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Abstract:

 In a bonus-malus system in car insurance, the bonus class of a customer is updated from one year to the next as a function of the current class and the number of claims in the year (assumed Poisson). Thus the sequence of classes of a customer in consecutive years forms a Markov chain, and most of the literature measures performance of the system in terms of the stationary characteristics of this Markov chain. However, the rate of convergence to stationarity may be slow in comparison to the typical sojourn time of a customer in the portfolio. We suggest an age-correction to the stationary distribution and present an extensive numerical study of its effects. An important feature of the modeling is a Bayesian view, where the Poisson rate according to which claims are generated for a customer is the outcome of a random variable specific to the customer.
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1. Introduction

In the classical actuarial model for bonus-malus systems in automobile insurance (Denuit et al. [1] or Lemaire [2], for example), there is a finite set of bonus classes [image: there is no content]. A customer having n claims and bonus class ℓ in a given year has bonus class [image: there is no content] in the next for some deterministic function b (the bonus rule; claim sizes are ignored and only claim numbers counted). The customer has a risk parameter λ, such that the number of claims [image: there is no content] in consecutive years are i.i.d. Poisson[image: there is no content], and so the sequence [image: there is no content] of bonus classes is a time-homogeneous Markov chain with transition matrix P[image: there is no content]=pkℓ[image: there is no content]k,ℓ=1,…,K where



pℓ,ℓ′[image: there is no content]=∑[image: there is no content]∞e-λλnn!Ib(ℓ,n)=ℓ′








(such a customer we denote a λ-customer). Customers pay premium [image: there is no content] when in class ℓ and enter the system in some fixed class [image: there is no content]. The [image: there is no content] and [image: there is no content] may be chosen according to certain optimality and/or financial equilibrium principles (see below) or arbitrarily.
For a simple example of a bonus rule, consider the -1/+2 rule. Here each claim causes the bonus level to increase by 2, whereas it decreases by 1 for each claim-free year (obvious boundary modifications apply to levels [image: there is no content]). The systems in use are often substantially more detailed, with K of order 15–25.

Much of the discussion of the literature employs stationarity modeling, measuring characteristics of the system via the stationary distribution π[image: there is no content]=(πℓ[image: there is no content])[image: there is no content] (existing under the weak assumptions of irreducibility and aperiodicity). In particular, the average premium r¯[image: there is no content] of a customer with risk parameter λ is defined by



r¯[image: there is no content]=∑ℓ1K[image: there is no content]πℓ[image: there is no content]=∑ℓ=1Kπℓ·limn→∞p[image: there is no content],ℓn[image: there is no content]



(1)




where the [image: there is no content] are the n-step transition probabilities. From the r¯[image: there is no content], one often proceeds to calculate the Loimaranta efficiency


e[image: there is no content]=dlogr¯[image: there is no content]dlogλ=λr¯′[image: there is no content]r¯[image: there is no content]








at λ (denoted elasticity outside the actuarial sciences); it measures to which extent r¯[image: there is no content] is linear at λ (as should ideally be the case), with [image: there is no content] expressing ‘local linearity’ at λ.
Such stationary performance measures are only meaningful if the Markov chain L attains (approximate) stationarity within the typical time a customer spends in the portfolio. For this reason much attention has been given to studying the approach of the p[image: there is no content],ℓn[image: there is no content] to πℓ[image: there is no content]. The rate of convergence is known to be geometric, with decay parameter the second largest eigenvalue of the transition matrix [image: there is no content]. However, this is an asymptotic result and so the studies are most often numerical, depicting for example the mean annual premium [image: there is no content] or the total variation (t.v.) distance



dTVp[image: there is no content]·[image: there is no content],π[image: there is no content]=∑ℓ=1Kp[image: there is no content],ℓn[image: there is no content]-πℓ[image: there is no content]



(2)




as function of n (see, for example, Denuit et al. [1], p. 183ff). The results are sometimes encouraging: for some bonus systems, dTVp[image: there is no content]·[image: there is no content],π[image: there is no content]=0 already for [image: there is no content] 4–6. However, these are typically simple-minded systems, and for the more realistic ones, one often sees a substantial value of the t.v. distance for say [image: there is no content], a value exceeding the time span a customer can be expected to stay in the portfolio. Nevertheless, the studies of the effects of the sojourn time A in the portfolio being finite are remarkably few, with Borgan et al. [3] being the main exception. One purpose of this paper is to go deeper into this direction and to formulate an alternative (which we call age-correction) to the stationarity point of view.
Bonus-malus systems may be seen as an example of experience rating which has as aim to calculate the premium on an individual basis by using the information available to the company. In the automobile insurance setting, we ignore in this paper profit, administration costs etc., and take the average claim size equal to 1, so that in after a given year m, the company would want to compute its net premium [image: there is no content] for year m as its best guess of the customer’s λ as function of the numbers [image: there is no content] of claims filed in years [image: there is no content]. The naive guess is of course the average [image: there is no content]. However, a high value of [image: there is no content] could be due to bad luck of an otherwise good driver and a low value luck of an otherwise bad driver. An estimate which is more fair to the customer is therefore obtained by a Bayesian view where one involves information on the population of customers in form of a prior distribution, say U, of λ, views the particular customer’s λ as the outcome of a r.v. with distribution U, calculates the posterior distribution [image: there is no content] and takes [image: there is no content] as the mean of [image: there is no content], the Bayes premium.

