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Abstract: This study explores how the System Dynamics modeling approach can help deal with
the problem of conventional insurance mechanisms by studying the feedback loops governing
complex systems connected to the disaster insurance mechanism. Instead of addressing the disaster’s
underlying risk, the traditional disaster insurance strategy largely focuses on providing financial
security for asset recovery after a disaster. This constraint becomes especially concerning as the
threat of climate-related disasters grows since it may result in rising long-term damage expenditures.
A new insurance mechanism is suggested as a solution to this problem to lower damage costs while
safeguarding insured assets and luring new assets to be protected. A local case study utilizing a
System Dynamics stock and flow model is created and validated by examining the model’s structure,
sensitivity analysis, and extreme value test. The results of the case study performed on a city in Latvia
highlight the significance of effective disaster risk reduction strategies applied within the innovative
insurance mechanism in lowering overall disaster costs. The logical coherence seen throughout
the analysis of simulated scenario results strengthens the established model’s plausibility. The case
study’s findings support the innovative insurance mechanism’s dynamic hypothesis and show the
main influencing factors on the dynamics within the proposed innovative insurance mechanism.
The information this study can help insurance firms, policy planners, and disaster risk managers
make decisions that will benefit local communities and other stakeholders regarding climate-related
disaster risk mitigation.

Keywords: disaster risk reduction; damage probabilities; dynamic model; probabilistic approach;
causal loop diagrams; investment; natural hazard

1. Introduction
1.1. Climate Change and Natural Disasters

Climate change has increased the frequency and intensity of natural disasters, in-
cluding floods, hurricanes, wildfires, and extreme weather events, and it poses significant
risks to communities, ecosystems, and economies worldwide. Within the last 2 decades
(i.e., 2000–2019), the Emergency Events Database (EM-DAT) (EM-DAT 2022) depicted a
strong increase in disaster events (more than 7300), with more than 1.2 million deaths and
more than 4 billion people affected (CRED and UNDRR 2020). Swiss Re analysis reports
(Bevere et al. 2020) show the recurrence rates of similar flood occurrences have dramatically
increased across South and Eastern Europe. Changes in forestry and agricultural land use,
population expansion, and urbanization are thought to have contributed to the growing
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flood risk. In addition, research by (Berghuijs et al. 2019) found that from 1960 to 2010, the
distance in Europe across which multiple rivers flood simultaneously increased by roughly
50%, contributing to large-scale flood impacts. Earthquakes came in second with losses
of about EUR 29 billion, while flooding and storms were the most expensive hazards in
Europe from 1998 to 2009, with losses totaling up to about EUR 52 billion for floods and
EUR 44 billion for storms (European Environment Agency 2010).

The study of (Forzieri et al. 2016) suggests that land-use changes, urbanization, and
climate change were reported as contributors to increasing flood risk, similar findings
about an increase in the frequency of extreme events such as floods, heatwaves, droughts,
windstorms, and wildfires across Europe are found. Urbanization and climate change,
which will affect social and economic factors, will provide more difficulties for European
cities in the near future (Carter 2011).

One of the biggest risks associated with the climate in Latvia is flooding. Due to the
spring’s quick snowmelt, riverine flooding occurs every year in Latvia and can become
disastrous. According to the event’s severity, the return rate is expected to range from once
per 10 to 200 years. Together, these incidents result in the destruction of structures, loss of
land and natural resources, interruptions to energy provision, and problems with the water
management system. This circumstance demonstrates that some settlements in Latvia are
not sufficiently “resilient” to natural disasters, so research must be performed to give a
more comprehensive understanding of the issue associated with riverine floods (Feofilovs
2020). The yearly rise in storm surge damage to buildings in all coastal cities in Latvia
between 2040 and 2070 may be close to EUR 1.5 million per year, according to the Latvian
Adaptation Plan to Climate Change for the Time Period to 2030 (Cabinet of Ministers 2019).

A community’s capacity to withstand and recover from disasters can be improved
by making proactive investments in hazard mitigation measures that assist in reducing
catastrophic losses and damages. However, financial resources are frequently allocated
disproportionately to support recovery initiatives after a disaster rather than using a few
resources to finance pre-disaster mitigation activities. According to research, disaster
mitigation investing is cost-effective because it typically generates $6 in savings for every
$1 invested (Gall and Friedland 2020).

In this context, insurance mechanisms play a vital role in mitigating the impacts of
climate change-related disasters by providing financial protection and promoting risk
reduction measures, and innovative insurance mechanisms have emerged as essential tools
to mitigate and manage the risks associated with climate change. Projects mitigating the
effects of hazards on communities can now be financed using a wide range of financial
and insurance mechanisms. Event-linked instruments, including Catastrophe Bonds, have
increased in popularity in recent years (Vaijhala and Rhodes 2015). For example, catastrophe
bonds can be used to transfer risks related to the possibility of disasters to the financial
markets (2021) (Hofer et al. 2021) or like Resilience Bonds created to support resilient
infrastructure initiatives, lowering large-scale risks in potential disasters (Clarvis et al. 2015;
Vaijhala and Rhodes 2018).

This proactive role could be played by insurance companies implementing different
types of mechanisms. Insurance mechanisms offer indispensable tools to manage the risks
associated with climate change (Hofer et al. 2021). By facilitating risk transfer, encouraging
risk reduction measures, promoting collaboration, and fostering innovation, these mecha-
nisms contribute to building resilience and ensuring sustainable development in the face
of climate challenges. Policymakers, insurers, and communities must work together to
enhance the accessibility, affordability, and effectiveness of insurance mechanisms, ulti-
mately safeguarding societies against climate change-related risks and supporting a more
climate-resilient future (Colker 2019).

