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Abstract: Systemic risk refers to the potential for a disruption in one part of a financial system to
trigger a cascade of adverse effects, impacting the functioning of the system. Despite the progress
on novel systemic risk measures, research on dynamics of systemic risk network structure and its
community effect is still in its initial state. In this study, we utilize price data from 107 representative
Chinese stocks spanning the period from 2017 to 2022. A systemic risk network is derived from the
Risk Transmission Index based on TENET and the QR–Lasso model. By utilizing DBSCAN, HITS and
community detection algorithms on the network, we aim to propose a more suitable definition of
systemically important companies, explore the interrelationships between companies, and discuss its
plausible reasons for dynamics structural changes. The empirical findings demonstrate a substantial
involvement of insurance companies in both contributing to and receiving systemic risk within the
analyzed context. We identify prominent risk output and input centers, and emphasize the profound
impact of the COVID-19 pandemic on the dynamics of systemic risk.

Keywords: Chinese stock market; systemic risk; CoVaR; network analysis; community detection

1. Introduction

Systemic risk, characterized by rapid transmission, close interconnections, and broad-
ranging implications, is the inherent risk that exists in complex financial systems. Once
triggered, it can jeopardize the stability of the entire financial system, leading to catastrophic
consequences for the economy and society. For example, in recent years, one of the major
shocks to the global financial system has been the outbreak of COVID-19. This pandemic has
severely impacted economic activities worldwide, triggering a series of chain reactions. For
businesses, it has led to supply chain disruptions and production halts, posing a significant
threat to the global economic system. For investors, the substantial volatility in stock
markets, bonds, and currency markets has raised their concerns about economic prospects,
causing a decrease in market liquidity. Financial institutions have also faced challenges, as
the interconnectivity among institutions has enabled the risk of one institution to rapidly
spread throughout the entire financial system.

Systemic risk has gained widespread attention since the 2008 financial crisis, and many
economists and authoritative institutions have provided specific definitions of systemic risk.
Kaufman and Scott (2003) summarize the definition of systemic risk into three categories:
the first category views it as a macro shock, causing significant adverse impacts on most
entities in the entire system simultaneously. The other two categories perceive systemic risk
as an evolving process. Specifically, the second category defines systemic risk as a causal
relationship, that is, a chain reaction resulting from the close direct connections between
financial institutions and markets (knock-on reaction), while the third category emphasizes
the similarity of third-party risk exposures among financial institutions, attributing sys-
temic risk to the similarity among institutions instead. Our approach aligns more with
the concepts from the second and third definitions, focusing on the exploration of the
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connections of risk exposures among stocks to investigate systemic risk in the Chinese
stock market.

Worldwide scholars also show research interest and propose various measures of
systemic financial risks. Kupiec (1995) proposes one of the most commonly used measures,
Value at Risk (VaR). To address its inability to identify extreme loss, Artzner et al. (1999)
propose expected shortfall (ES). Based on these measures, Tobias and Brunnermeier (2016)
propose Conditional Value at Risk (CoVaR) and Conditional Expected Shortfall (CoES)
to quantify the conditional systemic risk, namely, the risk the whole financial system
faces conditional on institution stress. By contrast, Acharya et al. (2017) propose marginal
expected shortfall (MES) and systemic expected shortfall (SES) to examine a financial
institution’s stress conditional on systemic stress. Brownlees and Engle (2017) introduce
SRISK to measure the expected capital shortfall of a financial institution conditional on a
severe market decline.

When it comes to Chinese financial markets, understanding and measuring systemic
risk is an important task, as the Chinese financial markets have matured significantly over
the past few decades, and systemic risk is one crucial concern in its economic system. In
January 2022, the People’s Bank of China issued the “Macroprudential Policy Guidelines
(Trial)”, which, in its third chapter, provides instructive guidance on monitoring, identifying,
and assessing systemic financial risks. Therefore, an abundant amount of research focuses
on measuring systemic financial risk. Numerous methods are developed and applied
to Chinese financial markets, such as the logit model in (Lin and Zheng 2016), the STV
model in (Zhang et al. 2003), and the DCC-GARCH model in (Fang et al. 2012). On the
other hand, researchers are making efforts to design innovative indicators to measure
systemic risk. For example, Lai (2011) construct the China Financial Stress Index, which
primarily consists of term spreads, stock market volatility, and many common and useful
variables. Li et al. (2016) develop a systemic risk-monitoring indicator based on the risk
interdependence structure.

Although these studies have made innovative progress on the quantitative modeling
methods of systemic risk, it is hard to model systemic risk under the network structure,
given consideration of the fact that there is a large number of financial institutions, each
contributing to potential systemic risk more or less. Some studies address the network
structure of financial risk including (Diebold and Yılmaz 2014; Hautsch et al. 2015; Härdle
et al. 2016).

In terms of systemic risk index, Diebold and Yılmaz (2014) introduce various connected-
ness metrics derived from components of variance decomposition, asserting that the variance
decomposition matrix is equivalent to a network adjacency matrix. Hautsch et al. (2015) con-
struct a tail risk network with VaR as the weight of the edge, introducing the Lasso method
to quantile regression for the identification of the relevant tail risk transmitters for each
company. Härdle et al. (2016) propose a so-called TENET model, which uses a non-linear
and variable selection-enhanced quantile regression method to model network risk driven
by tail events. This approach not only captures the network effects of liquidity but also
highlights the importance of tail event-driven inter-connectivity. The model, using a single
index model, investigates non-linear factors in tail interdependence, providing meaningful
explanations and a good model fit. In our research, we follow the work of Härdle et al.
(2016) and develop a Risk Transmission Index based on the TENET mode. Such an index
takes not only the spillover effects across financial institutions but also the market capital-
ization into account. Also, Härdle et al. (2016) use in-degree and out-degree measures to
identify systemic important financial institutions (SIFIs) based on their network indices.
We further suggest applying the HITS algorithm to gain another perspective of the network
structure. In particular, the hub and authority values calculated by the HITS algorithm can
assist researchers in identifying input and output risk centers.

When it comes to the network structure, Diebold and Yılmaz (2014) examine the
network structures of 16 stocks, a relatively small sample size that limits the identification
of the overall network structure. Härdle et al. (2016) analyze 100 stocks and categorize the
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market into four groups: depositories, insurers, broker–dealers, and others. Hautsch et al.
(2015) focus on the 57 largest financial companies. While these studies aim to identify the
systemic important companies, they place less emphasis on the network structure. The
division of systemic risk community is mainly based on depositories, insurers, broker–
dealers, and others. The market in China primarily consists of secondary industries, while
most studies concentrate on systemic risks within the financial system. Therefore, we aim to
apply research methods from social network analysis to derive an unsupervised clustering
on the system risk network, and conduct a comprehensive study on the dynamics of the
network structure in recent years. Specifically, we define and utilize the Risk Transmit Index
as the edge weights of the network. We then employ the community detection techniques
on the systemic risk network to identify five risk communities and analyze their industry
composition.

