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Abstract: Numerous robust estimators exist as alternatives to the maximum likelihood estimator
(MLE) when a completely observed ground-up loss severity sample dataset is available. However,
the options for robust alternatives to a MLE become significantly limited when dealing with grouped
loss severity data, with only a handful of methods, like least squares, minimum Hellinger distance,
and optimal bounded influence function, available. This paper introduces a novel robust estimation
technique, the Method of Truncated Moments (MTuM), pecifically designed to estimate the tail index
of a Pareto distribution from grouped data. Inferential justification of the MTuM is established by
employing the central limit theorem and validating it through a comprehensive simulation study.

Keywords: claim severity; exponential distribution; grouped data; Pareto distribution; relative
efficiency; robust estimation; truncated moments

1. Introduction

The protection of policyholder privacy, covering a wide array of stakeholders from
individuals to small businesses, privately owned companies, and local government funds,
is a critical issue in the contemporary digital era. With the advent of digital data collection
and storage, insurance companies, which traditionally rely on detailed individual claim
information, are increasingly recognizing the importance of also understanding market-
level trends and severities through grouped data analysis. Data vendors and public
databases attempt to address this concern by providing data in a summarized or grouped
format. Such data treatment necessitates viewing them as independent and identically
distributed (i.i.d.) realizations of a random variable, subjected to interval censoring over
multiple contiguous intervals. The analysis of grouped sample data has largely depended
on maximum likelihood estimation (MLE). However, MLE can result in models that are overly
sensitive to anomalies in the data distribution, such as contamination, Tukey (1960), or the
presence of disproportionately heavy point masses at specific values, a scenario frequently
encountered in the actuarial field, particularly within payment-per-payment and payment-
per-loss data contexts, Poudyal et al. (2023).

The drive for robustness in statistical estimation against the sensitivity/vulnerability
of MLE has led to the exploration and establishment of various robust estimation methods
across different data scenarios, with the notable exception of grouped data. This gap
significantly underlines the fundamental motivation of this scholarly work: to address
this gap by introducing an innovative robust estimation approach specifically designed to
tackle the distinct challenges associated with the analysis of grouped data.

Within the domain of robust statistical estimation literature, the broad category of
L-statistics, Chernoff et al. (1967), stands out as a comprehensive toolkit, spanning a wide
array of robust estimators along with their inferential justification, such as methods of
trimmed moments (MTM) and winsorized moments (MWM). MTM and MWM approaches
have been effectively applied in actuarial loss data scenarios, contingent on the existence of the
quantile function for the assumed underlying distribution. Studies by Brazauskas et al. (2009);
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Zhao et al. (2018) have, respectively, applied MTM and MWM to datasets with completely
observed ground-up actuarial loss severity. In contexts of incomplete actuarial loss
data, particularly for payment-per-payment and payment-per-loss, Poudyal (2021a) and
Poudyal et al. (2023) have, respectively, implemented MTM and MWM. These investi-
gations have further established that trimming and winsorizing serve as effective strategies
for enhancing the robustness of moment estimation in the presence of extreme claims,
Gatti and Wüthrich (2023). However, the adaptability and applicability of MTM/MWM to
situations involving grouped data, especially where the quantile function may be undefined
within certain intervals of interest, remain open for investigation. This scholarly work aims
to explore this potential, particularly in light of the Method of Truncated Moments (MTuM),
a novel approach introduced by Poudyal (2021b) for completely observed ground-up loss
datasets, which implements predetermined lower and upper truncation points to effectively
manage tail sample observations.

The importance of robust statistical methods is significant in the insurance sector,
especially in its effects on pricing strategies and rate regulation. Traditional estimation
methods, like MLE, that are sensitive to data anomalies can lead to inaccuracies in risk
assessment, thus affecting the fairness and reliability of insurance premiums. This has
direct implications for regulatory compliance and the development of insurance products.
The need for methodologies that ensure accuracy and fairness in premium settings is
crucial, as these influence both insurer profitability and policyholder satisfaction. Although
MTM/MWM offer robust alternatives to MLE, they are not directly applicable in the context
of grouped data. Therefore, the proposed MTuM approach aims to address these critical
industry challenges by offering a more stable and fair estimation framework, which could
significantly contribute to the improvement in insurance pricing models and regulatory
practices.

Regarding the analysis of grouped data, Aigner and Goldberger (1970) explored the es-
timation of the scale parameter for the single-parameter Pareto distribution MLE and four vari-
ants of least squares. As a robust alternative to MLE for grouped data, Lin and He (2006) exam-
ined the approximate minimum Hellinger distance estimator (Beran 1977a, 1977b), which can
be asymptotically as efficient as the MLE. Additionally, Victoria-Feser and Ronchetti (1997)
demonstrated that, in the presence of minor model contaminations, optimal bounded influ-
ence function estimators offer greater robustness than MLE for grouped data. The strategy
of optimal grouping, in the sense of minimizing the loss of information, was introduced by
Schader and Schmid (1986); however, this method remains within the likelihood estimation
framework, Kleiber and Kotz (2003).