1.2. Role of Insurance Sector in Mitigating and Adapting to Climate Change-Related Risks

The insurance sector has a proactive role in mitigating and adapting to climate change-
related risks. Insurance mechanisms begin with a comprehensive risk assessment to
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mitigate climate change-related risks effectively. This involves analyzing historical disaster
data, studying climate projections, and evaluating vulnerability assessments considering
factors such as historical data, climate models, vulnerability assessments, and exposure
analysis. Insurance providers can accurately price policies and determine coverage levels
by understanding the frequency, severity, and spatial distribution of risks. Proper risk
pricing ensures that policyholders pay premiums commensurate with the level of risk they
face, thereby incentivizing risk reduction measures (Schanz 2021; Hennighausen et al. 2023).
Through risk management advice and guidelines, insurers also encourage policyholders to
implement measures that mitigate climate-related risks, thus fostering resilience.

Insurance mechanisms have the potential to incentivize risk reduction and adapta-
tion measures. Insurers can offer reduced premiums or additional coverage benefits to
policyholders who adopt climate adaptation strategies, invest in resilient infrastructure,
or implement sustainable practices. By encouraging proactive measures, insurance mech-
anisms contribute to building climate resilience, reducing vulnerability, and promoting
long-term sustainability (Coffee 2020).

Parametric or index-based insurance products have emerged as innovative mecha-
nisms to enhance the efficiency and effectiveness of climate risk mitigation. These prod-
ucts utilize predetermined triggers, such as wind speed, rainfall levels, or temperature
thresholds, to determine the payout amounts. By removing the need for complex claims
processing and assessments, parametric insurance enables faster response and timely finan-
cial support to affected policyholders. It also reduces administrative costs for insurance
providers, enabling them to offer coverage to more individuals and businesses in high-risk
areas (Abdi et al. 2022).

By offering lower premiums or other benefits, such as deductible discounts or spe-
cialized coverage options, insurance providers encourage policyholders to implement
climate adaptation and mitigation strategies. Insurance mechanisms can play a pivotal
role in incentivizing risk reduction measures. These measures may include constructing
resilient infrastructure, adopting sustainable land management practices, implementing
early warning systems, or investing in disaster-resistant building materials. Insurance
mechanisms foster a proactive approach to risk reduction through such incentives and
enhance overall community resilience (Colker 2019; Clarvis et al. 2015).

Insurers engage with policyholders, urban communities, and local authorities to
raise awareness about climate change risks, insurance options, and risk reduction mea-
sures (Robinson et al. 2021). Through educational campaigns, workshops, and community
forums, stakeholders are empowered to make informed decisions, enhance their risk percep-
tion, and actively participate in building urban resilience (Roder et al. 2019). By combining
resources, knowledge, and expertise, stakeholders can create integrated approaches to
disaster risk reduction and ensure that insurance mechanisms align with broader climate
change adaptation strategies (Schanz 2021).

By continuously assessing changes in risk profiles, insurance uptake rates, claims
experience, and the overall resilience of insured assets, stakeholders can identify areas
for improvement and make necessary adjustments. This iterative process helps refine the
insurance mechanisms, enhance their efficiency, and adapt to evolving climate change risks
(Li and Liu 2023). Insurers encourage risk reduction and resilience-building practices by
offering lower premiums or tailored coverage options to policyholders who implement
climate adaptation measures, such as green roofs, permeable pavements, or flood-resistant
construction (Vaijhala and Rhodes 2015; Kunreuther et al. 2016).

Governments play a vital role in supporting insurance mechanisms against climate
change risks (Hudson et al. 2019). Policymakers can facilitate the development and imple-
mentation of supportive regulations, tax incentives, and risk-sharing frameworks. Public-
private partnerships foster collaboration between insurers and governments, enabling the
design of comprehensive insurance solutions that address the unique challenges of climate
change and promote inclusive coverage (Clarvis et al. 2015; Frisari et al. 2020).
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1.3. Aim of the Paper

Considering the overall concern about climate change and the need to mitigate the
risks of natural hazards, new proactive insurance tools are necessary. However, there is
limited research on the use and implementation of resilience financial tools implemented
by the insurance sector to perform integrated research to evaluate the dynamics towards a
more favorable and proactive role of the insurance system.

To fill in this knowledge gap and assess the usefulness and efficiency of new insurance
instruments embedded in a proactive role of the insurance sector as a driver for risk
mitigation and prevention measures, the core question of the proposed case study is “to
what extent the applications of a novel insurance mechanism can be used for co-financing
disaster resilience projects by mitigation and adaptation strategies enhancing community
resilience against weather-related hazards”?

The aforementioned issues will influence the business strategies and upcoming ad-
vancements of insurance businesses. A variety of intricate and dynamic elements bring on
the occurrences and issues. These elements depend on one another since they are connected
and have causal interrelations. This study wants to represent a first step to creating a
proactive business development model for insurance companies in the climate-related risk
reduction field. Thus, a case study for the Latvian context is made in this study to identify
issues linked to business operations according to a proposed new insurance mechanism.
For this purpose, a System Dynamics (SD) stock and flow model is created and validated
by examining the model’s structure, sensitivity analysis, and extreme value test.

2. Methodology

The SD is a methodology developed by Forrester et al. in the 1950s at the Massachusetts
Institute of Technology (MIT). This approach is particularly useful for studying dynamic
systems that exhibit feedback loops, delays, and nonlinear relationships. The fundamental
principle of SD is that the behavior of a system arises from the interactions of its various
components rather than the components themselves. These components could be physical
elements, entities, or variables that influence each other and produce changes in the overall
system behavior (Blumberga et al. 2011).

Key concepts in system dynamics modeling include (Forrester 2009):

• Stocks and flows: stocks represent accumulations of resources or quantities within the
system (e.g., inventory, population), while flows represent the rates at which these
resources move between stocks.