Example 1. A often considered choice for the prior U is a Gamma[image: there is no content] with density [image: there is no content]. This can be motivated by negative binomial fitting (e.g., Denuit et al. [1], p. 28), but is also mathematically convenient since then the posterior [image: there is no content] is again Gamma with parameters



bm=b+N0+N1+⋯+Nm-1,μm=μ+m








and one gets the Bayes premium as the posterior mean


bmμm=b+N0+N1+⋯+Nm-1μ+m=μμ+m·bμ+mμ+m·[image: there is no content]








This has a neat interpretation as a weighted average of the population mean [image: there is no content] (the premium the company will charge without access to claims statistics) and the mean [image: there is no content] of the claims, with the weight [image: there is no content] of [image: there is no content] increasing to 1 as years go by and the information on the customer accumulates.  ☐
The Bayes premium enjoys the optimality property of minimizing the quadratic loss E([image: there is no content]-Λ)2 in the class of all functions [image: there is no content] of [image: there is no content], the natural class of predictors of Λ using information on [image: there is no content]. In fact, it is standard that the solution to this minimization problem is [image: there is no content]=E[Λ|N0,N1,…,Nm-1]. For these facts and the general theory of Bayes premiums, see Bühlmann [4], Bühlmann & Gisler [5] and Denuit et al. ([1], Ch. 3). 1

Given the above optimality property, the Bayes premium can be viewed as the optimal fair choice of the insurer’s premium (it is often argued that the reason that bonus-malus systems are used instead in practice is that they are better understandable to the average customer who would not know about prior and posterior distributions). Nevertheless, as noted by Norberg [6], the Bayesian view is highly relevant also in bonus-malus systems but for a different purpose, to compute the premiums [image: there is no content] in the different bonus levels. To this end, the idea of basing the premium on the bonus level means that one chooses the minimizer of [image: there is no content] in the class of all functions c of the bonus level. One then needs to specify what is meant by this level, and to avoid the dependency on m, the choice of [6] and much subsequent literature is a r.v. [image: there is no content] distributed as [image: there is no content] (recall that [image: there is no content] is the stationary distribution of the Markov chain [image: there is no content] when the customer’s Poisson parameter is λ). Using the general [image: there is no content]-theory quoted above, the minimizer is



c=E[Λ|[image: there is no content]]=∑ℓ=1KI([image: there is no content]=ℓ)E[Λ|[image: there is no content]=ℓ]








so that the optimal bonus level [image: there is no content] in class ℓ is E[Λ|[image: there is no content]=ℓ]. Evaluating the conditional expectation, we get


[image: there is no content]=∫0∞λπℓ[image: there is no content]U(dλ)∫0∞πℓ[image: there is no content]U(dλ).



(3)




Formula (3) gives the premium rule of the bonus system which is optimal from the point of view of minimizing the error in predicting a customer’s Λ. 2
The rule (3) enjoys in a certain sense the principle of financial equilibrium (for the company) which asserts that on average, premium incomes and payments of claims should balance. Namely, the expected claims in a year of a typical customer is [image: there is no content] and his expected premiums are Er[image: there is no content]assuming that a typical customers bonus class is distributed as the stationary r.v. [image: there is no content]. By the tower property of conditional expectations, these expressions coincide. However, the point we take in this paper is that this assumption is questionable and needs further discussion.

Remark 1. The above set-up ignores claim amounts (for examples of discussion involving also claim severity, see Frangos & Vontos [7] and Mahmoudvand & Hassani [8]). For simplicity, we will assume that the monetary scale is chosen such that the mean claim size is one.     ☐

Remark 2. Regulations vary greatly from country to country. At one extreme, all insurance companies are obliged to use the same bonus-malus system, at the other they have complete freedom. The general tendency has gone towards deregulation. A detailed survey of the situation in Europe as of year 2000 concerning such rules is in Meyer [9]. Of course, much has changed since then but still, [9] will serve to give an impression of many practical issues connected with motor insurance.     ☐

The paper is organized as follows. In Section 2, we introduce our age-correction approach and give some of its simple properties. The fundamental formula (4) gives [image: there is no content], the age-corrected π, expressed in terms of the sojourn distribution of a customer in the population. Section 3, Section 4, Section 5 and Section 6 then contain an extensive numerical study of its behavior in concrete case and how it compares to the traditional stationarity-based approach. A concluding discussion, including more careful references to the literature, is in Section 7, and the Appendix contains some complements as well as an outline of a more general modeling approach via Markov chains.



2. Independent Sojourn Times

Motivated by the criticism of the traditional use of stationarity, we now assume that a customer stays in the portfolio only for a finite number of years A. i.e., he is in the portfolio in years [image: there is no content] after entering. We further assume that A is independent of his Λ and his claim sequence [image: there is no content] and thereby his sequence of bonus levels, and that [image: there is no content]. This independence assumption is crucial but of course questionable. For example, an insured with a high Λ will typically be in a high bonus class and be more prone to change company than one with a small Λ. The distribution of A is denoted by F, the point probabilities by [image: there is no content], and we write [image: there is no content], [image: there is no content]. Here [image: there is no content] is the equilibrium distribution familiar from renewal theory, cf. ([10], V.3). It gives the distribution of the time elapsed since the last renewal, an interpretation that matches nicely the alternative derivation we give in Appendix B.

Much of the discussion of Section 1 remains relevant, only do we need for each value λ of the Poisson parameter to replace the stationary distribution [image: there is no content] of the bonus level by the distribution [image: there is no content][image: there is no content] of the typical bonus level [image: there is no content].