Therefore, the fundamental objective of this manuscript is to investigate the robustness
of the MTuM estimator, specifically for the tail index of grouped single-parameter Pareto
distributions, and to evaluate its performance against the corresponding MLE. Asymptotic
distributional properties, such as normality, consistency, and the asymptotic relative effi-
ciency in relation to the MLE, are established for the purpose of inferential justification. In
addition, the paper strengthens its theoretical concepts with extensive simulation studies.
It is noteworthy that the moments, when subject to threshold truncation and/or censorship,
are consistently finite, irrespective of the underlying true distribution.

The structure of the remainder of this manuscript is outlined as follows. Section 2
offers a succinct summary of the scenarios involving grouped data, encompassing a variety
of probability functions. Section 3 concentrates on the elaboration of the Method of Trun-
cated Moments (MTuM) procedures specifically designed for grouped data, along with
a discussion on the justification for their inferential application. An extensive simulation
study is undertaken in Section 4 to augment the theoretical results across diverse scenar-
ios. The manuscript concludes in Section 5, presenting our closing remarks and outlining
possible paths for further research.
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2. Pareto Grouped Data

Due to the complexity of the involved theory, we only investigate single parameter
Pareto distribution in this scholarly work. As considered by Poudyal (2021b, sct. 3),
let Y ∼ Pareto I(α, x0) with the distribution function FY(y) = 1 − (x0/y)α, y > x0, and
zero elsewhere. Here, α > 0 represents the shape parameter, often referred to as the
tail index, and x0 > 0 is the known lower bound threshold. Consequently, if we define
X := log(Y/x0), then X follows an exponential distribution, X ∼ Exp(θ = 1/α), with its
distribution function given by FX(x) = 1 − e−x/θ . Hence, estimating α is equivalent to
estimating the exponential parameter θ. Thus, for the purpose of analytic simplicity, we
investigate θ, rather than α. The development and asymptotic behavior of MTuM estimators
will be explored for a grouped sample drawn from an exponential distribution.

Let 0 < c1 < · · · < cm−1 < cm < ∞ be the group boundaries for the grouped

data, where we define c0 := 0 and cm+1 := ∞. Let X1, . . . , Xn
i.i.d.∼ X, where X has

pdf f (x|θ) = f (x) = 1
θ e−

x
θ and cdf F(x|θ) = F(x). The computation of the empirical

distribution function at the group boundaries is clear, but inside the intervals, the linearly
interpolated empirical cdf as defined in Klugman et al. (2019, sct. 14.2), is the most common
one. The linearly interpolated empirical cdf, called “ogive” and denoted by Fn, is defined as

Fn(x) =

{ cj−x
cj−cj−1

Fn(cj−1) +
x−cj−1
cj−cj−1

Fn(cj); if cj−1 < x ≤ cj, j ≤ m,

Undefined; if x > cm.
(1)

In the complete data case, we observe the following empirical frequencies of X:

P̂
[
cj−1 < X ≤ cj

]
= Fn(cj)− Fn(cj−1) =

nj

n
, j = 1, . . . , m + 1,

where nj =
n
∑

i=1
1{cj−1 < Xi ≤ cj}, giving n =

m+1
∑

j=1
nj is the sample size.

Clearly, the empirical distribution Fn is not defined in the interval (cm, cm+1 = ∞), as
it is impossible to draw a straight line joining two points (cm, Fn(cm)) and (∞, 1) unless
Fn(cm) = 1.

The corresponding linearized population cdf FG is defined by

FG(x) =


cj−x

cj−cj−1
F(cj−1|θ) +

x−cj−1
cj−cj−1

F(cj|θ); if cj−1 < x ≤ cj, j ≤ m,

F(x|θ); if x > cm.
(2)

The corresponding density function fn, called the histogram, is defined as

fn(x) =


Fn(cj)−Fn(cj−1)

cj−cj−1
=

nj
n(cj−cj−1)

; if cj−1 < x ≤ cj, j ≤ m,

Undefined; if x > cm.
(3)

The empirical quantile function (the inverse of Fn) is then computed as

F−1
n (s) =

cj−1 +
(cj−cj−1)(s−Fn(cj−1))

Fn(cj)−Fn(cj−1)
; if Fn(cj−1) < s ≤ Fn(cj), j ≤ m,

Undefined; if s > Fn(cm).
(4)

Similarly,

F−1
G (s|θ) =

 cj−1 +
(cj−cj−1)(s−F(cj−1|θ))

F(cj |θ)−F(cj−1|θ)
, F(cj−1|θ) < s ≤ F(cj|θ), j ≤ m;

F−1(s|θ), s > F(cm|θ).
(5)
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If individual claim losses X, when grouped, are subjected to further changes, like
truncation, interval censoring, or coverage adjustments, then the underlying distribution
function requires suitable modifications. For example, if m groups (n observations in
total) are provided and it is known that only data above deductible d appeared, then the
distributional assumption is that we observe

P̂
[
cj−1 < X ≤ cj

∣∣X > d
]
=

nj

n
, j = 1, . . . , m + 1,

with the group boundaries satisfying d = c0 < c1 < · · · < cm < cm+1 = ∞.