• Feedback loops: feedback loops occur when the output of a system component influ-
ences its own behavior or that of other components in the system. There are two types
of feedback loops: positive feedback loops, which amplify changes in the system, and
negative feedback loops, which tend to stabilize the system.

• Delays: delays in system dynamics refer to the time it takes for an action or change in
one part of the system to have an effect on other parts. Delays can lead to oscillations
or non-intuitive behaviors in the system.

• Causal Loop Diagrams: causal loop diagrams are graphical representations used
to visualize the relationships between the variables in a system and the direction of
influence. They help identify feedback loops and understand the underlying dynamics.

• Simulation: SD models are typically implemented using computer simulation software.
These models allow analysts to experiment with different scenarios and policies to
help them understand how the system responds to changes over time.

System dynamics modeling is widely used in various fields, including business man-
agement, economics, public policy, environmental studies, and engineering. It helps
decision-makers gain insights into the behavior of complex systems, identify potential
challenges, and test policies and strategies before implementing them in the real world. By
understanding the dynamic nature of systems, it enables better planning, decision-making,
and problem-solving (Sterman 1994).
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SD has been implemented in several complex problem sectors connected to insur-
ance mechanisms (Kurnianingtyas et al. 2020; Chen et al. 2009). This represents a good
background for the purpose of this study.

2.1. System Dynamics: Building Causal Loops Diagrams

The system’s behavior is represented by diagrams known as causal loops (Blumberga
et al. 2011). The causal loops are a crucial part of the system dynamics approach as they
present the studied system’s dynamic problem and give insight into how to deal with the
problem. The causal loop diagrams (CLDs) show the interaction of variables in the SD
model by the connections between them symbolized by arrows. The arrows are symbolized
by a plus sign for positive relationships among variables, whereas negative relationships are
symbolized by a minus sign. This relationship in CLDs is considered under the assumption
of Ceteris paribus, meaning “all other things being equal”. This means that the connected
variables symbol signifies only the change in the link of the two variables without looking
at the whole system change.

The connected variables can be linked in loops, known as feedback loops, in the SD
model. The feedback loops strongly influence a system’s behavior and are used to examine
the potential effects of various policy interventions that address the dynamic problem.
The feedback loops can include a dynamic hypothesis, which aims to show how system
behavior can be improved to deal with the dynamic problem. The dynamic interaction
within CLDs is shown by reinforcing loops and balancing loops. Each type of loop can
have a positive or negative effect on other loops in the system:

• Reinforcing loops amplify changes within a system and may cause exponential growth
or decline. They are marked with the letter R in CLD. Reinforcing loops embedded in
the system are often the cause of the problematic behavior.

• Balancing loops have the opposite of the reinforcing loops. Balancing loops tend
to restore equilibrium or maintain stability within a system due to their counter-
interaction with the effect of the changes of the initial variable in the loop. Balancing
loops are marked with the letter B in CLD.

Through the use of reinforcing and balancing loops within CLDs, a dynamic problem
of the system and the dynamic hypothesis of the model are introduced. The dynamic
problem in this study is that existing disaster insurance mechanisms allow covering the
costs of disaster but do not allow to prevent the risk of future damage causes, which
are increasing due to climate change impact resulting as an increase in frequency and
intensity of extreme weather events. The dynamic hypothesis is that advanced insurance
mechanisms implemented by smart insurance contracts can help reduce damage costs by
supporting investment in disaster risk mitigation measures, thus protecting insured assets
and attracting new customers thanks to a more effective insurance scheme.

Once the key variables and their interrelationships are identified in the conceptual
model developed with CLDs, the empirical model structure that simulates the system’s
behavior is created.

2.2. Setting up System Dynamics Stock and Flow Model

System dynamics stock and flow models are used to simulate the behavior of complex
systems over time (Blumberga et al. 2011). In a stock and flow model, variables are
represented by:

(i) stocks, which accumulate or deplete over time, and by
(ii) flows, which represent the rate at which variables enter or exit a stock.

The interactions between stocks represent feedback loops and flows, and the mathe-
matical relationships between the stocks determine the behavior of the system over time
and flows. This makes the system dynamics approach particularly useful for modeling
complex social-ecological systems, as it allows for the representation of multiple feedback
loops and nonlinear relationships between variables. The use of stock and flow models
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also allows for the exploration of the dynamic behavior of a system over time and the
identification of key leverage points for policy intervention.

The conceptual model from CLDs is translated into a quantitative simulation model
using the system dynamics software Stella Architect v3.5.1. This involves defining the
mathematical relationships between the model variables and the simulation’s time horizon.
The data in this case is gathered from statistics for a specific case study.

2.3. Defining a Case Study

The developed stock and flow models are applied for a case study exploring the
scenarios of conventional and smart contract insurance. These scenarios are designed to
test the effectiveness of smart insurance contracts for real estate assets in mitigating the
impacts of climate change-related extreme weather events. The empirical data is collected
for a local case study of Jelgava city (see Figure 1), which is located in central Latvia and
has a population of around 55 thousand inhabitants.
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Figure 1. Geographical location of the selected case study area.

The city is subjected to the yearly natural hazard of spring floods, and the insured
assets considered in this study are residential buildings for the spring floods with a high
probability (10% or once every 10 years), average probability (1% or once in 100 years) and
a low probability (0.5% or once every 200 years) with losses and costs of restoration shown
in Table 1.

