 7.8× 10−5 1.5× 10−4 4.0× 10−4

1.25 0.5 CE 4.3× 10−4 7.7× 10−4 4.8× 10−3 4.8× 10−3

1.25 0.75 RVCE 5.6× 10−5 1.4× 10−4 3.0× 10−4 8.9× 10−4

1.25 0.75 CE 4.0× 10−4 7.2× 10−4 7.9× 10−3 7.9× 10−3

1.25 1 RVCE 8.8× 10−5 1.3× 10−4 5.5× 10−4 1.9× 10−3

1.25 1 CE 3.8× 10−4 6.0× 10−4 1.2× 10−2 1.2× 10−2

1.5 0.1 RVCE 3.8× 10−6 1.8× 10−5 1.2× 10−6 1.2× 10−5

1.5 0.1 CE 5.9× 10−4 1.9× 10−3 2.2× 10−4 2.2× 10−4

1.5 0.25 RVCE 5.0× 10−6 2.2× 10−5 2.9× 10−6 1.2× 10−5

1.5 0.25 CE 6.0× 10−4 2.0× 10−3 2.4× 10−4 2.4× 10−4

1.5 0.5 RVCE 1.6× 10−5 4.7× 10−5 1.7× 10−5 1.8× 10−5

1.5 0.5 CE 6.2× 10−4 1.9× 10−3 2.6× 10−4 2.6× 10−4

1.5 0.75 RVCE 2.4× 10−5 7.4× 10−5 4.0× 10−5 2.3× 10−5

1.5 0.75 CE 5.6× 10−4 1.9× 10−3 3.3× 10−4 3.3× 10−4

1.5 1 RVCE 3.4× 10−5 9.8× 10−5 6.9× 10−5 3.2× 10−5

1.5 1 CE 5.9× 10−4 1.7× 10−3 3.9× 10−4 3.9× 10−4

1.75 0.1 RVCE 8.3× 10−4 4.7× 10−3 4.6× 10−5 4.6× 10−5

1.75 0.1 CE 4.5× 10−2 4.6× 10−1 1.2× 10−3 4.2× 10−1

1.75 0.25 RVCE 4.0× 10−6 6.3× 10−5 1.2× 10−6 6.3× 10−6

1.75 0.25 CE 8.0× 10−4 6.1× 10−3 7.1× 10−5 7.1× 10−5
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Table B1. Cont.

α β Method MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

1.75 0.5 RVCE 3.0× 10−6 3.1× 10−5 1.0× 10−6 4.2× 10−6

1.75 0.5 CE 7.8× 10−4 7.1× 10−3 6.5× 10−5 6.5× 10−5

1.75 0.75 RVCE 5.7× 10−6 4.4× 10−5 2.0× 10−6 4.6× 10−6

1.75 0.75 CE 7.6× 10−4 7.4× 10−3 5.8× 10−5 5.8× 10−5

1.75 1 RVCE 8.1× 10−6 9.1× 10−5 3.4× 10−6 5.2× 10−6

1.75 1 CE 9.7× 10−4 9.4× 10−3 7.3× 10−5 7.3× 10−5
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