We then need to specify what is meant by the ‘typical bonus level’ of a λ-customer, and our suggestion is to define this as a r.v. [image: there is no content] with distribution



πℓ*[image: there is no content]=Pλ([image: there is no content]=ℓ)=1μAEλ∑[image: there is no content]A-1I([image: there is no content]=ℓ)=∑a=0∞faePλ(La=ℓ)



(4)




denoted the age-corrected distribution in the rest of the paper. Expression (4) is fundamental for the paper and may be approached in various ways. We choose here the set-up in the following Theorem 1 where the interpretation is as a limiting long-term average of bonus classes of λ-customers seen by the company (for an alternative, see Appendix B).
Before stating the Theorem, we need some notation and assumptions. Let [image: there is no content] denote the number of λ-customers in the portfolio in year [image: there is no content], [image: there is no content] the number of λ-customers entering the portfolio 3 4 and [image: there is no content], c=1,…,[image: there is no content] the bonus classes of the λ-customers, [image: there is no content] the time since they entered the portfolio. Assume that the [image: there is no content] are i.i.d. with finite mean [image: there is no content] and independent of the [image: there is no content] with [image: there is no content], and that the [image: there is no content] for different customers are i.i.d. and independent of the [image: there is no content].

Theorem 1. Under the above assumptions,



1M0+⋯+MY∑[image: there is no content]Y∑c=1[image: there is no content]I([image: there is no content]=a)→fae



(5)






1M0+⋯+MY∑[image: there is no content]Y∑c=1[image: there is no content]I([image: there is no content]=ℓ)→πℓ*[image: there is no content]



(6)




a.s. as [image: there is no content]for all ℓ, no matter initial conditions.
Proof. We can write



M0+⋯+MY=[image: there is no content]+[image: there is no content]+[image: there is no content]








where [image: there is no content] is the time-in-portfolio-before-Y of λ-customers that first entered the portfolio at some time [image: there is no content], [image: there is no content] the similar time of those that entered at some time [image: there is no content] and left before [image: there is no content], and [image: there is no content] the time of those that entered at some time [image: there is no content] but still remain in the portfolio at time [image: there is no content] (and possibly after). Here we can bound [image: there is no content] by [image: there is no content], the total-time-in-portfolio (not necessarily before Y) of λ-customers that first entered at some time [image: there is no content] but remained in the portfolio after Y. By the law of large numbers, [image: there is no content]+[image: there is no content]∼Y[image: there is no content]μA. Further,


[image: there is no content]=M0-E0=O(1)=o(Y)E[image: there is no content]=[image: there is no content]∑[image: there is no content]YP(A>Y-y)=[image: there is no content]∑[image: there is no content]YP(A>y)↑[image: there is no content]μA=o(Y)








Combining these facts gives


1Y(M0+⋯+MY)→[image: there is no content]μA



(7)




A similar argument shows that the total times [image: there is no content] or [image: there is no content]λ-customers ever spend is bonus class ℓ (not necessarily before Y) is of order



[image: there is no content]Y∑[image: there is no content]∞Pλ([image: there is no content]=ℓ,A>n)=[image: there is no content]YμAπℓ*[image: there is no content]








and that the [image: there is no content] contribution to the l.h.s. of (6) dominates the [image: there is no content] and [image: there is no content] contributions. Combining with (7) gives (6). The proof of (5) is similar, though slightly easier. ☐
Remark 3. The analysis in the proof of Theorem 1 is similar to the one of a discrete time G/G/∞ queue. [image: there is no content] then plays the role of the queue length at time y, and [image: there is no content] as the elapsed service time of customer [image: there is no content]. We will not use this connection and hence leave out further details.     ☐

It may be noted that expression (4) may be evaluated in closed analytical form. To this end, we need the fundamental matrix [image: there is no content] of the Markov chain given by Z[image: there is no content]=(I-P[image: there is no content]+[image: there is no content]π[image: there is no content])-1 where [image: there is no content] is the (row) vector with 1 at all entries ([10], p. 31). Further let [image: there is no content][image: there is no content] denote p.g.f. of F and use the same notation [image: there is no content][image: there is no content] for a square matrix [image: there is no content]. Then, with [image: there is no content] the ℓth (row) unit vector:

Theorem 2. The distribution [image: there is no content][image: there is no content]with point probabilities (4) is given by



[image: there is no content][image: there is no content]=π[image: there is no content]+1μAe[image: there is no content]Z[image: there is no content]I-f^[P[image: there is no content]]








For the proof, see the Appendix.

Remark 4. If the univariate p.g.f. [image: there is no content] is available in closed form, then so is usually the matrix version f^[[image: there is no content]] by obvious changes in the expression for [image: there is no content]. For example for a negative binomial distribution of order 2 with point probabilities [image: there is no content], [image: there is no content], we have [image: there is no content] and f^[[image: there is no content]]=(1-ρ)2(I-ρ[image: there is no content])-2 .



3. Numerical Set-up


3.1. The Bonus Systems

We have selected three rather different systems for our numerical studies. Doing so, our source has been the survey in Meyer [9] treating the situation in most European countries (as well as Japan and the US) around 1999. Important characteristics of a bonus system is the number K of classes and the spread factor, defined as the ratio between the highest premium [image: there is no content] and the lowest [image: there is no content]. We chose systems from three countries, Ireland, Italy and Germany. Ireland has a small number [image: there is no content] of classes and a low spread factor of 2, Germany has a high number [image: there is no content] of classes and a high spread factor of 8.2, whereas Italy is intermediate with [image: there is no content] of classes and spread factor 4. More detail on the various systems are given below. It should be noted that each system may only have been one among several in the particular country when [9] was published and that much may have changed since then. However, our point is not to analyze systems that are necessarily in current use but rather that our examples both show diversity and are typical of many other systems.

The premiums [image: there is no content], often called relativities, are traditionally given in percent of the premium in the initial class [image: there is no content] or some other reference class, and when presenting the three systems, we follow that tradition (as does Meyer [9]). However, later we shall renormalize to get financial equilibrium.