This statistical data serves as an input for stochastic-probabilistic spring flood hazard
event simulation implemented in the SD model trough function RANDOM (stochastic
component), applying hazard probabilities with different return times (Feofilovs and
Romagnoli 2021). The simulation includes a stochastic-probabilistic variable in the model
and considers random sampling of 1000 simulation runs. This number of simulation runs
is enough to capture a variety of possible combinations for disaster event occurrences over
50 years from the given disaster input data in Table 1.
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Table 1. Disaster probability, damage, and restoration costs (Latvian Environment, Geology and
Meteorology Centre 2019).

Flooding Probability in 100 Years, % Flooded Buildings Area, m2 Restoration Costs per m2

10% 103,773 19.5

1% 547,400 25.8

0.5% 695,111 31.8

The function describing asset loss is based on the damage curve for buildings from
national flood risk assessment and management plans (Latvian Environment, Geology and
Meteorology Centre 2019), and the insurance model is expressed in monetary units. The
damage is accounted for in the damaged asset area (m2). The determined risk premium
that insured assets must pay to an insurance company in the model simulation is estimated
for a 10-year period by Equation (1):

RP = Laverage + σ ∗ P (1)

where

RP—Risk Premium,
Laverage—loss associated with the average yearly loss per asset in the area subjected to disaster,
σ—volatility of yearly loss per asset in the area subjected to disaster,
P—premium charge in %.

Three scenarios are compared with the help of the developed SD model in a simulation
for a time period of 50 years and a time step of one year. The scenarios are summarized in
Table 2 and include:

(1) Scenario 1—Business as usual (BAU)—conventional insurance mechanism;
(2) Scenario 2—Investment in disaster risk reduction—the insurance with bond for DRR

measures without fixed premium;
(3) Scenario 3—Smart contract approach—the proposed smart contract insurance scheme

with investment in disaster risk reduction (DRR) and fixed premium.

Table 2. Analysed scenarios with the developed SD model.

Scenario Title Risk Premium DRR Measure
Flood Risk

Reduction Measure
Efficiency, %

Flood Risk
Reduction Measure

Cost, EUR

1. Business as usual Assessed every
10 years No - -

2.
Investment in
disaster risk

reduction

Assessed every
10 years

Riverbed cleaning, coastal
erosion prevention, and
flow-through restoration

20.5 1,200,000

3. Smart contract
approach Fixed

Riverbed cleaning, coastal
erosion prevention, and
flow-through restoration

20.5 1,200,000

Note: DDR—Disaster Risk Reduction.

The Scenario 1 assumption is that the risk premium payments will increase because of
an increasing number of insurance contracts, which occurs because of higher risk perception
related to climate change. The expected behavior in risk premium payments and insurance
payouts for Scenario 1 is illustrated in Figure 2 with payment flows of a 10-year period.
The attachment point is the level of loss at which the insurance company will step in to pay
for the excess losses, and the detachment point is the level of loss that will no longer be
covered by the insurance company. The payouts to insured assets are being made in the
amount that is between the attachment point and detachment point of insurance, meaning
the risk behind the points is not covered.



Risks 2024, 12, 43 8 of 23

Risks 2024, 12, x FOR PEER REVIEW 8 of 24 
 

 

period. The attachment point is the level of loss at which the insurance company will step 

in to pay for the excess losses, and the detachment point is the level of loss that will no 

longer be covered by the insurance company. The payouts to insured assets are being 

made in the amount that is between the attachment point and detachment point of insur-

ance, meaning the risk behind the points is not covered.  

 

Figure 2. Illustration of insurance companies’ payment flows in business as usual (Scenario 1). 

The proposed Scenario 2 and Scenario 3 approaches foresee an investment made by 

the government into DRR that will positively affect the safety of the insured assets. The 

idea of these scenarios is that the insurance company accepts the obligation in the form of 

bonds to pay the government's investment, moving towards a proactive role of the insur-

ance sector as a driver for risk mitigation and prevention measures. The government is 

considered the representative of the local area that is responsible for fostering the DRR 

and, therefore, is interested in investment in DRR that is eventually paid off by an insur-

ance company through bonds. 

Such an approach considers that the risk is reduced because of the effective imple-

mentation of DRR, and consequently, the insurance payouts will reduce because of fewer 

events encountering damage to assets, also leading to the decrease in the risk premium 

accordingly. This case is described by Scenario 2 and presented in Figure 3.  

 

Figure 3. Illustration of insurance companies’ payment flows with Investment in disaster risk re-

duction (Scenario 2). 

Though this is a practice towards the reduction of DRR, in certain cases, a negative 

balance in the insurance company budget may occur when a decrease in risk premium 

payouts because of a decrease in disaster events leads to an inability to cover the initial 

investment into DRR, hence there must be introduced a fixed premium price. The case of 

a fixed premium is considered in Scenario 3, shown in Figure 4, and named the Smart 

Figure 2. Illustration of insurance companies’ payment flows in business as usual (Scenario 1).

The proposed Scenario 2 and Scenario 3 approaches foresee an investment made by
the government into DRR that will positively affect the safety of the insured assets. The
idea of these scenarios is that the insurance company accepts the obligation in the form
of bonds to pay the government’s investment, moving towards a proactive role of the
insurance sector as a driver for risk mitigation and prevention measures. The government
is considered the representative of the local area that is responsible for fostering the DRR
and, therefore, is interested in investment in DRR that is eventually paid off by an insurance
company through bonds.

Such an approach considers that the risk is reduced because of the effective imple-
mentation of DRR, and consequently, the insurance payouts will reduce because of fewer
events encountering damage to assets, also leading to the decrease in the risk premium
accordingly. This case is described by Scenario 2 and presented in Figure 3.
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Figure 3. Illustration of insurance companies’ payment flows with Investment in disaster risk
reduction (Scenario 2).