Taking into account the dynamics of the network, previous studies (Diebold and
Yılmaz 2014; Härdle et al. 2016) select specific time points, often during the period of the
2007–2008 financial crisis, to visualize the network structure and analyze the fluctuation
of their systemic risk indices over time. In our study, we analyze systemic risks during
the period of 2017–2022, which allows us to investigate whether the COVID-19 pandemic
has influenced systemic risk. We find that clustering algorithms can help identify the
period when COVID-19 had an impact on the stock market. Based on the clustering results,
we divide the time into three periods: pre-pandemic, pandemic, and post-pandemic eras.
We will further analyze the network structure and the systemic importance of companies
during these three periods.

More specifically, this paper intends to address the following two questions for Chinese
stock markets:

1. How can we quantify the inter-flow of systemic risk in the network of Chinese stock
markets? We construct a systemic risk network for individual stocks, observe how
systemic risk propagates within the stock market, explore the major risk output and
input centers, and analyze the primary constituents of systemic risk in the Chinese
stock market.

2. How does the major systemic risk contributors influence the systemic risk across
communities and over time? We employ clustering algorithm on the risk dynamics
over time to obtain small time periods, and then find out how the major risk centers
behave regarding both detected communities and time periods in the system risk
network we construct for the Chinese stock market.

To address the above two questions, we collect the data for 107 representative stocks
in the Chinese stock market from 2017 to 2022, along with 30 macroeconomic factors
representing China’s economic development trends. We develop our approach based on
the TENET model. We use the parameters from the single index model to construct a
systemic risk network for Chinese markets, define the network-based risk indicator using
the CoVaR measure, and then employ some network algorithms to detect the community
and time-variant effects. Our analysis demonstrates that classical network metrics can be
used for systemic risk analysis and they possess strong interpretability.

This paper proceeds as follows. We first introduce the models employed in this study
in Section 2 in detail. The procedures of data preprocessing, empirical results, and analysis
are described in Section 3. We conclude the findings, limitations, and further research
recommendations on the systemic risk in the Chinese stock market in Section 4.

2. Materials and Methods
2.1. CoVaR Based on a Single Index Model
2.1.1. Estimation of VaR and CoVaR

In financial risk management, Value at Risk (VaR) is a widely applied risk measure
that assesses and quantifies the potential loss in the value of a portfolio or investment
over a specified time horizon. To take into account the risk transmission relationship
among companies when extreme events take place, we can extend the measurement of VaR
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by examining the probability that another company experiences an extreme event when
one occurs, which is the concept of Conditional Value at Risk (CoVaR). In the following
paragraphs, we introduce the estimators for VaR and CoVaR.

Let Xi
t represent the loss variable for company i at time t. Given the macro state

variables Mt−1, the VaR of Xi
t at a risk level τ, VaRτ(Xi

t), is defined as

VaRτ(Xi
t) = argmin

θ

E
(

ρτ(Xi
t − θ) | Mt−1

)
, (1)

where
{

ρτ(u) = (τ − I(u<0))u
}

is the so-called check function. Thus, some statistical
methodologies, like the quantile regression model, can be used to estimate the Value at Risk
for regression data. An alternative definition of VaRτ(Y) is the τ quantile of return yields,{

Pr
(

Xi
t ≤ VaRi

τ,t | Mt−1

)
= τ

}
, which expresses VaR as a monetary amount, denoting the

maximum expected loss at a specified level.
We assume that the loss follows a linear relationship with the 30 macroeconomic

indicators. Since there are too many predictors in the model, it may lead to some model
efficiency problems, such as a decrease in the explanatory power and the generalization
ability of the model. The financial system is strongly impacted only by some of the macro
state variables at certain times. So we introduce an L1-regularization (Lasso) in estimation
and solve the following equation:

γ̂i
τ = arg min

γi

{
1
n

n

∑
i=1

[
ρτ

(
Xi

t − (γi)
⊤

Mt−1

)
+ λ||γi||1

]}
(2)

V̂aR
i
τ,t = α̂i + (γ̂i

τ)
⊤

Mt−1. (3)

We find that the estimation can effectively capture the trends of VaR, and most results
can pass the backtesting, which will be explained in the later section.

Given Mt−1, the macro state variables, and Bj
t−1, the company characteristics com-

puted based on its balance sheet CoVaR of a paired variable (Xi
t, X j

t) at risk level τ is

denoted by CoVaRj|i
τ,t such that

Pr
(

X j
t ≤ CoVaRj|i

τ,t | Xi
t = VaRi

τ,t, Mt−1, Bj
t−1

)
= τ. (4)

Here, we apply TENET model in (Härdle et al. 2016) and calculate CoVaR for any
paired log returns {(Xi

t, X j
t)} of stock i and j given the macro state variables {Mt}. The

TENET model is motivated by the need to mitigate both model inefficiencies arising from
an excessive number of predictors, and difficulties aroused by non-linear dependencies
between pairs of financial assets. Härdle et al. (2016) apply a single index model with a
SCAD penalty to address the problem. Suppose X j

t represents the loss variable of financial
institution j, following

X j
t = g

(
β⊤j|Rj

Rj
t

)
+ ϵ

j
t, (5)

where
{

Rj
t := {X−j

t , Mt−1, Bj
t−1}

}
represents the information set;

{
X−j

t := X1
t , . . . , X j−1

t ,

X j+1
t , . . . , Xk

t

}
represents the explanatory variables, including the loss variable of all finan-

cial institutions other than institution j; and k denotes the number of financial institutions.

R̃j,t is defined as
{

V̂aR
−j
τ,t, Mt−1, Bj,t−1

}
, where V̂aR

−j
τ,t is estimated in (3) except for the j-th

institution. β̂ j|R̃j
is defined as

{
β̂ j|−j, β̂ j|M, β̂ j|Bj

}⊤
. Then, the estimators are defined as

β̂j|R̃j :=
{

β̂j|−j, β̂j|M, β̂j|Bj
}

, (6)
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which are obtained from the following equation:

Ln(β, g(·)) :=
1
n

n

∑
j=1

n

∑
t=1

ρτ

{
Xt − g

(
X⊤j β

)
− g′

(
X⊤j β

)
X⊤tj β

}
ωij(β) +

p

∑
l=1

Pλ(βl)(
β̂, ĝ(·)

)
:= arg min

β,g(·)
Ln(β, g(·)),

(7)

where ωij(β) represents a Gaussian kernel function, and Pλ serves as a penalty function.
In this model, β not only reflects the influence of all financial institutions except j but
also encapsulates the impact of macroeconomic factors and the firm itself. Its estimate is
obtained through the single index model. The greater the absolute value of β, the more
significant the influence that the corresponding variable will have on the tail risk of firm
j. The penalty Smoothly Clipped Absolute Deviation (SCAD) is used, where Pλ(x) is the
SCAD penalty function, defined as

Pλ(x) =


λ|x| if |x| ≤ λ
2aλ|x|−x2−λ2

2(a−1) if λ ≤ |x| ≤ aλ

1
2 (a + 1)λ2 if |x| > aλ

, (8)

where x is the coefficient being penalized, λ is a regularization parameter (often determined
by cross-validation), and a is a constant (typically chosen as 3.7 in the original SCAD
proposal) (Fan and Li 2001). Then, we estimate the CoVaR for company X j

t by

ĈoVaR
j|i
τ,t = ĝ

(
β̂⊤j|R̃j

R̃j,t

)
. (9)

The above approach can force some coefficients to shrink to zero smoothly, realizing
the target of variable selection. The key advantage of SCAD over the L1 penalty is that
it tends to shrink coefficients more gently for larger values, leading to less bias for large
coefficients. This can be beneficial in situations where some predictors have a significant
impact on the response variable. Therefore, compared to other variable selection methods
based on criteria like AIC and BIC, the SCAD penalty is more computationally efficient
and cost-effective (Fan and Li 2001).