3.2. Trial Sojourn Time Distributions

We selected four trial distributions for the distribution of the sojourn time A of a customer in the portfolio. Two are negative binomial with point probabilities



[image: there is no content]=n+12(1-ρ)3ρn,n=1,2,…



(8)




(i.e., A is distributed as [image: there is no content] where [image: there is no content] are independent geometric[image: there is no content] on [image: there is no content]). Here ρ was chosen to make the means [image: there is no content] equal to 7 and 13, and the two distributions are denoted [image: there is no content], resp. [image: there is no content]. The two other, denoted [image: there is no content] and [image: there is no content], were taken as uniform distributions on [image: there is no content], resp. [image: there is no content], i.e., with roughly the same means. The distributions and their equilibrium distributions given by (5) are illustrated in Figure 1, giving the (yearly) probability mass function.
In the numerical calculations, the distributions were truncated at [image: there is no content], except for Figure 2 where the truncation point was [image: there is no content].

Figure 2. Convergence of relativities, Ireland.



[image: Risks 02 00049 g002 1024]









Figure 1. Trial distributions and their equilibrium distributions.



[image: Risks 02 00049 g001 1024]





3.3. Bayesian Assumptions

We have taken the distribution U of the customers’ (yearly) λ parameter to be exponential with mean [image: there is no content]. The exponential assumption is from Bichsel [11], who fitted a gamma distribution to data and found the shape parameter to be close to 1. The value [image: there is no content] is from Lemaire & Zi ([12], p. 288) who argue this to be typical in many countries. 5

Motivated by this assumption, we have in many of the illustrations selected four values of λ, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], i.e., two below the population mean and two above. For the spread, note that [image: there is no content] and [image: there is no content] roughly correspond to the 5%, resp. 95%, quantiles in the exponential distribution with mean [image: there is no content].




4. Convergence to Stationarity. Age-Corrected Distributions


4.1. Ireland

The Irish system is very simple with [image: there is no content] classes and transition rules as in Table 1. The initial class is [image: there is no content]=6.

Table 1. Bonus rules, Ireland.


	ℓ
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	6
	100
	5
	6
	6



	5
	90
	4
	6
	6



	4
	80
	3
	6
	6



	3
	70
	2
	5
	6



	2
	60
	1
	4
	6



	1
	50
	1
	3
	6










The convergence speed to the stationary distribution is illustrated in two figures. The first, Figure 3, shows the shape of the transient λ-distributions of [image: there is no content] for four selected values [image: there is no content] of n ([image: there is no content] corresponds to the stationary distribution) and the four selected values [image: there is no content] of λ, and the next, Figure 4, plots the t.v. distance (2) to the stationary distribution as function of the number n of years elapsed.

Figure 3. Transient distributions, Ireland.



[image: Risks 02 00049 g003 1024]





Figure 4. T.v. convergence rate, Ireland.



[image: Risks 02 00049 g004 1024]







The shape of these figures may be understood from the transition rules. Consider for example a customer with [image: there is no content]. Here most of the mass of π is concentrated in class 1, but class 1 can at earliest been reached in year 5. This explains the steep drop in Figure 4 in the t.v. distance between years 4 and 5. When looking at the bar plots in Figure 3 for the distribution of his class in different years, consider for example year 5 and note that w.p. [image: there is no content] he will have no claims in the first 5 years, so 0.82 is precisely the mass at class 1. W.p. [image: there is no content] he have will have exactly one claim. If this happens in year 0, his sequence of states in years 1,2,3,4,5 is [image: there is no content]. The similar sequences for a claim in year 1,2,3, resp. 4 are



5,6,5,4,3,5,4,6,5,4,5,4,3,5,4,5,4,3,2,4.








Since any of the years 0,1,2,3,4 are equally likely for the claim. this explains that class 4 is more likely than classes 2,3, which is of course not the case for a good customer in stationarity ([image: there is no content]). The possibility of two or more claims giving mass in states 5,6 is just 0.02 and hence negligible.


Similar remarks apply to other values of λ and n as well as the parallel figures for Italy and Germany to follow, but we shall not give the details.

The figures shows the fastest convergence rate among our three selected systems, and also that the rate is not that crucially depending on the value of λ. The explanation could be related to the simplicity of the Irish system.

Figure 5, plots the age-corrected distribution [image: there is no content][image: there is no content] for our four selected values of λ (one in each column) and our four trial distributions together with the stationary distribution [image: there is no content] (the benchmark of much literature) on top. It is seen that the agreement within columns is relatively good, with the most marked differences for small values of λ. The explanation could be the relatively fast convergence rate in the Irish system.

Figure 5. Stationary and age-corrected distributions, Ireland.



[image: Risks 02 00049 g005 1024]









4.2. Italy

The Italian system is intermediate with [image: there is no content] classes and transition rules as in Table 2. The initial class is [image: there is no content]=14 [note that r[image: there is no content]≠100, a normalization allowed in exceptional cases].

Table 2. Bonus rules, Italy.


	ℓ
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	18
	200
	17
	18
	18
	18
	18



	17
	175
	16
	18
	18
	18
	18



	16
	150
	15
	18
	18
	18
	18



	15
	130
	14
	17
	18
	18
	18



	14
	115
	13
	16
	18
	18
	18



	13
	100
	12
	15
	18
	18
	18



	12
	94
	11
	14
	17
	18
	18



	11
	88
	10
	13
	16
	18
	18



	10
	82
	9
	12
	15
	18
	18



	9
	78
	8
	11
	14
	17
	18



	8
	74
	7
	10
	13
	16
	18



	7
	70
	6
	9
	12
	15
	18



	6
	66
	5
	8
	11
	14
	17



	5
	62
	4
	7
	10
	13
	16



	4
	59
	3
	6
	9
	12
	15



	3
	56
	2
	5
	8
	11
	14



	2
	53
	1
	4
	7
	10
	13



	1
	50
	1
	3
	6
	9
	12








Figure 6 and Figure 7 are parallel to Figure 3 and Figure 4 for Ireland, illustrating the convergence speed to stationarity. As a new feature, we observe some gaps in the transient distributions. Consider for example [image: there is no content] where Figure 6 shows that classes 10 and 11 can not be attained. The explanation is that with 0 claims in years 0,1,2,3,4 one will go down 5 classes from 14 to 9, but with 1 claim one goes down 4 and up two, so to 12, and with more than two of course even higher. One sees also a somewhat slower rate of convergence to stationarity.