Though this is a practice towards the reduction of DRR, in certain cases, a negative
balance in the insurance company budget may occur when a decrease in risk premium
payouts because of a decrease in disaster events leads to an inability to cover the initial
investment into DRR, hence there must be introduced a fixed premium price. The case
of a fixed premium is considered in Scenario 3, shown in Figure 4, and named the Smart
contract approach. Within this approach, the share of insurance companies’ income, which
is the difference between insurance payouts and the fixed risk premium, is used to pay off
the bonds of the initial investment in the DRR measure made by the government.

The total expenditure of the company in Scenario 1 is different from the Scenario 2
and 3 approach, where the insurance company expenditure is not only the payouts to
insured assets after damage has occurred but also the pay-off of investment. The insurance
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companies’ expenditure can be used to compare the overall costs of moving from the
conventional insurance scheme in the BAU scenario towards the Smart contract approach,
and in the SD model, is estimated as the sum of payouts to insured assets after the damage
has occurred and the pay-off of investment. Also, the total disaster costs are estimated to
compare the overall effectiveness of studied scenarios as the sum of the damage to all the
assets in the area and investment into DRR measures.
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The DRR measures in Scenarios 2 and 3 are selected based on the assumption for
Jelgava city flood management plans and are presented in Table 2. The study considers
that under the given flood risk reduction measure, there falls not only the insured assets
but also other assets in the area when flood risk reduction measures are implemented. The
effect of such an approach toward investment in DRR can lead to a decrease in the risk and
the risk premium; hence, the willingness to pay for insurance can increase. The developed
SD model allows the simulation of the change in the number of insured assets in the area.
The assumption in a case study for the initial share of insured buildings in the area is equal
to 10%. In reality, the change in number of insured assets is influenced by such factors as
perception of risk and willingness to pay for the risk. However, the perception of risk is not
further studied in the model. The changes in willingness to pay for the risk parameter are
tested through sensitivity analysis in order to understand the influence of the variable on
the model’s output.

Another assumption in the model for the company’s profit is that it does not consider
payments for workers and other expenses related to the administrative processes. Only risk
premium payments are accounted for as income, and the payouts with investment pay-off
as outcomes. The difference between income and outcome is considered as the insurance
companies profit.

2.4. Model Testing and Validation

Multiple structure verification experiments were conducted in order to validate and
verify the developed System Dynamics model. The tests to check the model’s structural
soundness and gauge how well it captured the system’s behavior in various scenarios
included a number of methods. The model was simulated to see if it could replicate the
foreseen behavior of a system after the initial stock, and parameter values were estimated
using available data and expert knowledge.

2.4.1. Content Validation Procedure

A thorough validation process was used to evaluate the model’s content validity,
and a panel of subject-matter experts in climate change, insurance, and system dynamics
modeling. The experts reviewed the model’s structure, assumptions, and parameters
as part of the process. The validation procedure was conducted in several stages. First,
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the model CLDs were presented to the panel for review, and feedback was solicited on
the model structure and assumptions. The panel provided input on the key variables
and interrelationships in the model and suggested changes to improve the accuracy and
robustness of the model. Next, the model parameters were reviewed by the panel. The
experts provided feedback on the values and ranges of the parameter values and suggested
changes based on their expert knowledge and available data.

2.4.2. Extreme Value Test

The SD model is validated through an extreme value test, in which the model is
calibrated using historical data from the case study and then simulated with extremely high
and low parameter values to understand if the model behavior is logical to the assumptions
made in CLD and SD stock and flow model under extreme condition. The test involves
comparing the model predictions to extreme changes in model variables and Hazard
occurrence. For extremely low-value tests, the hazard occurrence was set as no hazard
during the simulation period, and the area of assets with insurance was equal to all the
assets in the area. For the extremely high-value test, the Hazard occurrence is set to the
occurrence of the hazard with maximum damage every simulation year with all the assets
insured. In addition to these changes for both extreme value tests, also the Area of assets
with insurance variable is set to be equal to all asset areas in the selected case study, and
the Exhaustion point (e.c. Detachment point) of insurance payouts is set to 0, meaning all
losses will be covered by the insurance company.

2.4.3. Sensitivity Analysis

Understanding the effects of model uncertainty and identifying the crucial variables
that have the biggest impacts on the model’s output is important for further use of the
model in practice. In this case, sensitivity analysis is used to analyze how a system responds
to changes in the values of one or more input parameters, the data of which is uncertain,
but the variable may be crucial for model output.

In this study, a sensitivity analysis is conducted by testing the effect of one specific
parameter influencing the number of insured assets because it is an important factor for
the overall output of the model regarding the risk premium payments and payouts for
damage to assets. The Willingness to pay for insurance in the model is determined by the
number of new contracts based on Risk Premium cost. The number of new contracts in the
model is based on the hypothetical functions presented in Figure 5, where risk premium is
measured in EUR per m2 and Number of new contracts in m2 (new insured area of assets).
In total, five simulation runs are made in sensitivity analysis with different hypothetical
functions for the number of new contracts.
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For sensitivity analysis, the hazard event is kept static as in an extreme value test
with maximum hazard occurrence possibility to obtain comparable results over several
sensitivity analysis simulation runs.

3. Results and Discussion
3.1. Causal Loop Diagrams of the Developed Model

The behavior of the studied insurance mechanism implemented in the SD model
is explained through CLDs shown in Figures 6–8 and shows only the main variables
important to explain the dynamic behavior of the SD model.
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The BAU scenario CLD in Figure 5 consists of two feedback loops and the out variable
of Damage to assets and Extreme weather events. The links between variables show that
an increase in Extreme weather event variable value will lead to an increase in Damage to
assets value, under the assumption of “all other things being equal”. Applying the same
assumption, the increase in Damage to assets will lead to an increase in Risk Premium
value. The two stripes on the connector between Damage to assets and Risk Premium
symbolize the time delay between the accounted damage to assets over a period of time for
which the risk premium is estimated.