For the computational aspect, we use an iterative approach to treat β̂τ and ĝ(·) as a
finite-dimensional optimization problem. The convergence of the solution is demonstrated
in (Zhang et al. 2003). The penalty function γλ employs the SCAD method, and the selection
of λ is determined through an improved BIC model (Duffie and Pan 1997), with validation
performed using the GCV criterion. Additionally, the value of λ can reflect the average
individual risk, which is quite explanatory.

2.1.2. Risk Fluid in the Network

Furthermore, the analysis of systemic risk necessitates the incorporation of not only a
company’s market capitalization but also its positioning within the financial network. The
magnitude of a company’s market capitalization serves as an indicator of its pronounced
importance within the financial system. The assessment of a company’s significance in the
financial system extends beyond its size and encompasses its capacity to exert influence on
other entities or be subject to external influences. In order to comprehensively address both
dimensions, we formulate a distinct measure, the Risk Transmission Index (RTI), which
contributes to the establishment of a risk network within the Chinese stock market.

Definition 1 (Risk Transmission Index). This metric quantifies the risk impact of both company
i on company j and company j on company i at time t, which is defined as

RTIi|j
t := MCi

t ×
∣∣∣D̂i|j

t

∣∣∣×MCj
t , (10)
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where MCi
t represents the market capitalization of company i at time t, and D̂j|R̃j measures the

gradient that quantifies the marginal effect of covariates at Rj,t = R̂j,t, which is defined as

D̂j|R̃j :=
∂ĝ

(
β̂⊤j|Rj

Rj,t

)
∂Rj,t

∣∣∣∣∣∣∣
Rj,t=R̃j,t

= ĝ′
(

β̂⊤j|R̃j
R̃j,t

)
=

{
D̂j|−j, D̂j|M, D̂j|Bj

}⊤
.

(11)

Specifically, D̂j|−j can assess the spillover effects among various financial institutions.

Now, we can construct the edges of the systemic network by the RTI between all pairs
of institutes. The network is defined as a collection composed of two subsets, {G = (S, E)},
where S represents k nodes comprising k financial institutions, and E denotes the edges
between different nodes. Since this paper primarily focuses on studying the mutual risk
impacts among institutions, the network analysis uses the RTI at time t as the edge weight
Ai|j

t . The construction of a weighted adjacency matrix of dimensions k × k at time t is
articulated as follows:

At =
(

RTIi|j
t

)
k×k

=



0 RTI1|2
t RTI1|3

t . . . RTI1|k
t

RTI2|1
t 0 RTI2|3

t . . . RTI2|k
t

RTI3|1
t RTI3|2

t 0 . . . RTI3|k
t

...
...

...
. . .

...
RTIk|1

t RTIk|2
t RTIk|3

t . . . 0


. (12)

2.2. Systemic Risk Network Analysis

Our study employ advanced network analysis techniques to gain a comprehensive
understanding of the complicated structure of the systemic risk network. We particularly
focus on scrutinizing the dynamic alterations in systemic risk within the Chinese stock
market, discerning variations under diverse economic conditions. The logistics of our
network analysis is depicted in Figure 1.

The initial phase of our approach involves two parallel aspects of procedures—identifying
input and output risk centers under the context of systemic risk network, and finding the
community constituents of systemic risk. To achieve the former goal of identifying pivotal
centers, we implement the Hyperlink-Induced Topic Search (HITS) algorithm. This algorithm,
recognized for its efficacy in revealing influential nodes within a network, aids in pinpointing
key elements in the systemic risk network. For the latter goal of detecting communities,
we incorporate a community detection algorithm to unveil the underlying structures and
interrelationships within the network, contributing to a more nuanced comprehension of the
systemic risk landscape in the Chinese stock market. Furthermore, both HITS and community
detection allow us to extend our analysis to a time-variant aspect.

Using ∑i,j RTIi|j
t as the systemic measure at the time t, we then plot the systemic

risk dynamics over time from 2017 to 2022 and observe an obvious time pattern, which
motivates us to employ the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm on the risk dynamics. DBSCAN is useful in an in-depth examination
of the temporal patterns inherent in the systemic risk, due to its capacity to discern complex
and evolving patterns, particularly in our non-linear contexts.

After dividing the whole time periods into a certain number of periods, we start to
discuss the relationship between the risk enters and the communities’ risk dynamics. We
focus on how the most important input and output risk centers interact with one another
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in the communities as well as how they influence the systemic risk regarding different time
periods. Through these multifaceted analytical techniques, we seek to unravel the intricate
dynamics and contributing factors influencing systemic risk in this financial domain.

Figure 1. Diagram of the model composition for system risk network analysis.

2.2.1. Identifying Input and Output Risk Centers by HITS Algorithm

One mission of our paper is to understand how risk is transmitted in the network. One
way is to discover where the systemic risk happens and where the risk will be transmitted,
and then define these two kinds of nodes as output and input risk centers.

Despite the fact that the RTI we define shows the extent to which financial risk is
transmitted into or out of one stock, it is insufficient to extract the input and output centers
only based on the RTI. The risk associated with a particular stock’s output may not solely
be influenced by its direct incoming connections. Instead, it could be significantly affected
by the risk transmitted from other stocks that are indirectly connected.

A similar phenomenon was first discovered by Kleinberg (1999) in the context of web
networks that authoritative web pages do not stand out based on conventional network
metrics such as in-degree and out-degree, and they might not use self-identifying terms
on their pages. These issues pose challenges in detecting authoritative web pages. To
filter authoritative pages from the huge information set on the Internet, he proposes the
Hyperlink-Induced Topic Search (HITS) algorithm. HITS is a network analysis algorithm
that assesses the network structure by identifying authority nodes and hub nodes, with
hub nodes being pages linked to many related authorities. To be specific, in our research
context, the graph S is defined by ∑T

t=1 Ri|j
t as the in-degree (risk input) of company j from

company i and out-degree (risk output) of company i to company j. Then, we calculate the
hub and authority values according to Algorithm 1.

Therefore, the results of HITS can capture the nature of systemic risk and the centrality
of stocks in the network. In this context, authority nodes represent the input centers of
systemic risk, while hub nodes represent the output centers of systemic risk in the stock
market. These input and output centers may have practical usages in macro-control and
may help researchers to grasp how risk is transmitted in the network.
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Algorithm 1 HITS

1: Sort the in-degrees of all the stocks decreasingly and construct a focused subgraph
Sσ ⊂ S with the top t of them.