3. MTuM for Grouped Data

For both MTM and MWM, if the right trimming/winsorzing proportion b is such that
1 − b > Fn(cm), then we have cm < F−1

n (1 − b) < cm+1 = ∞. That is, F−1
n (1 − b) does not

exist as the linearized empirical distribution Fn is not defined in the interval (cm, cm+1 = ∞),
see Equation (1). As a consequence, F−1

n is not defined on the interval (Fn(cm), 1]. Thus,
in order to apply the MTM/MWM approach for a grouped sample, we always need to
make sure that F−1

n (1− b) ≤ cm, that is, 1− b ≤ Fn(cm), but this is problematic for different
samples with the fixed right trimming/winsorzing b. With this fact in consideration, the
asymptotic distributional properties of MTM and MWM estimators and from grouped data
are very complicated and not easy to analytically derive if not intractable. But with the
MTuM, we can always choose the right truncated threshold T, such that T ≤ cm. Therefore,
we proceed with the MTuM approach for grouped data in the rest of this section. Let 0 ≤ t
and T ≤ cm, with t < T, be the left and right truncation points, respectively.

Let us introduce the following notations:

pj ≡ pj(θ) := F(cj|θ)

Pj ≡ Pj(θ) := F(cj|θ)− F(cj−1|θ)

pj,n := Fn(cj)

σ2
j,j′ := Cov

(
Fn(cj), Fn(cj′)

)
= Cov

(
pj, pj′

)
Ii,j := 1{Xi ≤ cj}

Ji,j := 1{Xi > cj}



for 0 ≤ j, j′ ≤ m + 1; 0 ≤ i ≤ n.

Proposition 1. Suppose 1 ≤ j ≤ j′ ≤ m. Then, Cov
(

pj,n, 1 − pj′ ,n

)
= −

pj(1−pj′ )

n .

Proof. Clearly, pj,n = (1/n)
n
∑

i=1
Ii,j and 1 − pj′ ,n = (1/n)

n
∑

i=1
Ji,j′ . Therefore,

Cov
(

pj,n, 1 − pj′ ,n

)
= Cov

(
1
n

n

∑
i=1

Ii,j,
1
n

n

∑
i=1

Ji,j′

)
=

1
n2Cov

(
n

∑
i=1

Ii,j,
n

∑
i=1

Ji,j′

)

=
1
n2

n

∑
k=1

n

∑
i=1

Cov
(

Ik,j, Ji,j′
)
=

1
n2

n

∑
i=1

Cov
(

Ii,j, Ji,j′
)

=
1
n2 nCov

(
I1,j, J1,j′

)
=

1
n

[
E(I1,j J1,j′)−E(I1,j)E(J1,j′)

]
=

1
n

[
0 − pj(1 − pj′)

]
= −

pj(1 − pj′)

n
.

The following corollary is an immediate consequence of Proposition 1.
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Corollary 1. Let (Fn(c1), . . . , Fn(cm)) be a vector of empirical distribution function evaluated at
the group boundaries vector (c1, . . . , cm). Then, (Fn(c1), . . . , Fn(cm)) is AN

(
F, n−1Σ

)
, where

F = (F(c1|θ), . . . , F(cm|θ)), Σ =
[
σ2

jj′

]m

j,j′=1
, with σ2

jj′ = σ2
j′ j = F(cj|θ)(1 − F(cj′ |θ)) for all

j ≤ j′.

Assume that c0 ≤ cl−1 < t ≤ cl ≤ cr < T ≤ cr+1 ≤ cm. Then,

Fn(t) = A1Fn(cl−1) + B1Fn(cl) and Fn(T) = A2Fn(cr) + B2Fn(cr+1),

where

A1 :=
cl − t

cl − cl−1
, A2 :=

cr+1 − T
cr+1 − cr

, B1 :=
t − cl−1
cl − cl−1

, and B2 :=
T − cr

cr+1 − cr
.

also, consider

ul :=
c2

l − t2

2(cl − cl−1)
, vi :=

ci + ci−1

2
, and zr :=

T2 − c2
r

2(cr+1 − cr)
.