The variables connected in the reinforcing loop R1 are Risk Premium, Willingness to
pay for insurance, assets insured, and the insurance company’s budget. The reinforcing
loop R1 is a positive loop, meaning that there is an increase of values in the variables
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connected in the loop. This loop represents the dynamic problem of increasing Risk
Premiums over time with the increase of damage to assets that leads to the growth of the
insurance company’s budget and, thus, a decrease in Risk Premiums, as introduced in
Figure 2. In this case, the strength of the decrease in Risk Premium value depends on the
supply-demand elasticity function. The growth in loop R1 depends on the number of assets
in the area, and CLD is marked with balancing loop B1, which includes variable insured
assets and assets remaining to be insured.
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Figure 8. CLD for Smart contract approach (Scenario 3).

Two more feedback loops are added to Scenario 2, including the investment in disaster
risk reduction (Figure 7). The loop R2 shows how investment in DRR measures by smart
contract will lead to a decrease in Damage to assets, thus a decrease in Risk Premium and
consequently an increase in Willingness to pay for insurance, assets insured, and insurance
company budget. Loop B2 is the balancing loop of reinforcing loop R2, which does not
allow infinite growth in the insurance company budget.

To implement a smart insurance scheme, it is necessary to cancel the effect of loop R2
in the given insurance system model by introducing a fixed premium that does not depend
on the damage to assets and is determined based on the historical data at the moment
when it is fixed. Therefore, in Figure 8, the CLD showing the smart contract approach does
not include the link between damage to assets and risk premium. The panel of SD and
insurance experts reviewed and approved the proposed CLD for further implementation
in an SD stock and flow model.

3.2. Empirical Model Testing and Validation
3.2.1. Results of Extreme Value Test

Model testing by extreme value test is performed for Hazard occurrence variable into
separated simulations with minimum and maximum values of hazard event magnitude
(i.e., Flooded buildings area, m2) set for each simulation step. This simulation result for the
risk premium variable in Figure 9 shows a decrease of the value to 0 over the simulation
time because of no risk of a hazard event.

The behavior of the risk premium variable corresponds to the variables shown in
Figure 10. The values of variables shown in Figure 10 are cumulative values in a given
simulation step. The increase in the insurance company’s profit occurs due to received risk
premium payments in the first 10 years of simulation, considering that there are no damage
costs to cover. In this case, the risk premium is still based on historical risk statistics. In the
next ten simulation years, the risk premium is decreased due to a decrease in risk as the
hazard occurrence variable is set to zero. Consequently, the insurance companies’ profits
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are growing slower. The rest of the simulation period after simulation year 20, when the
risk premium is equal to zero, and the profit of the company has reached a plateau.
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The result of the extreme value test with hazard occurrence variable maximum value is
presented in Figure 11 for the Risk Premium variable and Figure 12 for Insurance company
profit, Total costs of disaster, and Total damage costs covered by insurance.
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The results show an increase in Risk Premium after 10 years of simulation due to
increased risk of hazard and another increase after 20 years of simulation. Further growth
does not occur as the Risk Premium value has reached a plateau in regard to the maximum
risk of hazard. The Insurance company’s profit appears to be negative, meaning that the
insurance company experiences financial losses in case of extremely high-hazard event
occurrence. Consequently, the total costs of disaster and the total damage costs covered by
insurance increase over simulation and have the same value as all of the assets in the area
considered insured for extreme maximum value test (see Figure 12). The Extreme value
test results show that the model behavior is logical to the assumptions made in the CLD
and SD stock and flow model.

3.2.2. Sensitivity Analysis Output

The results of the sensitivity analysis show that the model is sensitive to changes
in the Number of newly signed contracts variable. Figure 13 shows how the assets with
insurance variable, measured as the area of assets with insurance in m2 units, changes
under assumptions of hypothetical function for the Number of newly signed contracts
variable shown in Figure 4. Simulation run 1 considers that no new contracts are made,
and therefore, the area of insured assets remains the same. In further simulation runs,
the sensitivity of willingness to pay for insurance is increased, and therefore, for each
simulation run, more new assets sign insurance contracts.
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The hazard occurrence is maintained at the maximum possible, and the Risk Premium
value remains the same as introduced in Figure 11. The Area of assets with insurance in
Figure 13 after the simulation year 10 reaches a plateau as no new contracts are signed
due to the increase in Risk Premium. Moreover, Figure 14 shows that insurance company
profit under sensitivity analysis corresponds to the expected logical behavior of the model.
The figure shows how a higher number of contracts will lead to higher losses in insurance
companies’ budgets because of higher payouts for damage under extremely high hazard
occurrence every simulation year compared to the historical hazard occurrence at the start
of the simulation. Again, the results of sensitivity analysis show that the model behavior is
logical to the assumptions made in the CLD and SD stock and flow model.

Risks 2024, 12, x FOR PEER REVIEW 16 of 24 
 

 

 

Figure 14. Sensitivity analysis results for Insurance company profit. 

3.3. Results of Case Study and Policy Scenarios 

3.3.1. Business as Usual Scenario  

The results obtained for the risk premium in the BAU scenario shown in Figure 15A 

indicate that the average mean value for the risk premium value in all simulations in-

creases compared to the historical risk premium at the start of the simulation. Neverthe-

less, the Risk Premium value in all simulations leads to an increase in the Area of assets 

insured value by the effect of the hypothetical function for the Number of newly signed 

contracts variable, as shown in Figure 15B. 

  
(A) (B) 

Figure 15. Confidence intervals for Risk Premium (A) and Area of Assets Insured (B) in BAU sce-

nario. 