2: Set a specific value d.
3: while not converge do

for each stock s ∈ Sσ do
Add all the stocks to which stock s points to Sσ.
if the in-degree of s is smaller than d then

Add all the stocks that point to stock s to Sσ.
else

Add d stocks that point to stock s randomly to Sσ.
Update the authority weight a(s) and the hub weight h(s).

a(s) ← ∑
p:(p,s)∈E

h(p)

h(s) ← ∑
p:(s,p)∈E

a(p)

Normalize the weights so that ∑s∈Sσ
(a(s))2 = 1, ∑s∈Sσ

(h(s))2 = 1.
4: The nodes with relatively large weights are labeled as the authority nodes and hub

nodes.

2.2.2. Identify Constituents of Systemic Risk by Community Detection Algorithm

In the examination of systemic risk within the stock market, our objective is to catego-
rize stocks into distinct communities based on their risk transmission indices. Subsequently,
an analysis of the industry composition and correlated features within these systemic risk
communities will be conducted. It is hypothesized that within the same community, risks
tend to be frequently transmitted, while transmission between different communities is
comparatively infrequent.

The delineation of these communities serves the purpose of facilitating a comprehen-
sive understanding of the interrelationships among various stocks. This, in turn, enables
researchers and governmental entities to implement more nuanced and effective policies
in the realm of macroeconomic regulation. To achieve this, we employ the modularity
optimization algorithm as presented in the work by Blondel et al. (2008) and leverage
community detection algorithms to the systemic risk network. The modularity of a network
is defined as

Q =
1

2m ∑
i,j

[
wij −

kik j

2m

]
1{node i, j are in the same community}, (13)

where wij represents the edge weight from node i to node j, ki = ∑j wij, m = 1
2 ∑i,j wij, 1 is

the indicator function. If we think of a community as a node, then wij is the sum of edge
weights from the nodes in community i to the nodes in community j.

This algorithm can partition a network into communities characterized by densely
interconnected nodes, with correspondingly sparse connections between nodes belonging
to distinct communities (Algorithm 2). In contrast to alternative community detection
algorithms, our chosen algorithm strikes a judicious balance between computational effi-
ciency and accuracy, thus expeditiously identifying highly modular partitions in extensive
networks. Furthermore, it elucidates a comprehensive hierarchical community structure,
contributing to a more nuanced comprehension of systemic risk dynamics within the
stock market.
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Algorithm 2 Community detection.

1: Define
• b: the number of iterations, b = 1, ..., B.
• B: the number of iterations after global convergence.
• nb: the current number of communities in the bth iteration.

• c(b)i : the ith node in the bth iteration.

• C(b)
i : the ith community in the bth iteration.

• C(b): the set of communities in the bth iteration.

• ∆Q(b)
im : gain in modularity when placing c(b)i into C(b)

m .

2: Assign a different community C(0)
i for each stock si ∈ S, i = 1, ..., k.

3: Let C(0) = {C(0)
1 , ..., C(0)

k }.
4: while C(b+1) ̸= C(b) do

Treat the current communities C(b)
i ∈ C(b) as nodes c(b)i , i = 1, ..., nb, where

while ∃ i s.t. C(b)
i changes do

for each node c(b)i do

Calculate ∆Q(b)
im ’s, m ∈ {m : c(b)j ∈ C(b)

m and w(b)
cicj ̸= 0}.

if ∆Q(b)
im ≤ 0, ∀m then

Keep c(b)i ∈ C(b)
i .

else
Remove c(b)i from C(b)

i and let c(b)i ∈ C(b)
m∗ , m∗ = arg maxm{∆Q(b)

im }.
Let C(b+1) = {C(b)

i : C(b)
i ̸= ∅}.

5: Return C(B).

2.2.3. Identify Time Pattern of Systemic Risk by DBSCAN Algorithm

In order to comprehend the dynamic nature of systemic risk, an evaluation is con-
ducted for each time instance, denoted as t, wherein an aggregate measure for the overall
systemic risk is derived by summing the values of Ai|j

t , expressed as ∑i ̸=j RTIi|j
t . To delin-

eate temporal patterns and inherent structures within the evolving systemic risk landscape,
we employ the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm as introduced by Ester et al. (1996). This algorithm, widely recognized in the
fields of data mining and machine learning, proves advantageous due to its capacity for
density-based clustering (Algorithm 3).

Algorithm 3 DBSCAN

1: Define
• ε: the maximum distance that a point can be from another point to be considered

as a neighbor.
• MinPts: the minimum number of data points required to form a dense region.

2: for each data point in the dataset do
Count the number of points within the ε-neighborhood of that point.
if the count is greater than or equal to MinPts do

Mark the point as a core point, which is the central point in dense regions.
3: for each core point do

Create a cluster and include all reachable points within the ε-neighborhood.
4: Assign border points to the cluster, where border points represent the data points that

are within ε distance of a core point.
5: Identify noise points that are not core points or border points. These noise points are

treated as outliers in this study.
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Given the intricate and non-linear nature of the temporal evolution of systemic risk,
DBSCAN is particularly suitable for our analysis. It excels in grouping closely packed
data points within high-density regions, while designating points situated in low-density
areas as noise. As a result of applying DBSCAN, the time series is effectively clustered
into distinct temporal periods, allowing for an in-depth analysis of the underlying factors
contributing to these discernible patterns.

To summarize, in order to capture the non-linear relationship and some potential
interaction effects within the data, we adopt the TENET model in (Härdle et al. 2016).
Combining this approach with the QR–Lasso model which possesses the variable selection
tool, we employ the single index model to explore systemic risk in the Chinese stock market.
Subsequently, we define a risk transmission index to measure the mutual risk impact among
companies. We utilize this index as edge weights to construct a systemic financial risk
network for the Chinese stock markets.

In addition, apart from using the fundamental network metrics like degree central-
ity to explore the network characteristics, we employ some advanced network analysis
methods to delve into the systemic risk pattern. On one hand, we employ the Hyperlink-
Induced Topic Search (HITS) algorithm in (Kleinberg 1999) to analyze risk output and
input centers in the Chinese stock market and to study the propagation patterns within the
systemic risk network. On the other hand, we employ the community detection algorithm
in (Blondel et al. 2008) to decompose the network structure of the systemic risk for the
Chinese stock markets and conclude some practical interpretations. Then, based on the
visualization of systemic risk measurements obtained from the single index model, we
apply the DBSCAN clustering algorithm to group all moments from 2017 to 2022 into three
time segments, indicating three different risk periods in practice. Finally, we analyze the
interaction between the input and output risk centers across communities and explore how
these risk contributors influence the systemic risk in different time periods by taking the
actual economic context of China into account.

3. Results
3.1. Sample and Data
3.1.1. Data Description

We obtain data from the RESSET database. Based on the Shanghai Composite Index,
we select 107 representative stocks in the Chinese stock market spanning from 2012 to 2022,
30 macroeconomic factors representing economic development trends in China, 6 factors
from the three-factor model, and 5 indicators from the balance sheet.