Figure 6. Transient distributions, Italy.



[image: Risks 02 00049 g006 1024]





Figure 7. T.v. convergence rate, Italy.



[image: Risks 02 00049 g007 1024]





Finally the age-corrected distribution [image: there is no content][image: there is no content] are plotted in Figure 8 together with the stationary distribution [image: there is no content]. One sees a marked worse agreement within columns than for Ireland. The most marked differences occur for small values of λ, with one feature being a considerable concentration of the [image: there is no content][image: there is no content] (but not of [image: there is no content]) close to the inital class 14. Again, the most natural explanation is the slow convergence rate.

Figure 8. Stationary and age-corrected distributions, Italy.



[image: Risks 02 00049 g008 1024]















4.3. Germany

The German system is rather elaborate. It has a large number of classes, [image: there is no content], initial class 26, and quite detailed rules for the new class after one or more claims. For example, after one claim the customer moves up 14 classes when in class 1, always to class 17 when in classes 6–11, and up 3 classes when in classes 19–22. The rules for some selected cases are given in Table 3; for full details, see Meyer [9] or Mahmoudvand et al. [14].

Table 3. Bonus rules, Germany.


	ℓ
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	29
	245
	25
	29
	29
	29
	29



	25
	100
	24
	26
	29
	29
	29



	20
	55
	19
	23
	26
	27
	29



	15
	40
	14
	21
	25
	27
	29



	10
	35
	9
	17
	24
	26
	29



	5
	30
	4
	16
	22
	24
	29



	1
	30
	1
	15
	22
	24
	29










A quite special feature of the German system is the very high initial class, 26, meaning that a customer at earliest can reach the lowest premium level in class 1 after 25 years! This clearly shows up in the following Figure 9, Figure 10 and Figure 11, for example in the [image: there is no content] row in Figure 10 where the t.v. distance from the stationary distribution is substantial up to time [image: there is no content], and in the comparisons of age-corrected distributions in Figure 11 which shows the same phenomenon as for Italy, a strong concentration of the [image: there is no content][image: there is no content] (but not of [image: there is no content]) close to the inital class 26.

Figure 9. Transient distributions, Germany.
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Figure 10. T.v. convergence rate, Germany.
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Figure 11. Stationary and age-corrected distributions, Germany.
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4.4. Population Averages

We believe the differentiation between high and low values of λ in the above figures is of interest rather than considering a single value as for example the population mean [image: there is no content]. However, the Bayesian view could motivate to summarize by averaging λ over the structure distribution U.



Such averaging is done in Figure 12 and Figure 13. Figure 12 gives the population averaged t.v. distance

Figure 12. Population averaged convergence rates: population mean 0.1.



[image: Risks 02 00049 g012 1024]





Figure 13. Population averaged age-corrected distributions: population mean 0.1.
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∑ℓ=1K∫0∞p[image: there is no content],ℓn[image: there is no content]-πℓ[image: there is no content]U(dλ)








between the transient distribution at time n and the stationary distribution π, whereas Figure 13 gives the averaged age-corrected distributions ∫πℓ*[image: there is no content]U(dλ).
These figures show essentially the same behavior as for the intermediate values 0.08 and 0.16 of λ, which could be expected since 0.04 and 0.32 are in the tails with low U-mass.



As a comparison, similar figures have been produced for the substantially smaller population mean 0.05, see Figure 14 and Figure 15. A first rough conclusion is that the behavior appears to be rather insensitive to the population mean.

Figure 14. Population averaged convergence rates: population mean 0.05.
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Figure 15. Population averaged age-corrected distributions: population mean 0.05.
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5. Relativities

We now turn to the influence of finite customer sojourn times on the Bayes premium, proceeding as follows. For each of the three selected bonus systems and of the four trial sojourn time distributions, we first compute our age-corrected alternatives πℓ*[image: there is no content] to the stationary distribution πℓ[image: there is no content] by means of (4) and next the Bayes premium [image: there is no content] in bonus class ℓ by means of the analogue of (3)



[image: there is no content]=∫0∞λπℓ*[image: there is no content]U(dλ)∫0∞πℓ*[image: there is no content]U(dλ)



(9)




The results are in the following three Figure 16, Figure 17 and Figure 18. The legends are solid red for distribution [image: there is no content], dotted red for [image: there is no content], solid blue for [image: there is no content], and dotted blue for [image: there is no content]. As supplement we also compute the Bayes premium corresponding to the stationary distribution πℓ[image: there is no content] (dotted black) and supplement with the premium corresponding to the given relativities for the bonus system (e.g., 50, 60, 70, 80, 90, 100 for Italy) in solid black; whereas the Bayes premium automatically yields financial equilibrium, cf. the discussion following (3), we here need to normalize to satisfy this requirement.

Figure 16. Relativities, Ireland.
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Figure 17. Relativities, Italy.
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Figure 18. Relativities, Germany.



[image: Risks 02 00049 g018 1024]











When interpreting the figures, we first note that it does not contradict financial equilibrium that for a given country, one set of relativities is below the other. For example, all relativities corresponding to one of our four trial sojourn time distributions (colored graphs) are below the given relativities (solid black graph). But the explanation is simply that one set of relativities should be weighted with the age corrected distribution and the other with the stationary distribution, and the age corrected distributions have a region of importance which is more shifted towards high classes.