We now define the Method of Truncated Moment (MTuM) estimator from grouped
data. By using the empirical cdf, Equation (1), and pdf, Equation (3), the sample truncated
moment for a grouped data as defined by Poudyal (2021b) is given by

µ̂ =
1

Fn(T)− Fn(t)

∫ T

t
h(x) fn(x) dx. (6)

By using Equation (2), the corresponding linearized/grouped population mean is

gtT(θ) := µ =
ul Pl(θ) + ∑r

i=l+1 viPi(θ) + zrPr+1(θ)

A2 pr(θ) + B2 pr+1(θ)− A1 pl−1(θ)− B1 pl(θ)
=

N∗

H∗ . (7)

The truncated estimator of θ is determined by equating the sample truncated moment, as
specified in Equation (6), with the population truncated moment, as presented in Equation (7).
This equation is then solved for θ. The solutions obtained, denoted by θ̂ or θ̂MTuM, are defined
as the MTuM estimator of θ, provided that such a solution exists.

Assuming h(x) ≡ x and after some computation, we obtain

gµ(p1,n, . . . , pm,n) := µ̂

=
ul(pl,n − pl−1,n) + ∑r

i=l+1 vi(pi,n − pi−1,n) + zr(pr+1,n − pr,n)

A2 pr,n + B2 pr+1,n − A1 pl−1,n − B1 pl,n
=:

N
H

.

Note that p0,n,= 0. Thus, by the delta method (see, e.g., Serfling 1980, Theorem A,
p. 122), we have

µ̂ ∼ AN
(

µ = gµ(F), n−1DµΣD′
µ

)
,

where Dµ :=
((

∂gµ

∂p1,n
, . . . , ∂gµ

∂pm,n

)
p=F

)
and p := (p1,n, . . . , pm,n)

′
. Consider Σµ := DµΣD′

µ.

Clearly, if 2 ≤ l < r then
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∂gµ

∂pj,n
=



0, for 1 ≤ j ≤ l − 2 or j ≥ r + 2;

−ul H+A1 N
H2 , for j = l − 1;

(ul−vl+1)H+B1 N
H2 , for j = l;

cj−1−cj+1
2H , for l + 1 ≤ j ≤ r − 1;

(vr−zr)H−A2 N
H2 , for j = r;

zr H−B2 N
H2 , for j = r + 1.

and if l = r,

∂gµ

∂pj,n
=



0, for 1 ≤ j ≤ l − 2 or j ≥ l + 2;

−ul H+A1 N
H2 , for j = l − 1;

(ul−zr)H−(A2−B1)N
H2 , for j = l;

zr H−B2 N
H2 , for j = l + 1.

Due to the intense nature of the function gtT(θ), it is complicated to come up with
an analytic justification establishing whether it is increasing or decreasing. But, at least
for X ∼ Exp(θ), gtT(θ) appears to be an increasing function of θ > 0 as shown in Figure 1.
Generally, we summarize the result in the following conjecture.

0 2 4 6 8 10 12 14 16 18 20

3.5

4

4.5

5

5.5

6

6.5

7

0 0.1 0.2 0.3 0.4 0.5 0.6

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Figure 1. Graphs of gtT for different values of θ. Left panel represents the graph of gtT(θ) for
θ = 10, (t, T) = (2, 12), and group boundaries vector v1 = (0, 5, 10, 15, 20, 25). Similarly, right
panel represents the graph of gtT(θ) for θ = 0.2, (t, T) = (0.05, 0.45), and group boundaries vector
v2 = (0, 0.1, 0.2, 0.3, 0.4, 0.5).

Conjecture 1. The function gtT(θ) is strictly increasing.

Proposition 2. The function gtT(θ) has the following limiting values

lim
θ→0+

gtT(θ) =
ul
A1

, (8)

lim
θ→∞

gtT(θ) =
ul(cl−1 − cl) + ∑r

i=l+1 vi(ci−1 − ci) + zr(cr − cr+1)

A1cl−1 + B1cl − A2cr − B2cr+1
. (9)
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Proof. These limits can be established by using L’Hôpital’s rule.

Now, assuming the Conjecture 1 is true, then with Proposition 2, we have

Theorem 1. The equation µ̂ = gtT(θ) has a unique solution θ̂MTuM provided that

ul
A1

< µ̂ <
ul(cl−1 − cl) + ∑r

i=l+1 vi(ci−1 − ci) + zr(cr − cr+1)

A1cl−1 + B1cl − A2cr − B2cr+1
.

Solve the equation µ̂ = µ for θ̂MTuM, say θ̂ =: gθ(µ̂). Then, again by the delta method,
we conclude that θ̂ ∼ AN

(
gθ(µ), n−1(g′θ(µ))2Σµ

)
. Note that if both the left- and right-

truncation points lie on the same interval, then µ̂ = t+T
2 = µ. So, the parameter to be

estimated disappears from the equation, and hence we do not consider this case for further
investigation. Define

P := ul

(
e−

cl−1
θ − e−

cl
θ

)
+

r

∑
i=l+1

vi

(
e−

ci−1
θ − e−

ci
θ

)
+ zr

(
e−

cr
θ − e−

cr+1
θ

)
,

Q := B2

(
1 − e−

cr+1
θ

)
− A1

(
1 − e−

cl−1
θ

)
− B1

(
1 − e−

cl
θ

)
.