The Shanghai 180 Index (SZ180) is a stock index introduced by the Shanghai Stock
Exchange, comprising the top 180 stocks listed on the Shanghai Stock Exchange’s main
board. These stocks represent a substantial market capitalization, good liquidity, and
strong industry representation as depicted in Figure 2a,b. They span various sectors,
including manufacturing, finance, construction, etc. In this study, we exclude 73 companies
from this initial list, primarily consisting of newer financial institutions with limited data
and companies listed on the Science and Technology Innovation Board (STAR Market).
Therefore, the selected stocks in our study account for approximately 26.21% of the total
market capitalization, which does not reach 50% as depicted in Figure 2c.

Nevertheless, the stocks we select still possess good representativeness for the follow-
ing reasons:

1. The “Pareto Principle” or the “80/20 Rule” is evident in the Chinese stock market. This
principle, first proposed by the renowned Italian economist Vilfredo Pareto in 1897,
states that 20% of the population holds 80% of the wealth. In the context of the stock
market, this translates to the fact that 20% of the stocks tend to be profitable in the
long term, while the remaining 80% often incur losses (Wu et al. 2010). This suggests
that using a smaller subset of stocks to represent the overall market is reasonable. By
calculating the long-term returns for each stock based on the annual average closing
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prices in 2012 and 2022, we observe that approximately 73% of the stocks in the market
have zero or negative returns, which aligns with the “80/20 Rule”.

2. The industry distribution of the selected stocks is similar to that of the broader market.
As depicted in Figure 3a,b, the industry distribution of the 107 stocks chosen in
this study closely mirrors the industry distribution of the overall market, effectively
reflecting the operational characteristics of the securities market.

3. The selected stocks in our study exhibit significant market capitalization and liquidity.
As shown in Figure 2a,b, using the average number of shares per company as a
measure of market size, the selected stocks in this study have an average number
of shares that is 3.91 times higher than the market average. Additionally, using the
latest available data on the number of outstanding shares as a measure of liquidity,
the average number of outstanding shares for the selected stocks in this study is
11.42 times higher than the market average.
We do not choose the Shanghai 50, CSI 300, or STAR 50 for the following reasons:

• Shanghai 50: The selection criteria for Shanghai 50 are essentially the same as
those for Shanghai 180, but it comprises only 50 stocks, which provides a less
comprehensive representation of the stock market due to its smaller sample size.

• CSI 300: Within the CSI 300, 30% of the stocks come from the financial industry,
which does not align well with the industry distribution of the overall market.

• STAR 50: The STAR 50 index consists of the 50 largest STAR Market-listed
companies, which are relatively newer and may not provide sufficient data for
analysis due to their recent establishment.

(a) (b) (c)

Figure 2. Comparison of three criteria between the whole market and selected stocks, including
(a) market size, (b) stock liquidity, and (c) market capitalization.

(a) (b)

Figure 3. Comparison of industry distribution between (a) broader market, and (b) selected stocks.
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3.1.2. Macroeconomic Indicators

We select a total of 30 macroeconomic indicators with distinctive characteristics related
to the Chinese economy, covering daily, monthly, and quarterly time periods. These macro-
state variables will be applied in the CoVaR and the TENET model. We categorize these
indicators based on their reflection of economic conditions as illustrated in Table 1.

Table 1. Macroeconomic indicators.

Macroeconomic Indicators Frequency Category Stationarity Transformation

Export Value (Current value) Monthly Foreign Trade Indicators Log 1st Difference
Import Value (Current value) Monthly Log 1st Difference

Real Estate Development Composite Prosperity
Index (Current value) Monthly

Real Estate
Related Indicators

1st Difference

Fixed Asset Investment Completed Value
(Accumulated YoY) Monthly 1st Difference

Real Estate Development Investment Completed
Value (Accumulated value) Monthly 12th Difference

Total Retail Sales of Consumer Goods
(Current YoY) Monthly

Consumer
Related Indicators

1st Difference

Consumer Price Index (CPI) (Current YoY) Monthly None
Consumer Confidence Index (Current value) Monthly 1st Difference

Per Capita Disposable Income of Urban Residents
(Accumulated value) Quarterly 4th Difference

Per Capita Consumption Expenditure of Urban
Residents (Accumulated value) Quarterly 4th Difference

Value Added of Wholesale and Retail Trade
(Current YoY) Quarterly 4th Difference

Electricity Generation Output (Accumulated value) Monthly Energy Logistics
Related Indicators

12th Difference
Total Freight Volume (Accumulated value) Monthly 12th Difference and 1st Difference

Railway Freight Volume (Accumulated YoY) Monthly 1st Difference

Purchasing Price Indices of Raw Material (PPIRM)
(Current value) Monthly

Commodity
Related Indicators

1st Difference

Retail Price Index (RPI) (Current YoY) Monthly 1st Difference
Producer Price Index (PPI) (Current YoY) Monthly 1st Difference

Corporate Goods Price Index (CGPI) (Current YoY) Monthly 1st Difference
China Commodity Price Index (Current value) Monthly 1st Difference

Money & Quasi-money(M2) Monthly 1st Difference

Interbank Repo Benchmark Interest Rate
(Current value) Daily

Financial Market
Indicators

1st Difference

Weighted Average Overnight Interbank Borrowing
Rate (Current value) Monthly 1st Difference

China Government Bond Yield (10-year) Monthly 1st Difference
Total Outstanding Loans of Financial Institutions
(Domestic and Foreign Currency) (Current YoY) Monthly 1st Difference

Total Social Financing Scale (Stock) (Current YoY) Monthly 1st Difference

Keqiang Index (Accumulated value) Monthly

Macroeconomic
Overall Indicators

1st Difference
Gross Domestic Product (GDP) (Current value) Quarterly Log 1st Difference

Value Added of the Primary Industry
(Current value) Quarterly 4th Difference

Value Added of the Secondary Industry
(Current value) Quarterly 4th Difference

Value Added of the Tertiary Industry
(Current value) Quarterly 4th Difference

Below, we provide a brief introduction to these seven categories of macroeconomic
indicators:
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1. Foreign Trade Indicators reflect the foreign trade status of a country or region, the
level of foreign trade activities, and international competitiveness.

2. Real Estate-Related Indicators reflect the activities and investment conditions in the
real estate market.

3. Consumer-Related Indicators reflect the consumption behavior and capacity of res-
idents, indicating the strength of economic consumption activities and changes in
consumer confidence.

4. Energy Logistics-Related Indicators reflect the activity level and demand situation in
the financial market’s energy and logistics sectors.

5. Commodity-Related Indicators reflect the supply and demand relationships, cost pres-
sures, and market price fluctuations of commodities. They hold significant reference
value for economic analysis and decision-making.

6. Financial Market Indicators reflect the operational status of the financial market and
interest rate levels.

7. Macroeconomic Overall Indicators reflect the overall economic scale and growth
conditions of a country or region, indicating the overall economic development and
the relative contributions of various industries.

3.1.3. Data Preprocessing

We examine the stationarity of the data and applied stationarity transformations
based on autocorrelation function (ACF) plots, partial autocorrelation function (PACF)
plots, as well as relevant literature and empirical knowledge. In this study, we use the
augmented Dickey–Fuller (ADF) test to test the stationarity of the time series data, with
the null hypothesis being that the series is non-stationary and the alternative hypothesis
being that the series is stationary. The ADF tests are conducted on the following data at a
significance level of 0.05.