We next note that the two distributions [image: there is no content], [image: there is no content] with the low mean are quite close, in some cases even hard to distinguish. Distributions [image: there is no content], [image: there is no content] have a roughly doubled mean. As could be expected, this puts them closer to the Bayesian relativity computed w.r.t. [image: there is no content]. The convergence rate appears quite slow, however, and this is further illustrated in the following Figure 2. We took here the Irish system and compared the stationarity-based Bayesian relativity (solid black) to those of four versions of the negative binomial distribution (8), one with mean 10 (dotted red), one with mean 100 (dashed red), one with mean 200 (dash-dotted red), and one with mean 400 (solid red). The figure confirms the expectation of convergence, but shows also that (as just noted) it is slow.



6. Age-Corrected Average Premiums

Analogous with the stationarity-based definition (1) of the average premium r¯[image: there is no content] of a λ-customer, we define the age-corrected version as



r¯*[image: there is no content]=∑ℓ1K[image: there is no content]πℓ*[image: there is no content]



(10)




The r¯*[image: there is no content] are plotted in Figure 19, Figure 20 and Figure 21 one for each of the three bonus systems and the same 6 cases as for the relativities in Section 5, with the same legends.
We see a considerable difference between the two stationarity-based average premiums (solid black and dotted black) for Ireland and Italy, whereas they appear almost identical for Germany. The age-corrected average premiums are again quite different, and exhibit somewhat similar behavior as the relativities in Figure 16, Figure 17 and Figure 18.







The ideal fairness criterion for a Bayesian premium rule is that the premium for a λ-customer should come as close to λ as possible. This can never be perfectly achieved: since the premium in the lowest bonus class is non-zero, a customer with a small λ will always pay too much, and since the premium in the highest class is finite, a customer with a large λ will always pay too little. The figures show that this effect is substantially more marked for the age-corrected average premiums than for the stationarity-based ones. The explanation is natural: if the customer has a finite sojourn time, the system will have less time to learn about his risk characteristics in the form of λ than if he had been there for ever, as is the (false) assumption underlying the stationarity-based calculations.



Figure 19. The r¯*[image: there is no content], Ireland.
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Figure 20. The r¯*[image: there is no content], Italy.
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Figure 21. The r¯*[image: there is no content], Germany.



[image: Risks 02 00049 g021 1024]





7. Concluding Remarks

In this paper, we have inspected how reasonable it is to view bonus-malus system via the stationary distribution, as is usually done. The conclusion is that in many cases the transient distributions are quite far from the stationary ones, and that this has considerable consequences on the computation of such quantities as Bayesian relativities and average premiums.

We do not necessarily insist that our trial distributions for the sojourn time in the portfolio have the relevant time span. A motor insurance may be terminated for example just if the insured gets a new car. In that case, he will typically continue with a new policy in the same company, but not enter in the same level [image: there is no content] as completely new insurers. Similar remarks to change of company, where usually some information on present bonus class or general previous claim statistics is passed from the old company to the new. Therefore, our choice of the A distributions should be seen as nothing more than scenario analysis.

Examples of numerical studies of special bonus-malus systems are, for example, in Lemaire [15], Lemaire & Zi [12] and Mahmoudvand et al. [14]. These papers differ from the present one by not going into the Bayesian aspect. Here the more closely related literature is Norberg [6] and Borgan et al. [3]. In particular, [3] contains ideas on how to get away from the stationary point of view. As analogue of our [image: there is no content][image: there is no content],3] suggests a distribution of the form ∑0∞[image: there is no content]e[image: there is no content]P[image: there is no content]n where the [image: there is no content] are suitable weights summing to one. It is also briefly mentioned that one interpretation corresponds to sampling a customer at random from the portfolio, but the connection to our π*[image: there is no content] which is obtained by taking [image: there is no content]=[image: there is no content] is not given. Also the concept of sampling a customer at random is not explained very clearly, cf., e.g., our Theorem 1 and Appendix B below, and in key examples the [image: there is no content] are taken constant on an interval whereas [image: there is no content] is decreasing. Nevertheless, [3] contains some key ideas related to this paper, and to our mind, the paper has received surprisingly little attention in subsequent literature (but see Denuit et al. [1], Ch. 8).

Of further classical references in the bonus-malus area not cited elsewhere in the text, we mention in particular (in chronological order) Grenander [16], Loimaranta [17], Bonsdorff [18] and Rolski et al. [19].
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Appendix



A. Proof of Theorem 2

For ease of notation, we suppress the dependency on λ. First note that Z=(I-P+[image: there is no content]π)-1 satisfies



Zπ=π,[image: there is no content]Z=[image: there is no content],PZ=ZP=Z-I+[image: there is no content]π








(multiply by I-P+[image: there is no content]π on both sides). From this it follows easily by induction that


PnZ=ZPn=Z-I-⋯-Pn-1+n[image: there is no content]π








so


I+⋯+Pn-1=Z(I-Pn)+n[image: there is no content]π










e[image: there is no content]E∑[image: there is no content]A-1Pn=e[image: there is no content]EZ(I-PA)+A[image: there is no content]π=e[image: there is no content]Z(I-f^[P]+μA·π








Rewriting (4) in matrix notation and using the independence of A and [image: there is no content] gives


[image: there is no content]=1μAE∑[image: there is no content]A-1e[image: there is no content]Pn=1μAe[image: there is no content]EZ(I-PA)+A[image: there is no content]π=1μAe[image: there is no content]Z(I-f^[P]+μA·π










B. A Variant of the Derivation of the Age-Corrected Distribution

A different way to arrive at distribution (4) as the relevant bonus class distribution in a model with finite sojourn times of customers is to ‘sieve customers one-by-one through the system’. By this we mean that we consider a sequence of λ-customers such that customer n has sojourn time [image: there is no content] and bonus classes L0(n),L1(n),…,L[image: there is no content]-1(n) during his time in the portfolio. We then define a [image: there is no content]-valued stochastic process Z as the sequence



[image: there is no content]



(11)




and have:
Proposition 3. Assume that the distribution of A is non-lattice. Then the process Z given by (11) has limiting distribution given by (4).