Then, we obtain a fixed point function as θ = G(θ), where

G(θ) = − cr

log
(

µ̂A2−P+µ̂Q
µ̂A2

) . (10)

However, we need to consider the condition µ̂(A2 + Q) > P. Therefore, we need to be
careful about the initialization of θ as the right truncation point T cannot be a boundary
point because, if it was, then A2 = 0 and we would not be able to divide by A2 in the fixed
point function θ = G(θ).

Now, let us compute the derivative of gθ with respect to µ using implicit differentiation.
Case 1: Assume that the two truncation points are in two consecutive intervals, i.e., assume
that l = r. Then, θ′ = g′θ(µ̂) =

A−B
Λ+∆ , where

A := A2 + B2 − A1 − B1, B := A2e−
cr
θ + B2e−

cr+1
θ − A1e−

cl−1
θ − B1e−

cl
θ ,

Λ :=
ul
θ2

(
cl−1e−

cl−1
θ − cle−

cl
θ

)
+

zr

θ2

(
cre−

cr
θ − cr+1e−

cr+1
θ

)
,

∆ :=
µ̂

θ2

(
A2cre−

cr
θ + B2cr+1e−

cr+1
θ − A1cl−1e−

cl−1
θ − B1cle−

cl
θ

)
.

Case 2: The other case is that the two truncation points are not in the two consecutive intervals,

i.e., assume that l < r. Then, θ′ = g′θ(µ̂) =
A−B
Γ+∆ , where Γ := Λ +

r

∑
i=l+1

vi
θ2

(
ci−1e−

ci−1
θ − cie−

ci
θ

)
and A, B, Λ, and ∆ are defined above.

To obtain the exponential grouped MLE, consider Pj(θ) := e−
cj−1

θ − e−
cj
θ . Then, following

Xue and Song (2002), we have θ̂MLE ∼ AN
(

θ, 1
n I−1(θ)

)
, where I(θ) =

m

∑
j=1

Pj(θ)

(d ln Pj(θ)

dθ

)2

.

Note that after finding the derivative, I(θ) can be expressed as

I(θ) =
m

∑
j=1

Pj(θ)

 cj−1e−
cj−1

θ − cje−
cj
θ

θ2
(

e−
cj−1

θ − e−
cj
θ

)


2

=
m

∑
j=1

 cj−1e−
cj−1

θ − cje−
cj
θ

θ2

2
1

Pj(θ)
.
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The asymptotic performance of the MTuM estimator is measured through the asymp-
totic relative efficiency (ARE) in comparison to the grouped MLE. The ARE (see, e.g.,
Serfling 1980; van der Vaart 1998) is defined as

ARE(MTuM, MLE) =
asymptotic variance of MLE estimator

asymptotic variance of MTuM estimator
. (11)

The primary justification for employing the MLE as a standard/benchmark for com-
parison lies in its optimal asymptotic behavior in terms of variance, though this comes with
the typical proviso of being subject to “under certain regularity conditions”. Therefore, the
desired ARE as given by Equation (11) is computed as

ARE
(

θ̂MTuM, θ̂MLE

)
=

I−1(θ)

(g′θ(µ))
2Σµ

=
I−1(θ)

(g′θ(µ))
2DµΣD′

µ
. (12)

The numerical values of ARE
(

θ̂MTuM, θ̂MLE

)
, Equation (12), from Exp(θ = 10) with

group boundaries vector G := (0 : 5 : 50, 200, ∞), is summarized in Table 1. As shown
in Table 1, greater robustness is achieved with wider truncation thresholds, that is, as the
distance between t and T increases.

Table 1. Numerical values of ARE
(

θ̂MTuM, θ̂MLE

)
given by Equation (12) for selected t and T with

G = (0 : 5 : 50, 200, ∞) from Exp(θ = 10). The truncation thresholds t and T are rounded to two
decimal places, for example, 70 ≈ F−1(0.999), etc.

t(F(t))
T(S(T)=1−F(T))

70(0.001) 45(0.01) 35(0.03) 25(0.08) 19(0.15) 12(0.30) 7(0.50)

00.0(0.00) 0.870 0.762 0.584 0.350 0.224 0.093 0.038
00.5(0.05) 0.869 0.760 0.583 0.349 0.225 0.095 0.038
01.0(0.10) 0.865 0.756 0.579 0.347 0.225 0.098 0.038
02.0(0.14) 0.841 0.731 0.559 0.334 0.220 0.105 0.038
03.0(0.26) 0.782 0.675 0.512 0.302 0.201 0.114 0.038
07.0(0.50) 0.483 0.396 0.274 0.131 0.071 0.023 –
14.0(0.75) 0.214 0.156 0.087 0.027 0.014 – –
19.0(0.85) 0.118 0.074 0.033 0.009 – – –
23.0(0.90) 0.076 0.041 0.014 – – – –

Note: The boxed entry will be compared with an entry from Table 4.