The mean average simulation runs for insurance companies' profits in the BAU sce-

nario shown in Figure 16A increase during the simulation period. However, simulation 

results appear as negative values in insurance company profit for simulation with the 

most frequent occurrence of hazardous events. The probabilities of the final insurance 

companies' profits at the end of the simulation run are shown in Figure 16B. 

Figure 14. Sensitivity analysis results for Insurance company profit.

3.3. Results of Case Study and Policy Scenarios
3.3.1. Business as Usual Scenario

The results obtained for the risk premium in the BAU scenario shown in Figure 15A
indicate that the average mean value for the risk premium value in all simulations increases
compared to the historical risk premium at the start of the simulation. Nevertheless, the
Risk Premium value in all simulations leads to an increase in the Area of assets insured
value by the effect of the hypothetical function for the Number of newly signed contracts
variable, as shown in Figure 15B.
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The mean average simulation runs for insurance companies’ profits in the BAU sce-
nario shown in Figure 16A increase during the simulation period. However, simulation
results appear as negative values in insurance company profit for simulation with the most
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frequent occurrence of hazardous events. The probabilities of the final insurance companies’
profits at the end of the simulation run are shown in Figure 16B.

Risks 2024, 12, x FOR PEER REVIEW 17 of 24 
 

 

 

 

(A) (B) 

Figure 16. Confidence intervals (A) and histogram (B) for Insurance company profit in BAU scenario. 

The confidence intervals and histogram for Insurance companies' expenditure in the 

BAU scenario are shown in Figure 17A,B, respectively. In the case of the BAU scenario, 

the damage costs covered by the insurance company due to insurance payouts for insured 

assets are equal to the total insurance companies’ expenditure. 

 

 

(A) (B) 

Figure 17. Confidence intervals (A) and histogram (B) for insurance companies’ expenditure in BAU 

scenario. 

The Total costs of disaster for all assets in the area (see Figure 18) appear to be much 

higher than the Damage costs covered by the insurance company in Figure 17. This is due 

to the fact that at the start of the simulation, only 10% of assets in the area are considered 

to be insured, and during the simulations, a relatively small share of the total assets area 

is signing insurance contracts based on Hypothetical functions for the Number of new 

contracts variable, which is dependent on risk premium value, which again is dependent 

on the hazard occurrence over the simulation period.  

Figure 16. Confidence intervals (A) and histogram (B) for Insurance company profit in BAU scenario.

The confidence intervals and histogram for Insurance companies’ expenditure in the
BAU scenario are shown in Figure 17A,B, respectively. In the case of the BAU scenario,
the damage costs covered by the insurance company due to insurance payouts for insured
assets are equal to the total insurance companies’ expenditure.
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Figure 17. Confidence intervals (A) and histogram (B) for insurance companies’ expenditure in
BAU scenario.

The Total costs of disaster for all assets in the area (see Figure 18) appear to be much
higher than the Damage costs covered by the insurance company in Figure 17. This is due
to the fact that at the start of the simulation, only 10% of assets in the area are considered
to be insured, and during the simulations, a relatively small share of the total assets area
is signing insurance contracts based on Hypothetical functions for the Number of new
contracts variable, which is dependent on risk premium value, which again is dependent
on the hazard occurrence over the simulation period.

The results of the BAU scenario can be interpreted in the following way according to
the CLDs: the occurrence of disaster events during the simulations is higher than historical,
and therefore, the Risk Premium is increasing, and the Area of assets insured value by the
effect of hypothetical function for Number of newly signed contracts (Figure 15) therefore
the Insurance company profit is also increasing (Figure 16). Nevertheless, Damage costs
covered by insurance companies (Figure 17) and the Total costs of disaster (Figure 18) are
increasing significantly over simulation time. The results of the BAU scenario underline
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that the model represents the dynamic problem of existing disaster insurance mechanisms
defined for the study.
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3.3.2. Scenarios with Investment in Disaster Risk Reduction

The results of the simulation for Scenario 2 with investment in flood risk reduction
measures in Figure 19A show the confidence intervals for the Risk Premium, which is simi-
lar to the BAU scenario output. In Figure 19B, the Risk Premium for Scenario 3 is given as
static according to the definition of the fixed Risk Premium value in all 1000 simulation runs.
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In Figure 20A,B, the corresponding tendency of the number of insured assets is shown
for Scenario 2 and Scenario 3, respectively. Scenario 2 has a variation in the number of
insured assets corresponding to a variation in the Risk Premium, while Scenario 3 has the
same trend in all simulations due to the fixed premium definition.

The results of the Number of insured assets in both scenarios with investment in DRR
are shown in Figure 21. Scenario 2 (see Figure 20A) has a similar tendency in confidence
intervals to Scenario 1 (See Figure 20A), showing that the investment in flood risk reduction
measures will lead to a slight decrease in the variability of insurance company profit. For
Scenario 3 (Figure 20B), the confidence intervals for the Insurance company profit show
that the range of profit uncertainty has decreased, and most of the simulation results are
located at the higher levels of the graph with the mean average of the simulation outputs is
moved closer to the higher income values. There are also fewer probable outcomes with
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negative insurance companies’ profit values. The distribution of Insurance company profit
in Scenarios 2 and 3 in the form of Histograms is shown in Figure 22A,B, respectively.
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Though there is a certain probability of having a higher company profit in Scenario
2thann in Scenario 3, the total Expenditure of the insurance company on disaster, including
the damage-related payouts and pay-off of investment in Figures 23 and 24, shows how
Scenario 3 leads to lower overall expenditure and maintains very high probability of having
low the average mean of the payouts. This signifies that Scenario 3 has the overall lowest
costs in all scenarios compared, while Scenario 2 is slightly better than business as usual in
Scenario 1.
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Finally, the Total costs of disaster are compared in Figures 25 and 26. The results show
that Scenario 3 leads to much lower total disaster costs thanks to fixed premiums. As for
Scenario 2, the total costs of disaster appear slightly lower than those shown for Scenario 1.
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3.4. Discussion on Findings and Limitations of the Case Study Results