This follows simply by noting that the instances [image: there is no content] where a new customer takes over in the construction of Z are regeneration points (the process starts afresh as from [image: there is no content]) and appealing to the general theory of regenerative processes ([10], Ch. 6).

It should be noted, however, that Z is not a Markov chain. This follows by noting that



P(Zn+1=ℓ|Zn=k)=∑a=0∞P([image: there is no content]=a){pkℓP([image: there is no content]>a+1|[image: there is no content]>a)










+δ[image: there is no content]ℓP([image: there is no content]=a+1|[image: there is no content]>a)}



(12)




where [image: there is no content] is the time elapsed since the last regeneration point (backward recurrence time; [image: there is no content]=n for [image: there is no content], [image: there is no content]=n-A(1) for [image: there is no content]etc.). Here the distribution of [image: there is no content] depends on n, except for the special case where A is geometric, and so must (12) do (the argument excludes time-homogeneity, but also the Markov property can be seen to fail).


C. A More General Model

We here suggest a model which incorporates several features not covered by the basic bonus-malus model consider in the body of the paper.

We assume that a customer is characterized by a random mark M taking value in some set [image: there is no content] and a time-homogeneous Markov chain [image: there is no content] with state space [image: there is no content] where [image: there is no content] is the finite set of bonus classes and [image: there is no content] is finite or countable. We write [image: there is no content]; [image: there is no content] is the number of claims in year [image: there is no content], assumed Poisson with parameter [image: there is no content], and [image: there is no content] is the bonus class. The initial class [image: there is no content] as well as [image: there is no content] depends on M.

In addition to potentially influencing the Poisson parameter, the Y component also generates the sojourn time A: it is assumed that the customer still in the portfolio in year [image: there is no content] will no longer be there in year [image: there is no content] w.p. [image: there is no content], so that then [image: there is no content]. The further transition rules state that L[image: there is no content] is calculated as a deterministic function b([image: there is no content],[image: there is no content],Yk) of [image: there is no content], and given [image: there is no content]=n,[image: there is no content]=ℓ,Yk=y, one has Y[image: there is no content]=[image: there is no content] w.p. [image: there is no content].

Example 2. To cover the classical model with independent sojourn time considered in the rest of the paper, take [image: there is no content] as the Poisson parameter of the customer and [image: there is no content], [image: there is no content]=[image: there is no content]. If A has some general distribution with point probabilities [image: there is no content], [image: there is no content], there are at least two ways to conform to the general framework above. Both are familiar from the theory of discrete phase-type distributions, ([10], III.4) or ([20], IX.1 and A5) (see in particular Sections IX.1 and A5 of [20]).

In the first, we take the state space for the Y-chain to be [image: there is no content]=N∪{Δ} for some extra state Δ and [image: there is no content]=0. From state [image: there is no content] [corresponding to still being in the portfolio in year y] one can go only to either [image: there is no content] or Δ, w.p. f[image: there is no content]/f¯[image: there is no content] for Δ and 1-fy+1/f¯[image: there is no content] for [image: there is no content] (thus [image: there is no content] does not depend on [image: there is no content]); state Δ (the coffin state) is absorbing. In the second, we take [image: there is no content]=N and [image: there is no content]=a w.p. [image: there is no content]. From [image: there is no content], one goes always to [image: there is no content], whereas state 0 is absorbing (thus [image: there is no content]=δ[image: there is no content],y-1 if [image: there is no content], [image: there is no content]=δ[image: there is no content], if [image: there is no content]).     ☐

Example 3. Bonus hunger, i.e., the insured’s aptness not to file all small enough claims in order to avoid increase in future premiums, has been studied repeatedly in the literature. e.g., Lemaire [21] (see also Lemaire & Zi [12]) calculate for a given bonus system, each class ℓ and each λ a retention level [image: there is no content], such that the insured’s costs in terms of either covering a claim of size Z himself or expected future premiums precisely balance when [image: there is no content] when he is in class ℓ. He will then file the claim if Z>[image: there is no content] and not otherwise. The calculation is based on a distribution G of a claim Z. We can model this by simply modifying Example 2 by taking λ(m,ℓ,y)=m1-G([image: there is no content]) rather than [image: there is no content].     ☐

Example 4. An insured may be tempted to look for another insurer if he has had many recent claims, therefore a high bonus class and so (often without reason!) believes that his present insurer’s system is unfair. We can model this by modifying the first representation of A in Example 2 by allowing direct transitions from state n of y to the coffin state Δ, occuring with a probability [image: there is no content] depending on the present bonus class ℓ (typically [image: there is no content] will be increasing in ℓ). Thus



qy+1;n,ℓ,y=(1-f[image: there is no content]/f¯[image: there is no content])(1-[image: there is no content]),qΔ;n,ℓ,y=f[image: there is no content]/f¯[image: there is no content]+(1-f[image: there is no content]/f¯[image: there is no content])[image: there is no content]=[image: there is no content]+(1-[image: there is no content])f[image: there is no content]/f¯[image: there is no content],








all other [image: there is no content]=0.
Example 5. Young or old drivers are generally considered to have risk characteristics different from the rest of the portfolio. We can model this by letting the mark M be the pair of the Poisson parameter Λ and (for a young driver) the year [image: there is no content] after the drivers license (or the age for an old driver), as well as a state of y to be of the form [image: there is no content], with [image: there is no content] determining A as above and [image: there is no content] the updated year after the license. The initial class [image: there is no content] is then chosen as function of B, and one could have, e.g., that λ(λ,b),ℓ,[image: there is no content] has the multiplicative form s([image: there is no content])λ.     ☐

Further examples, not spelled out in detail, are M including covariates entering multiplicatively in [image: there is no content].