4. Simulation Study

This section augments the theoretical findings established in Section 3 with simulations.
The primary objective is to determine the sample size required for the estimators to be
unbiased (acknowledging that they are asymptotically unbiased), to validate the asymptotic
normality, and to ensure that their finite sample relative efficiencies (REs) are converging
towards the respective AREs. For calculating the RE, the MLE is utilized as the reference
point. Consequently, the concept of asymptotic relative efficiency outlined in Equation (11)
is adapted for finite sample analysis as follows:

RE(MTuM, MLE) =
asymptotic variance of MLE estimator

variance of a competing estimator MTuM
.

The design of the simulation is detailed below, covering both the generation of data and
the computation of various statistics as described:

(i) The underlying ground-up distribution is assumed to be exponential with a mean
parameter θ = 10.

(ii) Different sample sizes are explored: n = 50, 100, 250, 500, 1000.
(iii) A total of 1000 samples are generated for each scenario.
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(iv) The sample data are grouped according to the specified group boundaries: 0 =
c0 < c1 < · · · < cm ≤ ∞.

(v) We consider the following vectors of group boundaries:

G1 := (0 : 1 : 100, 200, ∞), G2 := (0 : 1 : 200, ∞), G3 := (0 : 5 : 50, 200, ∞),

G4 := (0 : 10 : 100, 200, ∞), and G5 := (0 : 50 : 200, ∞).

(vi) For each grouping, 1000 estimates of θ are computed under the Method of Truncated
Moments (MTuM) with varying truncation points for grouped data, denoted as
θ̂1, . . . , θ̂1000.

(vii) The average estimated θ, denoted ¯̂θ, is calculated as ¯̂θ =

(
1000

∑
i=1

θ̂i

)
/1000.

(viii) This process is repeated 10 times, yielding averages ¯̂θ1, . . . , ¯̂θ10.
(ix) The overall mean, θ̂, and the standard deviation, se( ¯̂θ), of these averages are

computed as follows:

θ̂ =
¯̂θ1 + . . . + ¯̂θ10

10
and se( ¯̂θ) =

√√√√(
¯̂θ1 − ˆ̂θ

)2
+ . . . +

(
¯̂θ10 − ˆ̂θ

)2

10
.

(x) The ratios θ̂
θ and se( ¯̂θ)

θ are reported in Tables 2–6.
(xi) Similarly, the finite-sample relative efficiency (RE) of the MTuM with respect to the

grouped MLE is calculated as RE1, . . . , RE10. The mean and standard deviations
of these RE values are reported for different vectors of group boundaries.

Table 2. Finite-sample performance evaluation of MTuM with regards to MLE for grouped data from
an exponential (θ = 10) and group boundaries vector G1 = (0 : 1 : 100, 200, ∞).

MTuM Performance for Exponential Grouped Data

n

tl tr 50 100 250 500 1000 ∞ ∞ ∞

θ̂/θ

0 200 1.00(0.003) 1.00(0.003) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 50 1.01(0.004) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 100 1.00(0.003) 1.00(0.003) 1.00(0.001) 1.00(0.001) 1.00(0.001) 1 - -
0 140 1.00(0.005) 1.00(0.004) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
2 12 3.22(0.174) 1.68(0.130) 1.14(0.021) 1.06(0.012) 1.03(0.005) 1 - -

RE

0 200 1.01(0.032) 1.02(0.037) 1.02(0.039) 0.99(0.045) 0.99(0.048) 1.00 1.00 1.00
0 50 0.77(0.048) 0.79(0.058) 0.81(0.032) 0.84(0.035) 0.83(0.028) 0.82 0.82 1.00
0 100 1.00(0.045) 0.98(0.040) 1.02(0.050) 0.99(0.034) 0.99(0.046) 1.00 0.99 1.00
0 140 0.96(0.042) 1.01(0.063) 0.97(0.047) 1.00(0.047) 1.01(0.033) 1.00 1.00 1.00
2 12 0.00(0.000) 0.00(0.000) 0.01(0.004) 0.02(0.004) 0.03(0.002) 0.04 0.04 1.00
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Table 3. Finite-sample performance evaluation of MTuM with regards to MLE for grouped data from
an exponential (θ = 10) and group boundaries vector G2 = (0 : 1 : 200, ∞).