1. Unprocessed Stock Price Data. Before any transformation, the ADF tests show that
only five stocks’ price series out of all the stocks are stationary. Subsequently, we take
the logarithm of the price data and then differentiate it. The ADF tests are performed
again, and the results indicate that, after the stationarity transformation, all stocks
reject the non-stationary null hypothesis, thus rendering the price series stationary.
Consequently, we utilize the rolling forecast to obtain biweekly stock price data with
the rolling window being 5 years. We illustrate the transformation progress with the
ACF plot of Shanghai Pudong Development Bank (C600000, Shanghai, China) before
and after stationarity transformation in Figure 4.

2. Macroeconomic Indicators. Among all the daily and monthly data, only the monthly
CPI data pass the ADF test. By observing ACF and PACF plots and relying on
empirical knowledge, we determine the appropriate transformation methods for each
indicator. After applying these transformations, all data become stationary.
Regarding quarterly data, due to the large time intervals and relatively limited data
spanning only 10 years with 45 data points, the ADF test alone cannot effectively
confirm the stationarity of the data. Additionally, there is significant volatility in the
quarterly data during the period from 2020 to 2022, which we believe can influence
the overall stationarity of the data. Therefore, we employ empirical rules and refer to
ACF and PACF plots as well as the reduction in p-values from the ADF tests to decide
on the data transformation methods, which partially improve data stationarity. The
specific methods used for stationarity transformation of the macroeconomic data are
detailed in Table 1. Moreover, we illustrate such effect of 1st difference for Interbank
Repo Benchmark Interest Rate in Figure 5.
Finally, we utilize cubic spline interpolation to adjust all indicators to a biweekly
time cycle.

3. Three-factor Model and Balance Sheet. The ADF tests show that all the data are sta-
tionary at a significance level of 0.05, and no further stationarity processing is required.
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(a) (b)

Figure 4. ACF plots for stock C600000 : (a) before stationarity transformation; (b) after log
1st difference. If the calculated auto-correlation value exceeds the dash line, it indicates the presence
of auto-correlation in the data

(a) (b)

Figure 5. The effect of 1st difference for Interbank Repo Benchmark Interest Rate. (a) Interbank Repo
Benchmark Interest Rate; (b) the 1st difference for Interbank Repo Benchmark Interest Rate.

It is worth noting that only the preprocessed data from 2017 to 2022 are used for
subsequent modeling.

3.2. Systemic Risk Network Analysis of the Chinese Stock Market
3.2.1. Feasibility Testing of QR–Lasso Model

In this study, we utilize the aforementioned 107 representative stocks in the Chinese
stock market to analyze how the individual stock’s Value at Risk (VaR) for biweekly return
rates at a 0.1 risk level is influenced by macroeconomic factors during the period from 2017
to 2022.

We assume that different macroeconomic factors have varying degrees of influence on
stock market risk under different economic conditions. In this model, at time t, we employ
macroeconomic data from the period from t− 14 to t to regress against contemporaneous
return rates, constructing quantile regression models with Lasso regularization for each t.

QR–Lasso is feasible and should be used in this context for the following reasons: First,
the stock market return rates exhibit a peaked and heavy-tailed distribution. To assess the
normality of the stock market return rate data, the Shapiro–Wilk test is selected, which
is considered suitable for small sample sizes (N = 563 < 5000). The null hypothesis H0
assumes that the data follow a normal distribution, while the alternative hypothesis H1
assumes that the data do not originate from a normal distribution.

The results indicate that at a significance level of 0.05, all stocks reject the assumption
of normality. This rejection reflects the riskiness of stocks and underscores the necessity of
this study. For example, a QQ plot for stock C600000 is generated (Figure 6a), showing that
the tails of the sequence are consistently above the normal quantiles. The data points do
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not form a straight line, providing a more intuitive illustration of the heavy-tailed nature of
the stock market return rate distribution. Furthermore, histograms of weekly return rates
for stocks from different industries are plotted. Figure 6b is an example of the financial
industry. It is observed that all industries exhibit a pronounced peaked and heavy-tailed
distribution, emphasizing the existence of risk in the stock market.

(a) (b)
Figure 6. Heavy tail phenomenon in stock market, (a) QQ plot for stock C600000; (b) distribution of
weekly return in the financial industry.

Secondly, we apply the backtesting method to determine whether the VaR predictions
align with actual portfolio losses. The ideal scenario is the observation that from 2017
to 2022, 95% of the return rates are higher than the model’s VaR estimates. Additionally,
Kupiec (1995) proposes a hypothesis testing method to assess whether the model conforms
to its assumptions. Based on the results in Figure 7, the model proposed in this study can
generally pass the backtesting, indicating that it can effectively reflect the risk characteristics
of the Chinese stock market.

(a) (b)

(c) (d)
Figure 7. Backtesting results of QR–Lasso model and quantile regression model, including (a) pro-
portion results of QR–Lasso model; (b) proportion results of quantile regression model; (c) p-value
results of QR–Lasso model; (d) p-value results of quantile regression model.

Third, the QR–Lasso model yields superior results. Comparing the QR–Lasso model
with the traditional quantile regression model as shown in Figure 7 and Table 2, it is evident
that the traditional model achieves approximately 85% of the return rates, exceeding the
estimates. The hypothesis testing results reveal that the p-values are concentrated around 0,
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suggesting that the linear model does not align with the risk characteristics of the Chinese
stock market, while the QR–Lasso model performs well.

Table 2. Proportion of exceeding estimated VaR and passing backtesting for the QR–Lasso model and
quantile regression model.

Model 25% Quantile of Proportion
Exceeding Estimated VaR

75% Quantile of Proportion
Exceeding Estimated VaR

Proportion Passing
Backtesting (0.05)

QR–Lasso Model 0.88 0.91 98.1%
Quantile Regression Model 0.78 0.82 14.0%

3.2.2. Feasibility Testing of Systemic Risk Network

It is well known that degree, in-degree, out-degree, closeness centrality, betweenness
centrality, and similar metrics are commonly used to measure network structures (Table 3).
The distribution of degrees can be employed to examine whether the network follows a
power-law distribution, validating the feasibility of modeling. In-degree and out-degree
respectively represent the total amount of systemic risk received and transmitted by in-
dividual stocks. Closeness centrality reflects whether a stock has a dominant role in the
CoVaR of other stocks. Betweenness centrality measures the probability that a node lies
on the shortest path between any two other points, which can be interpreted as a stock’s
ability to propagate risk in a systemic risk network.

Table 3. Network metrics and their interpretations.