	1These references have as their main theme not the Bayes premium but rather the credibility premium, also called the linear Bayes premium, computed as the minimizer of [image: there is no content] in the class of all linear functions [image: there is no content] of [image: there is no content]; for the Gamma example and many others, the Bayes premium and the linear Bayes premium coincide. The motivation for considering linear predictors only is computational ease.

	2Once this rule is chosen, one can also assert what is the optimal initial bonus level [image: there is no content] by a further mean square error minimization, cf. [6]. We do not go into this here.

	3For convenience, the dependence on λ is suppressed in the notation. In the Bayesian set-up, [image: there is no content] a r.v. with a continuous distribution so that strictly speaking, [image: there is no content]=[image: there is no content]=0 a.s.; the set-up and statements then have to be understood in a suitable conditional sense.

	4To be strict, one needs also to define some ordering of customers. These matters are to our mind of formal nature rather than intrinsically difficult, and so we omit the details.

	5This value is also compatible with the data in a recent study of a Greek portfolio, Tsougas [13]. See, however, Section 4.4.





© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







media/file4.png





media/file18.png





media/file13.png
Germany

0.35 0.35 0.35
o [l.nﬂ L__.-d M
0 0 0
1 2 3 4 5 6 0 10 0 10 20
0.35 0.35 0.35
NB(13) I I
0 0 0
1 2 3 4 5 6 0 10 0 10 20
0.35 0.35 0.35
U(.5) I
0 0 0
1 2 3 4 5 6 0 10 0 10 20
0






media/file9.png
o
-
o
N
o
o
-
o
N
o
o
-
o
N
o
o
-
o
N
o

>
1]

o

N
o o -
o -
o -
o -

o
-
o
N
o
o
-
o

20

o
-
o

20 0 10 20

>
I
©
o 8 =
o -
o N
o N

o
N
o
N
o
o
N
o
N
o
o
N
o
N
o
o
N
o
N
o





media/file10.png





media/file5.png
2 =0.08

1=0.16

1 =0.32

-

i
i

123456 123456 123456 123456

1 1 1 1
NBU)\_.--J \_.-.-J \_I-IIJ \_--..J

0 0 0 0
123456 123456 123456 123456

1 1 1

NB(13)I ‘.

0 0 0
123456 123456 123456 123456

1 1 1 1
U(GS)\_.--J \_I-“IJ L-“J \_—-IIJ

0 0 0 0
123456 123456 123456 123456

1 1 1 1
U(12-5)\_I--J \_I--j \_l.--.-J \_---J

0 0 0 0
123456 123456 123456 123456





media/file15.png
0.35 Ireland 0.35 Italy 0.35 Germany

a
o
<)

0
1 2 3 4 5 6 0 10 0 10 20
0.35 0.35 0.35
ne [l.nd L__..-d LA_J
0 0 0
1 2 3 4 5 6 0 10 0 10 20
0.35 0.35 0.35
NB(13)|:I.-.-.-.-.J L-.__I \n._—‘_J
0 0 0
1 2 3 4 5 6 0 10 0 10 20
0.35 0.35 0.35
U(6.5) I
0 0 0
1 2 3 4 5 6 0 10 0 10 20

~

0.35 0.35 0.35
U(12.5 I I
0 0

o





media/file19.png





media/file14.png
Ireland
0
0 10 20 30 40 50
2 T T T
Italy
0 1 n "
0 10 20 30 40 50
2 T T T T
Germany
0 1 1 1
0 10 20 30 40 50





media/file6.png
o
N
o
o
N
o

> >
i I
o o
o 8§ - o ¥ =
1
o
o -~ o -
i i i
1) -~ o -
F © r
3
o - o -

o
N
o
o
N
o
o
-
o
o
-
o

>
1
<}
N
o > -
o N
=) N
=) N

o
N
o
o
N
o
o
-
o
o
-
o

>
i
©
o 8 =
o N
o N
o -

o
-
o
o
-
o
o
-
o
o
-
o





nav.xhtml


  risks-02-00049


  
    		
      risks-02-00049
    


  




  





media/file11.png
A =0.04 1 A1 =0.08 1 1=0.16 1 A =0.32

B
B
B
9

- O
o

0 0 0
10 20 0 10 20 0 10 20 0 10 20
1 1

NB(7)

3
5
s
g

- O
o

3
5
5
9

0 0 0
10 20 0 10 20 0 10 20 0 10 20
1 1

NB(13)

- O
o

5
s
.
9

0 0 0
10 20 0 10 20 0 10 20 0 10 20
1 1 1

U(6.5)

- O
o

3
5
5
|

0 0 0
10 20 0 10 20 0 10 20 0 10 20
1 1

U(12.5)

0 0 0 0
0 10 20 0 10 20 0 10 20 0 10 20





media/file1.png
0.35+






media/file16.png
035} B






media/file2.png





media/file20.png
0.26

0.24

0.22

0.2

0.25

0.3





media/file7.png





media/file12.png
Ireland
0 e e b
0 10 20 30 40 50
2 T T T
Italy
0 L 1 n
0 10 20 30 40 50
2 T T T T
Germany
0 1 1
0 10 20 30 40 50





media/file3.png
o o o o
~ o -~ o -~ o

-

Jdd1
J331

1=0.04

© © N
o - el
=) o =)
n n n
< < <





media/file0.png
)

o

0

f
0.2
NB(7) III

N o
<)

o
o

0.2
NB(13)

o
o

o

0

)

0.2
U(6.5)

N o
o

0.2
u(12.5)
0

o

o
o





media/file17.png
0.45






media/file8.png





media/file21.png
0.06

0.1