MTuM Performance for Exponential Grouped Data

n

tl tr 50 100 250 500 1000 ∞ ∞ ∞

θ̂/θ

0 200 1.00(0.006) 1.00(0.003) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 50 1.01(0.005) 1.00(0.003) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1 - -
0 100 1.00(0.006) 1.00(0.003) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1 - -
0 140 1.00(0.005) 1.00(0.004) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
2 12 3.17(0.169) 1.67(0.083) 1.16(0.024) 1.05(0.007) 1.03(0.006) 1 - -

RE

0 200 1.00(0.061) 0.99(0.071) 0.99(0.047) 0.98(0.068) 1.04(0.049) 1.00 1.00 1.00
0 50 0.75(0.054) 0.81(0.037) 0.81(0.023) 0.82(0.038) 0.84(0.038) 0.82 0.82 1.00
0 100 0.99(0.047) 0.96(0.039) 0.99(0.065) 1.03(0.043) 0.99(0.057) 1.00 0.99 1.00
0 140 0.99(0.028) 1.02(0.046) 1.02(0.050) 1.00(0.041) 1.01(0.043) 1.00 1.00 1.00
2 12 0.00(0.000) 0.00(0.000) 0.01(0.003) 0.02(0.004) 0.03(0.001) 0.04 0.04 1.00

Table 4. Finite-sample performance evaluation of MTuM with regards to MLE for grouped data from
an exponential (θ = 10) and group boundaries vector G3 = (0 : 5 : 50, 200, ∞).

MTuM Performance for Exponential Grouped Data

Sample Size, n

tl tr 50 100 250 500 1000 ∞ ∞ ∞

θ̂/θ

0 200 1.00(0.004) 1.00(0.003) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1 - -
0 50 1.01(0.005) 1.00(0.003) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 100 1.00(0.004) 1.00(0.003) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 140 1.00(0.004) 1.00(0.004) 1.00(0.003) 1.00(0.002) 1.00(0.001) 1 - -
2 12 1.41(0.062) 1.13(0.019) 1.04(0.007) 1.02(0.003) 1.01(0.004) 1 - -

RE

0 200 0.88(0.026) 0.91(0.049) 0.88(0.027) 0.87(0.033) 0.86(0.037) 0.86 0.84 0.97
0 50 0.79(0.043) 0.79(0.044) 0.81(0.045) 0.82(0.019) 0.82(0.028) 0.83 0.80 0.97
0 100 0.92(0.036) 0.94(0.030) 0.94(0.033) 0.94(0.038) 0.94(0.031) 0.95 0.92 0.97
0 140 1.01(0.078) 0.99(0.047) 1.01(0.040) 0.94(0.038) 1.02(0.038) 1.00 0.97 0.97
2 12 0.01(0.002) 0.03(0.007) 0.07(0.005) 0.09(0.004) 0.10(0.006) 0.11 0.10 0.97

Note: The boxed entry is identical to the boxed entry from Table 1.

Table 5. Finite-sample performance evaluation of MTuM with regards to MLE for grouped data from
an exponential (θ = 10) and group boundaries vector G4 = (0 : 10 : 100, 200, ∞).

MTuM Performance for Exponential Grouped Data

n

tl tr 50 100 250 500 1000 ∞ ∞ ∞

θ̂/θ

0 200 1.00(0.002) 1.00(0.004) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 50 1.01(0.007) 1.00(0.004) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
0 100 1.00(0.006) 1.00(0.003) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1 - -
0 140 1.00(0.006) 1.00(0.002) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1 - -
2 12 1.16(0.022) 1.06(0.007) 1.02(0.005) 1.01(0.004) 1.01(0.002) 1 - -

RE

0 200 1.00(0.032) 1.03(0.038) 1.00(0.036) 0.99(0.049) 1.01(0.048) 1.00 0.92 0.92
0 50 0.76(0.054) 0.78(0.031) 0.78(0.028) 0.80(0.031) 0.81(0.027) 0.81 0.74 0.92
0 100 0.97(0.064) 0.97(0.038) 1.00(0.034) 0.97(0.053) 0.99(0.026) 1.00 0.92 0.92
0 140 0.99(0.042) 1.00(0.061) 1.01(0.058) 1.00(0.024) 1.01(0.044) 1.00 0.92 0.92
2 12 0.04(0.010) 0.11(0.020) 0.16(0.010) 0.18(0.007) 0.18(0.008) 0.18 0.17 0.92
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Table 6. Finite-sample performance evaluation of MTuM with regards to MLE for grouped data from
an exponential (θ = 10) and group boundaries vector G1 = (0 : 50 : 200, ∞).