Indicator Definition Interpretation

Degree
∑j ̸=i MCi,t ×

∣∣∣D̂t
i|j

∣∣∣×MCj,t + ∑j ̸=i MCj,t ×∣∣∣D̂t
i|j

∣∣∣×MCi,t

Judge if the network follows a
power-law distribution

In-degree ∑j ̸=i MCi,t ×
∣∣∣D̂t

i|j

∣∣∣×MCj,t
Total systemic risk transmitted by

individual stocks
Out-degree ∑j ̸=i MCj,t ×

∣∣∣D̂t
i|j

∣∣∣×MCi,t Total systemic risk received by individual stocks

Closeness Centrality CB(i) = 1/ ∑y d(i, j), where d(i, j) is the shortest
path from i to j

Indicates whether a stock has a dominant role in
other stocks’ CoVaR

Betweenness Centrality g(v) = ∑s ̸=v ̸=t σst(i)/σst, where σst(i) calculates if
i lies on the shortest path between s and v

Measures a stock’s ability to propagate risk within
the system

We test the fundamental assumptions of the network model based on the five metrics
mentioned above. Figure 8 shows that the degree distribution broadly follows a power-law
distribution, which aligns with the assumption of the Matthew effect—that is, in the stock
market, most of the risk is concentrated in a few stocks.

Figure 8. Distribution of degree.
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Then, we visualize four important network indices in the graph, where we denote
each node by its stock code modded by 600,000. Notably, financial and insurance compa-
nies like Ping An Insurance (PingAn, 1318, Shenzhen, China) and China Life Insurance
Company Ltd. (CLIC, 1628, Beijing, China) are significant risk contributors (Figure 9a),
while insurance companies like PingAn and Industrial companies like PetroChina Com-
pany Ltd. (CNPC, 1857, Beijing, China) are major receivers of systemic risk in the Chinese
network (Figure 9b). From the analysis of closeness centrality (Figure 9c), it is evident
that the closeness centrality for all nodes in the stock market is extremely small (<1 ×
10−20). This suggests that no single stock significantly influences another stock. However,
when examining betweenness centrality (Figure 9d), companies like Hang Seng Electronics
(00570, Hangzhou, China) and Tongwei Company Ltd. (438, Chengdu, China). play a
prominent role as risk transmitters within the stock market.

In summary, our model aligns with various network analysis metrics and can effec-
tively apply the paradigm of network analysis for further examination.

(a) (b)

(c) (d)
Figure 9. Four network metrics, including (a) out-degree, (b) in-degree, (c) closeness centrality and
(d) betweenness centrality.

3.2.3. Primary Output and Input Centers of Systemic Risk

Merely analyzing degree-related metrics does not provide enough insights into the
output and input centers of the stock market’s systemic risk network. This is because
the risk output by a stock may not necessarily originate from the stock itself but could
be transmitted from another stock. The previous analysis of closeness centrality and
betweenness centrality also indicates that there are no stocks with strong influences on
other stocks, but there are stocks that play significant roles in risk transmission within the
network. This suggests the importance of considering risk transmission within the network
structure. In the graph, we denote each node by its stock code modded by 600,000.

As shown in Figure 10, risk output centers are PingAn, China Pacific Insurance
Company Ltd. (CPIC, 1601, Shanghai, China), and Xinhua Insurance (NCI, 1336, Beijing,
China), with the hub as 0.81, 0.55, and 0.21, respectively. Regarding the risk input centers,
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the two biggest risk input centers are CLIC and NCI, with authority as 0.99 and 0.08.
Insurance industries in China seem to produce risk as well as receiving risk at the same time.

(a) (b)
Figure 10. Stocks with top hub values and top authority values: (a) risk output centers; (b) risk input
centers. The biggest three risk output centers are PingAn, CPIC and NCI. The biggest two risk input
centers are CLIC and NCI.

3.2.4. Industry Composition of Systemic Risk

In network research, it is common to categorize nodes to create tightly connected
groups within each group while keeping connections sparse between groups, and to
conduct research on each group of nodes. A similar approach can be applied to the study
of systemic risk in the Chinese stock market network. In this study, a community detection
algorithm is employed to partition the systemic risk in the Chinese stock market into five
major categories, using modularity as the evaluation metric for the community detection
algorithm. A higher modularity indicates tighter connections within groups and sparser
connections between groups. In this paper, the modularity obtained from the community
detection algorithm is 0.477, falling within the normal range [0.3, 0.7], indicating that the
algorithm has produced a favorable community partition.

We analyze the characteristics of systemic risk in each community through risk out-
put centers, risk acceptance centers, and industry structures. Regarding the industry
composition as shown in Figure 11, we have the following:

1. Communities 1, 2, and 3 exhibit a diverse composition, encompassing emerging indus-
tries such as fin-tech, biopharmaceuticals, optical fiber, and emerging manufacturing
sectors. Community 2 comprises automotive manufacturing entities, exemplified
by corporations such as SAIC Motor Group (104, Shanghai, China) and Fuyao Glass
Industry Group Company Ltd (660, Fuzhou, China) . Conversely, Community 3 is pri-
marily characterized by healthcare enterprises, notably encompassing pharmaceutical
companies such as Hengrui Pharmaceutical (276, Lianyungang, China) and Huahai
Pharmaceutical (521, Taizhou, China) .

2. Community 4 is primarily led by the insurance industry, including PingAn, CPIC
and NCI.

3. Community 5 is primarily dominated by real estate, transportation, construction, and
manufacturing sectors, with some closely associated entities in the banking industry.
This sector includes enterprises such as the China Railway Construction Corporation
1186, Beijing, China) , China Shipbuilding Industry Company Limited, and Industrial
and Commercial Bank of China (ICBC, 1398, Beijing, China).
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Figure 11. Industry composition of each community.

3.2.5. Systemic Risk over Time

To further study the characteristics of systemic risk in the Chinese stock market under
different temporal and economic backgrounds, we cluster the changing risk of the Chinese
stock market into three categories based on systemic risk over time. In this analysis, we
use the RTI as a measure of systemic risk at each point in time and apply the DBSCAN
clustering method.

The temporal clustering results are shown in Figure 12. The systemic risk in the
Chinese stock market remains relatively low before December 2019 and after June 2021.
During the first wave of the COVID-19 pandemic, disruptions in the supply chain and
production halts in some industries due to pandemic control measures lead to heightened
market tension, resulting in a sharp increase in systemic risk within the stock market.

Figure 12. Clustering results of systemic risk dynamics in the Chinese stock market over time. Color
blue indicates the time before the beginning of pandemic. Color grey refers to the period after the
first strike of pandemic on the stock market. Black and Yellow points in the middle indicates the
period when the pandemic is undergoing.

During the COVID-19 pandemic, the reduced labor mobility lead to the labor shortages.
So the supply-side industrial chains are blocked. Because of the industrial clustering
phenomenon, the local epidemic situation could affect the operation of the entire industry
chain nationwide. The shrinkage of offline businesses, along with residents’ fear towards
the epidemic, lead to a decrease in consumer willingness. Furthermore, the development of
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the COVID-19 pandemic influences the volatility and trading activity of the domestic stock
market. Empirical research (Lin 2023) has found a positive relation between the the daily
growth rates of COVID-19 patients and the volatility of the domestic stock market. These
impacts are particularly significant at the beginning of the epidemic outbreak. However,
effective control measures implemented to manage the pandemic contribute to a return to
normal systemic risk levels in 2021.