The findings of this study underscore the efficacy of innovative insurance mecha-
nisms in mitigating climate change-related disaster risks, aligning with prior research
advocating for proactive risk management strategies. Unlike traditional models that focus
on post-disaster financial recovery, this study introduces a mechanism that emphasizes
risk prevention and mitigation, echoing the call for more forward-looking approaches in
the insurance sector. This aligns with the growing body of literature that supports the
integration of risk reduction measures into insurance frameworks to enhance resilience
against natural disasters. This study contributes to the evolving field of disaster risk
management by proposing an innovative insurance mechanism tailored to the challenges
posed by climate change. It calls for a shift from traditional, reactive insurance models to
proactive, prevention-oriented strategies, offering a blueprint for enhancing resilience and
sustainability in the face of increasing disaster risks.

Latvia’s insurance policy landscape for natural disasters is characterized by a need
for innovative approaches to managing increasing risks due to climate change. The study
highlights Latvia’s vulnerability to flooding and the potential economic impacts of climate-
related events on urban resilience. By implementing the proposed innovative insurance
mechanism, Latvia can move towards a more proactive disaster risk management model.
This approach not only aims to reduce immediate disaster costs but also contributes to the
long-term resilience of communities, aligning with global trends towards sustainable and
resilient urban development.

The study’s main limitation lies in its localized context, focusing on a case study in
Latvia, which may not fully represent other geographic or socioeconomic settings. Future
research should aim to apply the model in diverse environments to validate its universal
applicability and effectiveness. Additionally, exploring the long-term sustainability of the
proposed insurance mechanism and its adaptability to changing climate conditions and
disaster risk profiles would provide valuable insights.

4. Conclusions

Insurance mechanisms that decline and mitigate climate change-related disasters
play a key role in protecting lives, livelihoods, and infrastructure. Through robust risk
assessment, innovative insurance mechanisms, incentives for risk reduction, capacity
building, stakeholder collaboration, and continuous monitoring and evaluation, these
mechanisms enhance community resilience and foster sustainable development in the
face of climate change challenges. As climate risks continue to evolve, it is imperative to
foster ongoing innovation, research, and policy support to ensure the effectiveness and
accessibility of insurance mechanisms in the future.

The study highlights the usefulness of the System Dynamics modeling approach
for examining the feedback loops that govern the behavior of complex systems related
to the disaster insurance mechanism. The study aims to solve an existing problem in
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conventional disaster insurance mechanisms, which aims only to provide financial safety
for asset recovery after a disaster event and not to decrease the risk of the disaster itself.
This problem is especially becoming topical with climate-related disaster risk increases and
can lead only to higher damage costs in the long term.

In this study, a new insurance mechanism is suggested to overcome the current in-
effectiveness of the conventional insurance model in dealing with the growing threats of
disasters, and it is applied in a local case study. For the proposed insurance mechanism, a
dynamic hypothesis is created that foresees a smart insurance contract supporting invest-
ment in disaster risk mitigation measures to reduce damage costs, thus protecting insured
assets and, at the same time, allowing new assets to be insured thanks to a more effective
insurance scheme resulting even in higher benefits for the assets insured. The model’s
structure is described by the causal loop diagrams and implemented in a stock and flow
model, in which content is validated by experts and tested by extreme value tests and
sensitivity analyses to verify the reliability of the model outputs.

The results of the extreme value test indicated that the model can accurately show the
system’s behavior under extremely high and low variable values. This increases confidence
in the model’s ability to predict the behavior of the studied system. The sensitivity analysis
also showed that the model is sensitive to small changes in a single variable value. It is
important to notice how these small changes can significantly affect the long-term behavior
of the studied system under different inputs. Sensitivity analysis showed how a change
in willingness to pay for insurance would influence the expected outcomes of the model.
Overall, these structure verification tests provided important validation of the system
dynamics model and increased confidence in its ability to accurately represent the behavior
of the system under different conditions. By verifying the model structure, parameters,
boundaries, extreme conditions, and unit consistency, the model was able to provide more
accurate predictions and insights for the defined case study scenarios.

The case study was made for three comparative insurance scheme scenarios. Scenario
Comparison in the case study showed that business as usual could lead to increasing
risk premiums over time due to higher disaster event occurrences, leading to increased
insurance company profits but also significantly higher disaster and damage costs. A sce-
nario with investment in disaster risk reduction led to a decrease in insurance payouts
because of fewer disaster events occurring, suggesting a better outcome than business
as usual but with limitations on consistent revenue for insurance companies. The Smart
Contract Approach scenario introduced a fixed risk premium and investment in DRR
measures, demonstrating the lowest overall disaster costs and expenditure for insurance
companies, indicating a highly effective strategy for reducing disaster-related financial
impacts. The Smart Contract approach led to a more stable and higher insurance company
profit compared to the business-as-usual scenario and the investment in disaster risk reduc-
tion scenario without a fixed premium, underlining the financial viability of innovative
insurance mechanisms.

The results obtained from the case study with the developed SD model show an
agreement with the desired dynamic hypothesis of innovative insurance mechanism and
show a logical coherence throughout the analysis of results. The model’s predictions
consistently match the expected trends and patterns postulated according to existing
theoretical underpinnings foreseen in the methodology. The created SD model can further
boost the application of innovative insurance mechanisms in practice in different regions
and give valuable insights to insurance companies, policymakers, or disaster risk managers
by providing information on the most beneficial scenarios for local communities and
other stakeholders.
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