MTuM Performance for Exponential Grouped Data

n

tl tr 50 100 250 500 1000 ∞ ∞ ∞

MEAN 0 200 0.68(0.011) 0.78(0.007) 0.91(0.006) 0.97(0.003) 0.99(0.002) 1 - -
0 50 n/a n/a n/a n/a n/a n/a - -
0 100 0.68(0.011) 0.78(0.008) 0.91(0.011) 0.97(0.004) 0.99(0.003) 1 - -
0 140 0.68(0.011) 0.78(0.014) 0.92(0.006) 0.97(0.004) 0.99(0.002) 1 - -
2 12 n/a n/a n/a n/a n/a n/a - -

RE 0 200 0.43(0.003) 0.31(0.006) 0.32(0.014) 0.52(0.033) 0.84(0.079) 1.00 0.17 0.17
0 50 n/a n/a n/a n/a n/a n/a - -
0 100 0.43(0.007) 0.30(0.007) 0.32(0.018) 0.53(0.060) 0.84(0.046) 0.97 0.17 0.17
0 140 0.43(0.006) 0.31(0.009) 0.34(0.018) 0.55(0.030) 0.87(0.058) 1.00 0.17 0.17
2 12 n/a n/a n/a n/a n/a n/a - -

The outcomes of the simulations are documented in Tables 2–6. The entries represent
the ratios of the mean estimated values to the true parameter θ = 10 based on 1000 samples
and repeated 10 times. That is, the ratio of the estimated θ and the true θ = 10, as described
in item x above. The corresponding standard errors are presented in parentheses. In
all tables, the last three columns (with ∞) represent analytic results, not results from
simulations. The third last column is for the asymptotic relative efficiency of the MTuM
with regards to grouped MLE, coming from Equation (12) and Table 1. For example, the
group boundary vectors considered in Tables 1 and 4 are exactly the same and given by

G ≡ G3 = (0 : 5 : 50, 200, ∞).

Then, for (t, T) = (2, 12), the corresponding entries in those two tables should match,
and those matching entries, i.e., 0.11, are boxed in both tables. Similarly, the second last
column is for the asymptotic relative efficiency of the MTuM with regards to un-grouped
MLE, and the very last column represents the asymptotic relative efficiency of grouped
MLE with regards to un-grouped MLE.

If both the truncation points are in the same interval, say tl , tr ∈ [cj−1, cj], then we have
µ̂ = µ = tl+tr

2 . Therefore, the parameter θ = 10 to be estimated disappeared, and hence
the four rows on Table 6 are reported as n/a. As we move in sequence from Tables 2–6,
it becomes noticeable that the convergence of the ratio of the estimated θ with the true
θ, i.e., ˆ̂θ/θ, approaches the true asymptotic value of 1 at a more gradual pace. This is
because the length of intervals going from Tables 2–6 increases. More specifically, both
our intuition and the data presented in the tables suggest that when there is a wider gap
between the thresholds (namely, t and T), the estimators tend to approach the true values
at a slower rate.

In Tables 2–5, it is interesting to observe that, even for the sample size n = 50, the
estimator ˆ̂θ successfully estimates their corresponding parameter θ, with less than ±1% of
the relative bias, with one exception for (tl , tr) = (2, 12). As seen in Table 6, the relative
bias is within ±1% only for the sample of size n = 1000 and for (tl , tr) = (2, 12). Similarly,
as observed in those tables, it is clear that all the REs are asymptotically unbiased.

5. Concluding Remarks

In this scholarly work, we have introduced a novel Method of Truncated Moments
(MTuM) estimator designed to estimate the tail index from grouped Pareto loss severity
data, offering a robust alternative to maximum likelihood estimation (MLE). We have
established theoretical justifications for the existence and asymptotic normality of the
designed estimators. Additionally, we have conducted a detailed investigation into the
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finite sample performance across various sample sizes and group boundary vectors through
a comprehensive simulation study.

Looking ahead, this paper predominantly addressed the estimation of the mean pa-
rameter of an exponential distribution (or equivalently, the tail index of a single-parameter
Pareto distribution) using grouped sample data. Therefore, an avenue for future research
is the extension of the proposed methodology to more complex scenarios and models.
However, particularly for distributions with multiple parameters, examining the nature of
the function gtT(Parameters), as presented in Equation (7) and Conjecture 1, can be highly
challenging, if not infeasible. The task of providing asymptotic inferential justification for
the MTuM methodology when applied to multi-parameter distributions presents similar
difficulties. In this context, a potential direction for future research involves adopting an
algorithmic approach (i.e., designing simulation-based estimators for complex models)
rather than focusing solely on inferential justification, Efron and Hastie (2016, p. xvi).

Moreover, evaluating the performance of this novel MTuM estimator in diverse practi-
cal risk analysis scenarios remains an important area for further assessment. Attempting to
apply the designed MTuM methodology to real grouped insurance data revealed the chal-
lenge of finding publicly available data that fit the single-parameter Pareto (or equivalently,
an exponential) model well. This issue, along with the often poor fit of the data to the Pareto
model, highlighted the importance of adapting the MTuM to many other distributions
as well. Such adaptation will provide the necessary flexibility to select the most suitable
underlying models based on the initial diagnostic tests of the datasets. Therefore, there is a
need to broaden the theoretical development of the MTuM approach to at least include the
location-scale family of distributions.
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