3.2.6. Dynamics of Systemic Risk Structures in Chinese Stock Market

Through the analysis of DBSCAN, we divide the period from 2018 to 2022 into three
time intervals: before December 2019, from December 2019 to June 2021, and after June
2021. Subsequently, we analyze the systemic risk network graphs for these three time
periods as shown in Figures 13 and 14a,b.

Before December 2019, the systemic risk in the network is primarily transmitted
between the insurance companies, including PingAn, CPIC, and NCI. This may be due to
the significant clustering effect in the Chinese insurance industry. The five largest insurance
companies PingAn, People’s Insurance Company of China Ltd. (PICC, 01319, Beijing,
China) , CLIC, CPIC, and NCI, have maintained over 50 percent of the market share over
the long term. By examining their equity information, we find that the Central Huijin
Investment Company Ltd. holds substantial shares in PingAn, CLIC, and CNI, which may
lead to similarities in their stock price changes. These two aspects explain why the risk
transmission effect among these companies is particularly pronounced in both risk input
and output.

From December 2019 to June 2021, the network becomes dense, and during this period,
the Chinese stock market is impacted by the initial wave of the COVID-19 pandemic,
leading to significant economic uncertainty and an increase in systemic risk in the Chinese
stock market. Still, most systemic risk is transmitted from PingAn to CNPC. This may
be due to the strategic cooperation agreement signed at the end of 2017 between PingAn
Bank1 (Shenzhen, China) and CNPC. PingAn Bank, which is under the control of PingAn,
agreed to provide a RMB 20 billion credit line to CNPC and its subsidiaries to support
their various credit operations at PingAn Bank or its branches. At the same time, CNPC
and PingAn Bank agreed to strengthen cooperation in various financial service domains.
After June 2021, as the economy begins to recover, systemic risk in the Chinese stock
market decreases to a lower level. Also, PingAn stops transmitting risk to CNPC . From
the perspective of the community, evidence from Figure 13 underscores that Community
1 exhibits heightened internal connections. Within Community 2, the insurance industry
exhibits complex interconnections and assumes a predominant role in bearing systemic
risks. Notably, Industrial and Commercial Bank of China and China Railway Construction
emerge as entities with the highest degrees within Community 3.

Through an examination of Figure 14a,b, we discern that Community 4 emerges as the
principal component for both systemic risk inputs and outputs in the network, with other
communities contributing to systemic risk at a lower level. Moreover, the systemic risk
within Community 4 attains its peak during the pandemic period, suggesting a pronounced
impact of the epidemic on the insurance industry in the short term.

By contrast, the systemic risk within the manufacturing industry exhibits fewer fluctu-
ations during the epidemic period. From Figure 14a,b, it is observed that the systemic risk
within Communities 1, 2, 3, and 5 experiences subtle increases from 2020 to 2022.
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(a) (b)

(c)

Figure 13. Systemic risk network of different time periods, (a) before December 2019, (b) from
December 2019 to June 2021, and (c) after June 2021.
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(a) (b)

Figure 14. (a) Risk output and (b) Risk input for each community.

4. Discussion
4.1. Conclusions

This paper defines the Risk Transmission Index and uses it to construct the systemic
risk network in the Chinese stock market. Moreover, this paper further applies HITS,
community detection, and DBSCAN clustering algorithms to analyze the systemic risk in
the dimensions of time and community composition, resulting in the following conclusions:

1. By analyzing the four conventional network metrics—in-degree, out-degree, closeness
centrality, and betweenness centrality—insurance companies serve both as the main
contributors and major receivers of the systemic risk in the Chinese stock. No single
stock significantly influences the others, but companies like Hang Seng Electronics
play a pivotal role in risk propagation.

2. By analyzing the main risk output and input centers obtained from the HITS algorithm,
we find that the biggest risk output centers are PingAn, CPIC and NCI; the biggest
risk input centers are CLIC and NCI.

3. By examining the temporal evolution of systemic risk in the Chinese stock market,
we conclude that a pre-2020 period is characterized by relatively low systemic risk.
However, the onset of the COVID-19 pandemic’s initial wave instigates significant
shifts. Stringent pandemic control measures precipitate disruptions in the supply
chain, production halts in select industries, and a pervasive sense of market tension,
thereby engendering a noteworthy upsurge in systemic risk within the Chinese stock
market. After the implementation of effective COVID-19 control measures, systemic
risk reverts to normal levels in early 2021.

4. Moreover, an exploration of community characteristics derived from a community de-
tection algorithm underscores that the sources of risk in the Chinese stock market from
2018 to 2022 predominantly manifest within sectors such as the secondary industry,
emerging industries, and insurance. Each of these categories exhibits a pronounced
internal correlation. The classification approach employed herein primarily hinges on
the interplay of risk among companies, differing from conventional categorizations
such as insurance, financial services, and others. Within this framework, the principal
sources of risk emanate from the insurance sector. It is plausible that events such as
pandemics can induce systemic risk in the insurance industry, and as these entities
engage in non-traditional business activities, such endeavors may further contribute
to systemic risks within the network.

From the previous analysis, we can lead to some constructive investment recommen-
dations applicable to the Chinese stock market. Since the systemic risk in the network is
primarily transmitted between the insurance companies, we suggest that investors should
avoid concentrating all funds in the same industry or company; instead, diversifying in-
vestments across different industries, types of companies, and regions can be an effective
method to mitigate risks. Additionally, due to the substantial transmission of systemic
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risk from PingAn to CNPC, it is also advised that investors not include them in the same
investment portfolio.

4.2. Limitation and Further Work

The Risk Transmission Index defined in this paper is calculated at each moment t.
In our systemic risk network within a specific time period T, we use ∑t At, t ∈ T as the
adjacency matrix. However, there may be better measures of systemic risk transmission
that allow us to compute the adjacency matrix on a time-period basis.

We use the HITS algorithm to identify input and output centers because it is superior
to the PageRank algorithm, which can only calculate importance without differentiating
between input and output. Future research may propose more reasonable network analysis
algorithms for application in the background of systemic risk.

Furthermore, we have only conducted an association study on the relationships among
individual stocks, industries, communities, time periods, and systemic risks. However,
this cannot lead to causal conclusions. Therefore, further research is needed to analyze the
causal effects involved.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
ADF Augmented Dickey–Fuller
CLIC China Life Insurance Company Ltd.
CNPC PetroChina Company Ltd.
CPIC China Pacific Insurance Company Ltd.
CoES Conditional Expected Shortfall
CoVaR Conditional Value at Risk
DBSCAN Density-Based Spatial Clustering of Applications with Noise
ES Expected Shortfall
HITS Hyperlink-Induced Topic Search
MES Marginal Expected Shortfall
NCI Xinhua Insurance
RTI Risk Transmission Index
PACF Partial Autocorrelation Function
PingAn Ping An Insurance
SCAD Smoothly Clipped Absolute Deviation
SES Systemic Expected Shortfall
SIFI Systemic Important Financial Institution
SZ180 Shanghai 180 Index
VaR Value at Risk
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Note
1 Ping An Bank is listed on the Shenzhen Stock Exchange, so we didn’t include it in our research.
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